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Abstract: Introduction: Resistance to carbapenems due to the co-production of NDM and ESBL
or NDM and KPC is increasing. Therefore, combined therapy with aztreonam (ATM) plus cef-
tazidime/avibactam (CZA) has been recommended. Then, it is necessary to develop and evaluate
fast and simple methods to determine synergism in vitro in microbiology laboratories. Objective:
To develop a method to determine the synergism of ATM and CZA by MALDI-TOF MS (Syn-
MALDI). Method: Klebsiella pneumoniae (n = 22) isolates with blaNDM and/or blaKPC genes were
tested. The time–kill curve assay was performed for four isolates (three positives for blaNDM and
blaKPC and one positive for blaNDM only). For SynMALDI, each isolate was incubated for 3 h in
4 tubes containing brain–heart infusion broth with the following: (1) no antibiotic; (2) ATM at
64 mg/L; (3) CZA at 10/4 mg/L; and (4) ATM at 64 mg/L plus CZA at 10/4 mg/L. After incubation,
the bacterial protein extract was analyzed by MALDI-TOF MS, and the relative growth (RG) was
determined for each isolate, considering intensities of the peaks of the bacterium incubated with
antibiotic (tubes 2, 3, and 4) to the same bacterium incubated without antibiotic (tube 1), as follows:
RG = IntensityWith antibiotic/IntensityWithout antibiotic. The combination was determined as synergistic
when there was an RG decrease of 0.3 in the antibiotic combination in relation to the RG of the most
active antibiotic alone. Results: The combination of ATM plus CZA proved to be synergic by time–kill
curve assay. All isolates tested with the SynMALDI method also presented synergism. Conclusions:
Detection of synergism for ATM plus CZA combination can be determined by MALDI-TOF MS,
providing fast results in order to improve patient treatment.

Keywords: synergism; MALDI-TOF MS; relative growth; aztreonam; ceftazidime/avibactam

1. Introduction

Carbapenem-resistant Enterobacterales (CRE) are a major threat to public health world-
wide [1,2]. The treatment of infections caused by CRE can be made by the use of new antibiotic
combinations of beta-lactam with beta-lactamase inhibitors, such as ceftazidime/avibactam
(CZA). Avibactam is a diazabicyclooctane molecule; it is a beta-lactamase inhibitor that
protects ceftazidime from being hydrolyzed by serine beta-lactamases, such as extended-
spectrum beta-lactamases (ESBL), Klebsiella pneumoniae carbapenemase (KPC) and OXA-
48-like. Nonetheless, avibactam is not active against New Delhi Metallo-beta-lactamase
(NDM) and other metallo-beta-lactamases (MBL). A therapeutic option for the treatment of
infections due to Enterobacterales with NDM carbapenemase is aztreonam (ATM) which,
however, is hydrolyzed by serine beta-lactamases [3,4].

The emergence of multidrug-resistant pathogens has been observed around the
world [5]. Among Enterobacterales species, K. pneumoniae stands out as the main multidrug-
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resistant pathogen, as its plasmids carrying resistant genes are easily disseminated, espe-
cially in hospital environments [6]. Especially, an increase in the spread of genes encoding
NDM among Enterobacterales has brought more concern to the problem of antimicrobial
resistance, mainly because the production of NDM has also been reported in co-occurrence
with KPC and other serine beta-lactamases [7–9]. Although new antibiotics, such as
imipenem/relebactam, meropenem/vaborbactam, aztreonam/avibactam, and cefiderocol,
have demonstrated effectiveness against multidrug-resistant Enterobacterales [6,10], most
of them are not currently available in Brazil and other countries. Therefore, treatment
options have become very limited when the infection is caused by CRE-co-producing NDM
and KPC carbapenemases. Effective treatment for infections due to CRE-co-producing
NDM and KPC can be achieved using the combination of CZA plus ATM, as CZA is active
against KPC and ATM is active against NDM, whether no other resistance mechanism is
associated [4]. The CZA plus ATM-combined therapy has been clinically debated [11–13].
Although the Infectious Diseases Society of America (IDSA) and the European Society of
Clinical Microbiology and Infectious Diseases (ESCMID) recommend the empiric use of
this therapy to treat infections caused by CRE-co-producing NDM and KPC [14,15], it is
preferred that the clinical therapy could be guided by synergism experiments in vitro. How-
ever, the methodologies for the detection of synergism in vitro are usually labor-intensive
and time-consuming [16–21].

