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Abstract: The rise of antimicrobial resistance is a global challenge that requires a coordinated effort
to address. In this study, we examined the genetic similarity of carbapenem-resistant Klebsiella
pneumoniae (CRKP) in countries belonging to the Gulf Cooperation Council (GCC) to gain a better
understanding of how these bacteria are spreading and evolving in the region. We used in silico
genomic tools to investigate the occurrence and prevalence of different types of carbapenemases
and their relationship to specific sequence types (STs) of CRKP commonly found in the region. We
analyzed 720 publicly available genomes of multi-drug resistant K. pneumoniae isolates collected from
six GCC countries between 2011 and 2020. Our findings showed that ST-14 and ST-231 were the
most common STs, and 51.7% of the isolates carried blaOXA-48-like genes. Additionally, we identified
rare carbapenemase genes in a small number of isolates. We observed a clonal outbreak of ST-231
in Oman, and four Saudi isolates were found to have colistin resistance genes. Our study offers a
comprehensive overview of the genetic diversity and resistance mechanisms of CRKP isolates in the
GCC region that could aid in developing targeted interventions to combat this pressing global issue.

Keywords: genomic surveillance; CRKP; clone divergence; Arabian Peninsula

1. Introduction

Antimicrobial resistance is a growing serious threat to human health and projected
to reach an all-time high by 2050, resulting in millions of deaths and a massive economic
burden [1,2]. Enterobacterales, including Klebsiella pneumoniae, are opportunistic pathogens
responsible for many hospital-acquired infections [3]. Their broad spectrum of diseases
and increasing resistance to antibiotics account for almost one-third of infections caused by
Gram-negative bacteria. [3,4]. Resistance to carbapenems, the last resort class of antibiotics,
is a major concern, especially in K. pneumoniae [5]. Studies suggest that the mortality rate
associated with carbapenem-resistant K. pneumoniae (CRKP) may exceed 75% depending
on factors such as age and disease profile [1,6]. The production of enzymes by genes that
mediate different mechanisms of resistance in CRKP isolates effectively degrades carbapen-
ems, rendering the bacteria non-susceptible [7]. Klebsiella pneumoniae carbapenemase (KPC),
located on self-conjugative plasmids, is the most problematic class A carbapenemase due
to its ability to spread widely [8]. The most common KPC enzyme alleles are KPC-2 and
KPC-3 that are distributed globally [7,9]. Class B carbapenemases, metallo-β-lactamases
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(MBLs), are the second most significant enzymes in CRKP and can hydrolyze almost
all β-lactam antibiotics, including carbapenems [10,11]. The most prevalent MBLs are
IMP, VIM, NDM, GIM, and SIM which are located on genetic mobile elements that can
transfer between bacteria. VIM and NDM are the most common globally, including in
the Gulf [7,12]. NDM-1 is highly transferrable and can hydrolyze all β-lactams except
aztreonam. It is primarily found in India [13]. VIM has more than 24 allelic variations in
over 60 species [14]. Class D β-lactamases, such as the OXA-48-like enzyme, are commonly
present in the Enterobacterales family and have significantly contributed to the rise of
carbapenem resistance in the past decade [15]. The most significant reservoirs of these
enzymes are India, the Middle East, and North African countries [16]. OXA-48 variants,
including OXA-48, OXA-181, OXA-232, OXA-204, OXA-162, OXA-163, and OXA-244 have
been identified [17].

CRKP is a major concern in the Gulf region, with specific clonal lineages identified,
including the famous CC258 clone (ST258, ST11, ST340, ST437, and ST512) and other clones
such as CG14/15, CG17/20, CG29, CG37, CG43, CG101, CG147, CG152, CG231, CG307,
and CG490 [18]. However, the mechanisms of resistance and locally prevalent clones
have only been explored through small-scale, local research. Studies such as [12,19–30]
have contributed to our understanding of CRKP in the Gulf region. These studies have
provided important information about the prevalence of specific clones and their resistance
mechanisms in the region. However, larger-scale studies are needed to fully understand
the impact of CRKP in the Gulf region and to develop effective prevention and treatment
strategies.