Several studies of synergism have been described for ATM and CZA: MIC:MIC ratio
technique [18,19,21–23]; strip crossing [17,21,22]; double-disk [16,19]; combined disk [16];
and several other variations [20,21,24–26]. However, only a few have tested and correlated
their results to the in vitro standard assay for synergism detection, the time–kill curve (TKC)
assay [16,24,25]. As the TKC assay is laborious and time-consuming, it is necessary to
develop methods that could be performed in the microbiology laboratory in a practical way.
The TKC alternative methods already proposed, although they may be easy to perform,
can take up to 48 h to provide the results as they usually require the MIC of the antibiotics
to be previously determined. As these methods are based on antimicrobial disk or gradient
strip diffusion methods, we understand that a technique that uses the methodology of
matrix-assisted laser desorption ionization—time of flight mass spectrometry (MALDI-TOF
MS)—can be used to develop a rapid method to evaluate synergism, since MALDI-TOF
has already been used to properly provide antimicrobial susceptibility profile [27].

MALDI-TOF MS has revolutionized the microbiology field regarding microbial identi-
fication. Furthermore, this methodology has been used for other applications such as (1) the
detection of beta-lactamase activity through hydrolysis assays, (2) the direct detection of
beta-lactamase enzymes, and (3) the determination of antimicrobial susceptibility by the
evaluation of the relative growth rate [28]. The latter was developed by Lange et al. (2014)
and named MALDI Biotyper-antimicrobial susceptibility testing rapid assay (MBT-ASTRA).
The MBT-ASTRA compares the spectrum of the bacterium incubated with antibiotic with
the spectrum of the same bacterium incubated without antibiotic [1,2]. This methodology
has demonstrated satisfactory results for meropenem, ceftazidime, ciprofloxacin, and other
antibiotics against mainly Enterobacterales [27,29–31].

Therefore, the objective of this study was to develop and evaluate a rapid methodology,
termed SynMALDI, to detect ATM plus CZA synergism by MALDI-TOF MS.

2. Materials and Methods
2.1. Bacterial Strains

A total of 22 Klebsiella pneumoniae clinical isolates, obtained from 2019 to 2022, stored
at the bacterial bank of Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS)
were selected by convenience and included in the study. All isolates were obtained from a
hospital in the city of Porto Alegre, Brazil, and were isolated from the urinary tract, rectal
swab, and wound. Identification was performed with MALDI-TOF MS (Bruker Daltonics®,
Bremen, Germany) according to the manufacturer’s instructions. For 21 meropenem-
resistant isolates (Kp01 to Kp21), the presence of the carbapenemase genes was previously
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evaluated by high-resolution melting real-time PCR (qPCR-HRM), using a multiplex assay
with primers for blaKPC, blaNDM, blaOXA-48-like, blaIMP, blaGES, and blaVIM genes, as previously
described [32]. One meropenem susceptible isolate (Kp22) was included as a negative
control of the SynMALDI method.

In order to avoid testing isolates closely related in the TKC, we performed spectral
grouping with data acquired by MALDI-TOF MS using the same parameters for micro-
bial identification. Spectra were grouped using ClinProTools 3.0 (Bruker Daltonics®), as
described elsewhere [33], resulting in eight groups (A–H). One NDM producer and ATM
resistant and three NDM and KPC co-producers from distant spectral groups were se-
lected for TKC experiments and for whole genome sequencing (WGS) in order to identify
beta-lactamase genes (Figure 1).
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Figure 1. Flow chart demonstrating the procedures performed in the study. ATM: aztreonam. CZA:
ceftazidime/avibactam. MEM: Meropenem. MIC: Minimum inhibitory concentration. R: Resistant.
S: Susceptible.

2.2. Determination of Susceptibility by Disk Diffusion and Minimum Inhibitory Concentration (MIC)

Antimicrobial susceptibility testing by disk diffusion and gradient diffusion strips
was performed for ATM and CZA, with disks (Oxoid Thermo Scientific®, Waltham, MA,
USA) of 30 µg and 10/4 µg, respectively. The results were interpreted according to EU-
CAST [34]. Disk diffusion and MIC breakpoints for ATM and CZA are displayed in Table 1.
Quality control was performed with Escherichia coli ATCC 25922, according to EUCAST
instructions [35]. Antimicrobial susceptibility testing by disk diffusion was performed for
all isolates, and MIC was determined by gradient diffusion strip for the isolates selected for
TKC assay.