Previous studies on the mechanisms of antimicrobial resistance (AMR) have focused
on identifying only a few genes or mutations, while whole-genome sequencing (WGS)
technology has improved the identification of various genetic bases of phenotypic variation,
including point mutation, mobile genetic elements, and chromosomally encoded factors
that contribute to the development of resistance, particularly to multiple antibiotics, leading
to the emergence of MDR pathogens [31]. WGS data also allow identification of the evolu-
tionary histories of homogeneous clusters using single nucleotide polymorphisms (SNPs)
and the upscaling of multilocus sequence typing (MLST) perception using core genome
MLST (cgMLST) analysis that provides better resolution and serves as the foundation for a
universally curated nomenclature scheme accessible via various databases, enabling local
and global epidemiological investigations [32,33].

To gain a better understanding of the genetic makeup of CRKP in the Gulf region,
we employed cutting-edge techniques such as whole-genome sequencing and cgMLST
analysis. Our investigation involved a comprehensive analysis of publicly available CRKP
genomes that allowed us to identify the prevalence of various types of carbapenemases
and their relationship with different sequence types (STs). By leveraging the power of in
silico analysis, we were able to decipher the genetic relatedness of CRKP isolates in the
Gulf Cooperation Council Countries region (GCCC) and gain insights into their evolution
and spread. Our findings could pave the road to develop effective strategies to tackle the
threat of CRKP and other multi-drug resistant pathogens in the GCCC and beyond.

2. Results
2.1. Prevalence and Distribution of Carbapenem-Resistant K. pneumoniae Sequence Types (STs)

As shown in Table 1, ST-14 represented 14.58% (105 out of 720) of the total isolates
collected across all participant countries. The prevalence rates of ST-14 in the individual
countries were UAE (n = 54, 7.5%), Saudi Arabia (n = 43, 6.0%), Qatar (n = 4, 0.6%), Oman
(3, 0.4%), and Bahrain (n = 1, 0.1%). Of the 105 ST-14 isolates, 80% (84) carried at least
one common carbapenemase gene. ST-231 was the second most common, accounting for
12.6% (91) of the total isolates. Amongst these 91 isolates, 74.7% (68) were found in Oman,
9.9% (9) in UAE, 8.8% (8) in Kuwait, and 6.6% (6) in Qatar (Table 1). Interestingly, ST-231
was absent in the Saudi Arabia collection. Moreover, various carbapenemase genes were
detected among many isolates of this ST (73.6%; 67 out of 91) as shown in Table 1.
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Table 1. Characterization of 720 K. pneumoniae isolates with the most abundant STs across the six Gulf countries.

Country
Total

Number
(n)

Carbapenemase Genes Sequence Types (ST)

NDM KPC OXA IMP VIM Dual None ST
101

ST
11

ST
14

ST
147

ST
15

ST
2096 ST 231 ST 307 ST

45
ST
48

UAE 98 27 6 30 0 0 21 14 0 6 54 10 7 0 9 0 0 1

Saudi 230 21 1 130 0 2 17 59 15 3 43 8 4 98 0 8 6 7

Qatar 164 38 4 27 0 0 10 85 2 5 4 14 2 2 6 8 6 2

Oman 212 77 0 76 0 0 21 38 8 62 3 37 10 0 68 2 0 0

Kuwait 15 2 0 3 0 0 1 9 0 0 0 0 2 0 8 0 0 0

Bahrain 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Total 720 165 11 266 0 2 70 206 25 76 105 69 25 100 91 18 12 10

CRKp % 71%
(514/720)

32%
(165/514)

2%
(11/514)

51.7%
(266/514) 0 0.38%

(2/514)
13.6%

(70/514)
28.6%

(206/720)
88%

(22/25)
94.7%

(72/76)
80%

(84/105)
84%

(58/69)
84%

(21/25)
87%

(87/100)
73.6%

(67/91)
38.8%
(7/18)

50%
(6/12)

40%
(4/10)
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The subsequent frequently occurring ST was ST-2096, which accounted for 13.9% (100).
Almost all these ST-2096 isolates (98%) were exclusively found in Saudi Arabia, specifically
98 out of 230 (42.6%) isolates from Saudi Arabia collection (Table 1). This ST was not
detected in any other countries, except Qatar where only two (0.9%) isolates were identified.
The carbapenemase genes of this lineage detected have only been found in Saudi Arabia
where 87 (88.7%) of the isolates carried these resistance genes. The two isolates from Qatar
did not contain any carbapenemase genes.

Out of the 720 ST identified, 76 (10.6%) belonged to the global epidemic clone ST-11.
This clone was mainly identified in Oman (81%; n = 62), followed by UAE (7.8%; n = 6) and
Qatar (6.5%; n = 5), with only three isolates detected in Saudi Arabia (3.9%; n = 3) (Table 1).
The majority of these ST-11 isolates, 72 out of 76 (94.7%), produced carbapenemases as
shown in Table 1.

Some of the STs such as ST-15, ST-101, ST-307 and ST-48 were detected in low propor-
tions among the collections from each of the GCC states. ST-15 accounted for 25 (3.5%) of
the total isolates and was found in five out of the six Gulf countries investigated (Oman,
n = 10; Kuwait, n = 2; Saudi Arabia, n = 4; UAE, n = 7; Qatar, n = 2), with the majority, 21
out of 25 (84%), of these isolates carrying carbapenemase genes (Table 1). ST-101, on the
other hand, was associated with only three out of the six countries studied (Saudi Arabia,
n = 15; Oman, n = 8; Qatar, n = 2) (Table 1). ST-101 carbapenemase producers (88%; 22 out
of 25) were found only in isolates from Saudi Arabia (n = 14) and Oman (n = 8). Similarly,
ST-307 (n = 18) was observed in the same three countries (Saudi Arabia, n = 8; Qatar,
n = 8; Oman, n = 2) (Table 1). ST-48 (n= 10) was identified in three countries (Saudi Arabia,
n = 7; UAE, n = 1; Qatar, n = 2), while ST-45 was equally identified in only two countries
(i.e., Saudi (n = 6) and Qatar (n = 6)) (Table 1).

2.2. Resistome Characterization of Carbapenem-Resistant K. pneumoniae Isolates

Carbapenem resistance genes were detected in 514 out of 720 (71.3%) of isolates
(Table 2) and out of which 266 (51.7%) carried various alleles of blaOXA genes alone and
159 (31%) carried blaNDM-1. A total of 11% (57/514) of isolates co-produced blaNDM-1 and
multiple alleles of blaOXA. A small number of 12 (2%) co-produced blaNDM-5 and different
alleles of blaOXA. Rare carbapenemase genes found in this study were blaKPC-2 (n = 10),
blaNDM-5 (n= 5), blaKPC-2 in combination with blaOXA232 (n = 1), blaKPC-3 (n = 1), blaNDM-7
(n = 1), and blaVIM-29 (n = 2), with the latter found exclusively in Saudi Arabia.

2.3. Mobile Colistin Resistance Elements (mcr)

Only four isolates from Saudi Arabia, belonging to ST-2096 (one isolate), ST-14 (one
isolate), and ST-3513 (two isolates), were found to contain the mcr and/or mcr-8 genes that
conferred colistin resistance. The ST-14 isolate also carried a blaNDM-1 carbapenemase gene.

2.4. Clonal Clustering and Relatedness of the CRKP Isolates

cgMLST analysis was performed on isolates of the most abundant STs carrying at least
one carbapenemase gene. The results indicated a clonal spread of certain STs within the
same country or across the Arabian Peninsula. For instance, 72 out of 76 ST-11 isolates
were carbapenemase producers, and five clusters and six singletons were identified. All
clusters were made up of isolates from the same country. Cluster 1 consisted of 54 isolates
(from Oman with less than 10 allele differences and KL14 as the dominant capsular type)
(Figure 1). The majority of these isolates (n = 21) carried the blaNDM-1 gene, and nine had
both blaNDM-1 and blaOXA-232 genes and clustered with one isolate with blaOXA-232, indicating
clonal spread. Cluster 2 includes isolates from UAE with different carbapenemase genes
and the same capsular type KL24. Other capsular and O antigen types were also present.
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Table 2. Carbapenem resistance genes identified among the 514 CRKP isolates across the Arabian
Peninsula.

Carbapenem Resistance Genes Total Isolates (n) Percentage (%)

KPC-2 10 1.94

KPC-2/OXA-232 1 0.19

KPC-3 1 0.19

NDM-1 159 30.93

NDM-1/OXA-162 4 0.77

NDM-1/OXA-181 1 0.19

NDM-1/OXA-232 31 6.03

NDM-1/OXA-48 21 4.08

NDM-5 5 0.97

NDM-5/OXA-181 3 0.58

NDM-5/OXA-232 6 1.16

NDM-5/OXA-48 3 0.58

NDM-7 1 0.19

OXA-162 5 0.97

OXA-181 19 3.69

OXA-232 143 27.82

OXA-48 99 19.26

VIM-29 2 0.38

2.5. Clusters and Singletons Associated with ST-14 and ST-147

cgMLST analysis of 84 ST-14 carbapenemase producers revealed six clusters and eight
singletons associated with ten different types of carbapenemase genes as shown in Figure 2.
Most clusters contained isolates from the same country, with Cluster 1 being the largest
(31.3%) and all from Saudi Arabia. Within this cluster, 10 isolates had blaNDM-1 and KL2;
KL64 was the most common capsular type (Figure 2; Table 3). Cluster 2 contained isolates
from UAE, Qatar, and Bahrain with different carbapenemase genes, while Cluster 3 had
isolates from UAE and Oman. These findings suggest a clonal spread of this lineage with a
high capability of acquiring different resistance genes and disseminating across different
geographic locations.

cgMLST analysis of 58 ST-147 isolates found four clusters and 14 singletons, with
eight different types of carbapenemase genes present. KL64 capsular type and O2a antigen
were most common (Table 3). Cluster 1 and 2 had the most MST nodes, with isolates from
different countries. The most frequent genes identified were blaNDM-1 in Cluster 1 and
blaNDM-5 and/or blaOXA-181 in Cluster 2. Singletons from different locations were closely
related with less than 45 allele differences, indicating a clonal expansion of this clone

2.6. Outbreaks Associated with ST-231 and ST-2096 CRKP

ST-231 isolates were found to be predominantly from Oman, with only a few from
Kuwait, and all carried the blaOXA-232 gene. These isolates had the KL51 capsular type
and O1 antigen (Table 3, Figure 3). ST-231 was found to be able to accommodate various
carbapenem resistance genes as seen in Clusters 2 and 3, which contained isolates from
different origins carrying different genes (Figure 3). Similarly, a clonal outbreak of ST-2096
CRKP was observed in Saudi Arabia in 2018, with most isolates having the KL64 capsular
type and O1 antigen carrying either blaOXA-48 or blaOXA-232 genes. Cluster 1 contained the
majority of isolates and had 67 MST nodes, with 19 carrying blaOXA-48 and 61 carrying
blaOXA-232 (Table 3).
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Table 3. Prevalence of capsular type (K locus) and O antigens among major clones of the whole
isolate collections.

ST-14 ST-231 ST-2096 ST-11 ST-147 ST-15 ST-101 ST-45

Capsular
type

KL5 1% -- -- -- -- -- -- --

KL2 61% -- -- -- -- 4% -- --

KL10 -- -- -- -- 4% -- -- --

KL14 -- -- -- 76% -- -- -- --

KL15 -- -- -- 8% -- -- -- --

KL16 1% -- -- -- -- -- -- --

KL17 -- -- -- -- -- -- 88% --

KL19 -- -- -- -- -- 24% -- --

KL24 -- -- -- 12% -- 20% -- 8%

KL43 -- -- -- -- -- -- 50%

KL47 -- -- -- 1% -- -- -- --

KL48 -- -- -- -- -- 24% -- --

KL50 1% -- 2% -- -- -- -- --

KL51 -- 100% -- -- -- -- -- --

KL52 -- -- -- -- -- -- -- 8%

KL64 30% -- 93% 1% 94% 4% 4%

KL102 -- -- 4% 8%

KL107 -- -- 4% 1% 1% -- 4% 8%

KL112 -- -- -- -- -- 16% -- --

KL127 -- -- -- -- -- -- 8%

KL135 1% -- -- -- -- -- --

KL166 -- -- 1% -- -- 4% -- --

O antigen

O1 85% 99% 96% -- -- 92% 92% --

O2a 10% 1% 3% 13% 91% 4% 4% 67%

O3 1% -- -- 41% 4% 4% -- 8%

O4 -- -- -- 8% -- -- --

OL101 -- -- -- 1% -- -- -- 25%

OL102 -- -- 1% 1% 3% -- -- --

OL104 -- -- -- 36% -- -- -- --

2.7. Clustering of Isolates among ST-15, ST-101, and ST-45 Lineages

In the ST-15 and CR-Kp-ST-101 lineages, carbapenemase producer isolates were
grouped into clusters and singletons. Most isolates were from the same country except
for Cluster 1. ST-15’s Cluster 1 included isolates from UAE and Kuwait with the blaNDM-1
gene, while ST-101’s Cluster 1 had isolates from Saudi Arabia and Oman with the blaOXA-48
gene. Different carbapenemase gene combinations were identified within each lineage.
O1 was the predominant O antigen in ST-15 isolates, while KL17 capsular type and O1
antigen were common in ST-101 isolates. ST-45 was associated with blaOXA-48 and only two
capsular types (KL43 and KL102) and one O antigen type (O2a) (Table 3).
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3. Discussion

This study marks a cutting-edge initiative to investigate the genomic epidemiology
of CRKP in the GCC countries. The findings revealed a dangerous clan that possesses
both hyper-virulent and drug-resistant traits (specific STs and capsular types). Given
the widespread distribution of these clones, they pose a significant public health risk [34].
Therefore, genetic epidemiology data from this study can provide insights into the evolution
and complexity of these clones. Notably, the study identified that most of the isolates
belonged to the ST14 clone, which has been previously recognized as a global threat [17,35].

The OXA-48-like carbapenemases are well known for causing outbreaks that affect
specific sequence types, including ST14. Recently, Mouftah and colleagues (2021) reported
the prevalence of this clone along with its associated clonal transmission and potential
for horizontal gene transfer among isolates from 13 hospitals in the United Arab Emi-
rates, Bahrain, and Saudi Arabia [36]. This clone has been detected in various regions
globally, including Europe, the Mediterranean, China, North America, Oceania, and South
Africa [17,35]. Several studies have also identified ST14 as one of the most common
sequence types of NDM-1-producing K. pneumoniae (NPKP) [37–39]. It seems that our
findings have been further substantiated as it appears that most of our isolates carried
the NDM-1 and OXA-48 carbapenemase genes. Moreover, K. pneumoniae ST14 from the
Arabian Peninsula also exhibited specific traits, such as the KL64 capsular locus and O1
antigens [36]. Alarmingly, an apparent outbreak of this clone in UAE with dominance of Hv
capsular KL2 and KL64 has been identified based on cgMLST analysis [40,41]. In a related
occurrence, an outbreak that initially took place in Saudi Arabia spread to Qatar with the
dominance of KL2. Given that this clone has demonstrated an ability to carry multiple types
of carbapenemase genes, it is clear that this Hv clone is becoming increasingly dominant
and thus requires strict monitoring measures.
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It is interesting to note that in our study, despite ST231 being the most common
sequence type reported in previous cases of blaOXA-232-harboring K. pneumoniae [42], ST231
was in fact the second most prevalent sequence type. Additionally, we observed a higher
occurrence of ST231 in Oman, which is not commonly seen in other countries in the region.
Through our cgMLST analysis, we were able to identify an outbreak of this clone in Oman
that had not been previously documented. Despite being located in different regions,
this lineage has been strongly associated with locus type KL51 while carrying various
carbapenemase genes as reported in other studies [43–45]. A recent study conducted in
India also revealed a strong correlation between KL51 and ST231 in the phylogenetic tree
of 307 isolates [46].

Our study revealed that a significant proportion of the K. pneumoniae isolates from
Saudi Arabia were highly virulent (capsular serotype KL64) [40,41] and resistant, with
the clonal complex 14 dominant sequence type being ST2096. These findings align with a
previous outbreak in Saudi Arabia where an analysis of K. pneumoniae dissemination and
transmission patterns identified a two-year outbreak of ST2096 beginning in December
2016 [47]. Additionally, we discovered that the epidemic clone ST11 was present in four out
of six GCC countries, posing a significant threat to human health due to its carbapenem-
resistant and highly transmissibility [48]. Recently, five CRKP isolates from the Oman
outbreak were confirmed to belong to ST11 clones and were closely related to Chinese
isolates from the Bigsdb (Bacterial Isolate Genome Sequence Database) [49]. Studies on
ST diversification have yielded conflicting results, but most countries have prioritized
monitoring the occurrences of ST11, ST15, and ST14 [50]. Notably, ST11 and ST14 were the
most commonly reported STs in Asia, Europe, America, Africa, and Oceania, with ST11
being a common type in many studies [51–53]. Essentially, this means that the clone has the
impressive power to gather diverse resistance genes as it spreads. In addition, scrutinizing
the capsular locus divulged that all ST11 K. pneumoniae had unique K types including
KL64. These discoveries align with prior research conducted in China where a thorough
examination of 364 ST-11 isolates was carried out and published by Liu et al., 2022 [54].

The most common carbapenemases found in this collection were NDM and OXA-48-
like enzymes, which are commonly found in CRE from the Arabian Peninsula, according
to studies conducted by Jamal et al., 2016; Sonnevend et al., 2015; and Memish et al.,
2015 [12,23,26]. The Arabian Peninsula and the Indian subcontinent have close socioeco-
nomic interactions, resulting in similar resistance patterns. ST11 and ST258 strains, which
are typically found in China and the US, are prevalent in both regions with a low incidence
of KPC enzymes. However, KPC was detected in this collection, specifically in the ST15
clones rather than ST11 clones, as reported by Boyd et al., 2020 [55]. To our surprise, our
ST101 isolate possessed the carbapenemase gene blaVIM-29, and this finding is significant as
this clone has never been documented as producing VIM-29 before.

Our study revealed an intriguing aspect: the detection of blaKPC-3 exclusively among
the ST258 clones from Qatar isolates. While KPC was previously rare in the Arabian
Peninsula, a small number of isolates associated with recent medical care abroad were
found to carry the gene according to Abid et al., 2021 [56]. These findings have significant
regional and global implications, given Qatar’s demographics and its status as a major
international travel hub. Although KPC is prevalent overseas, its emergence in the region
requires attention due to its potent hydrolytic action and potential for dissemination.

Our findings indicate that only isolates from Saudi Arabia contain mobile colistin
resistance elements (mcr). A recent study on the prevalence and molecular epidemiology of
colistin-resistant Gram-negative bacilli (GNB) in Saudi Arabia revealed that while colistin
still works well against GNB isolates locally, high levels of colistin resistance have been
detected among major GNB such as K. pneumoniae [57]. Local data suggest that religious
gatherings play a crucial role in triggering the acquisition of colistin resistance, and un-
derscoring the importance of screening for colistin resistance determinants to prevent the
spread of colistin-resistant GNB. Due to the absence of the most effective broad-spectrum
antimicrobial agents, it is anticipated that colistin resistance will become more widespread
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shortly. Furthermore, mutations in the mgrB gene and insertion sequence transpositions
were the most common mechanisms of colistin resistance among K. pneumoniae in the
Middle East as well as in other regions [27,57].

Our analysis using cgMLST analysis showed that the most prevalent capsular type
among K. pneumoniae was KL2, belonging to the ST14 clonal lineage. This finding is worri-
some as this clonal lineage is associated with severe infections such as septicemia, pyogenic
liver abscess syndrome, and pneumonia [58,59]. It has been suggested that both virulence
and drug resistance are important for the pathogenesis of K. pneumoniae infections [60,61].
In hospital and community environments, K. pneumoniae clonal lineages have varying
abilities to acquire resistance and virulence genes [62]. Therefore, it is crucial to have
genomic surveillance in close geographic areas to understand the local epidemiology of K.
pneumoniae infections in the Arabian Peninsula. Our cgMLST analysis also revealed distinct
differences in the dominant high-risk STs of K. pneumoniae circulating in the GCC countries,
with ST-11 being more prevalent in Oman, ST-14 in Saudi Arabia and the UAE, ST-147 in
Qatar, Oman, and the UAE, and ST231 in Oman and Kuwait. Our study reveals that ST231
strains of Klebsiella had the highest presence of capsule genes/loci with KL51 being the
most prevalent type [63]. On the other hand, the ST101 isolates of K. pneumoniae had KL17
capsular type and O1 antigen, which is consistent with previous reports linking pandemic
ST101 with variants of KL17 and O1v1 [64]. Notably, the O1 antigen has been strongly
linked to the virulence of K. pneumoniae in causing pyogenic liver abscesses [65].

Our study revealed a wide distribution of high-risk STs (ST-11, ST-14, ST-147, and ST-
15) across each country in the region, which is consistent with previous observations [62,66].
These STs are prevalent in Asian countries, particularly India and the Philippines [67],
which have a high percentage of workers in the Gulf region, suggesting that there may
be multiple origins for the circulating lineages. The emergence of these high-risk clones
may involve a complex phenomenon, including international transfer of successful clones
and local dissemination of genetically flexible clones. Our cgMLST analysis revealed an
association between some clones (ST-11, ST-14, ST-147, and ST-15) and carbapenemase
genes (NDM-1), resulting in regional and local accessory gene sharing. Furthermore, the
sharing of accessory genes within a local gene pool is increasing. These findings suggest
that high-risk lineages are co-circulating and may have followed divergent evolutionary
paths.

4. Materials and Methods

Demographic data. The population of the GCCC is one of the highest growing popula-
tions in the world owing primarily to immigration. The GCCC region includes six countries:
(https://worldpopulationreview.com/country-rankings/gulf-countries (accessed on 20
January 2022).

Selection of bacterial isolates and data collection. Publicly available raw sequence
reads of 720 MDR K. pneumoniae isolates were downloaded from the European Nucleotide
Archives (ENA) ENA Browser (ebi.ac.uk) (accessed on 20 January 2022). All isolates were of
clinical origin, collected between 2011 and 2020, and reported from the six GCCC, namely,
Saudi Arabia, n = 230; Oman, n = 212; Qatar, n = 164; UAE, n = 98; Kuwait, n = 15; and
Bahrain, n = 1; see Table 1. To ensure high-quality, raw sequencing reads were quality-
trimmed and filtered using Trimmomatic (version 0.33) [68]. De novo assembly of reads
was performed using SPAdes (ve3.12.0) [69]. The mean number of contigs was 175 (range:
33–2278) for a mean total genome size of 5.6 Mbp (range: 5.0–6.3 Mbp). The mean N50
contig length was 222,214 (range: 5290–729,359) and the mean G+C content was 57% (range:
56–58.2%) (Supplementary Table S1).

In silico antibiotic resistance and virulence gene analysis. The assembled contigs
were then annotated, and known antibiotic resistance genes (ARGs) were detected using
ResFinder (http://cge.cbs.dtu.dk/services/ResFinder/ (accessed on 15 April 2022)) [70].
The capsular type and O antigen serotype were identified using Pathogen watch (Pathogen-
watch | A Global Platform for Genomic Surveillance (accessed on 15 April 2022), the

https://worldpopulationreview.com/country-rankings/gulf-countries
http://cge.cbs.dtu.dk/services/ResFinder/
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Kaptive online tool (http://kaptive.holtlab.net/ (accessed on 15 April 2022) [71], and Kleb-
orate database (https://github.com/katholt/Kleborate (accessed on 15 April 2022) [72].

Multi-locus sequence typing (MLST). Assembled genomes were typed using both
the ‘Klebsiella pneumoniae’ database from PubMLST (https://pubmlst.org/abaumannii/
(accessed on 15 May 2022) and Ridom SeqSphere+ v.8.3.5 software (Ridom GmbH, Münster,
Germany) [73], and sequence types (STs) were identified using both the Pasteur and Oxford
schemes.

Core genome MLST (cgMLST) characterization and phylogenetic analysis. cgMLST
analysis was performed using a well-defined scheme available in Ridom SeqSphere+ v.8.3.5
software (Ridom GmbH, Münster, Germany), according to the ‘K. pneumoniae sensu lato
cgMLST’ version 1.0 scheme (https://www.cgmlst.org/ncs/schema/2187931/ (accessed
on 25 September 2022). This included 2358 genes of the K. pneumoniae core genome
(cgMLST) and 2526 genes of the K. pneumoniae accessory genome (wgMLST; total of
4891 targets). Seqsphere+ tool mapped the reads against the reference genome using
BWA v 0.6.2 software (parameters setting: minimum coverage of five and Phred value > 30)
and defined the cgMLST gene alleles. A combination of all these alleles in each isolate
formed an allelic profile that was utilized to create a minimum spanning tree (MST) using
Ridom SeqSphere+ with the ‘pairwise ignore missing values; % column difference’ pa-
rameter. A threshold was set at ≤15 allelic differences paired with a cluster alert quality
threshold of at least 90% good cgMLST targets to define the clusters.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics12071081/s1. Table S1: Genomic characterization,
epidemiology, and carbapenemase genes description of 720 Klebsiella pneumoniae collected from six
countries around the Arabian Peninsula.
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