Table 1. Aztreonam and ceftazidime/avibactam breakpoints for disk diffusion and minimal inhibitory
concentration, according to EUCAST.

Antibiotic
Disk Diffusion (mm) MIC (mg/L)

S R S R

Aztreonam ≥26 <21 ≤1 >4
Ceftazidime/avibactam ≥13 <13 ≤8 >8

S: Susceptible, standard dosing regimen. R: Resistant.

2.3. Time–Kill Curve (TKC) Assay

TKC assay was performed according to CLSI guidelines [36] with some modifications,
as previously described [37]. Briefly, fresh cultures grown on blood agar plates were used to
prepare an inoculum of approximately 3 × 108 CFU/mL in cation-adjusted Müeller–Hinton
(CAMH) broth. This suspension, in the log phase, was diluted 1:5 and added to four tubes
containing CAMH to achieve a final concentration of 6 × 105 CFU/mL. The first tube
was without antibiotic; the second tube contained ATM at 8 mg/L (BioChimico®, Rio de
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Janeiro, Brazil); the third tube contained CZA at 8/2 mg/L (ceftazidime at 8 mg/L and
avibactam at 2 mg/L; Wyeth/Pfizer®, São Paulo, Brazil), and the fourth tube contained
ATM at 8 mg/L and CZA at 8/2 mg/L. All experiments were performed in duplicates. The
tubes were incubated at 37 ◦C, at 125 rpm agitation for 24 h. An aliquot from each tube
was removed at times 0, 1, 2, 4, 6, 12, and 24 h and serially (1:10) diluted. A volume of
20 µL of each dilution from the same tube was spotted on a MacConkey agar plate. Plates
were incubated at 37 ◦C for 18 to 24 h. Colonies were counted considering the spots with
10 to 100 colonies, and the results were reported as CFU/mL. Synergism was defined as
a decrease ≥ 2 log10 CFU/mL by the antibiotic combination compared to the most active
antibiotic alone, and antagonism was defined as an increase ≥ 2 log10 CFU/mL by the
combination compared with the most active antibiotic alone after 24 h of incubation [36].

2.4. Whole Genome Sequencing (WGS)

Genomic DNA was extracted from colonies grown on LB broth using a QIAamp DNA
Mini Extraction Kit (QIAGEN®, Hilden, Germany). Total DNA concentration was measured
using a Qubit dsDNA HS Assay Kit with a Qubit 4 fluorometer (Thermo Fisher Scientific).
WGS was performed using the Illumina MiSeq™ platform (Illumina, San Diego, CA, USA).
The paired-end library was constructed with the NexteraTM XT DNA Library Prep Kit
(MiSeq™ System), and the MiSeqTM Reagent V2 kit (2 × 250 cycles) was used to perform
a run with a coverage depth of 100×. The raw reads were quality-trimmed (Q > 30)
and assembled using CLC Genomic Workbench 21. Antimicrobial resistance genes were
identified (contigs > 200 bp) in silico using ResFinder 4.0 (https://cge.food.dtu.dk/services/
ResFinder/, accessed on 26 December 2022) and QIAGEN Microbial Insight-Antimicrobial
Resistance database (QMI-AR).

2.5. Antibiotic Solution Preparation for Synergism by MALDI-TOF MS (SynMALDI)

For the synergism determination by MALDI-TOF MS, antibiotic solutions were pre-
pared from commercially available disks of ATM 30 µg and CZA 10/4 µg (Oxoid Thermo
Scientific®). Each antibiotic lot of disks was quality-control-checked, as recommended by
EUCAST [35]. The disks were eluted for 15 min in distilled water in order to obtain ATM at
64 mg/L and CZA at 10/4 mg/L as final concentrations.

2.6. Synergism by MALDI-TOF MS (SynMALDI)

The method for determination of synergism by MALDI-TOF MS was adapted from
MBT-ASTRA [27] and performed for all isolates. Isolates were suspended in brain–heart in-
fusion broth (Kasvi, São José dos Pinhas, Brazil) to obtain turbidity equivalent to 0.5 McFarland.
In order to reach a final volume of 200 µL, 50 µL of the bacterial suspension was added to
four microtubes as follows: the first without antibiotic; the second tube with ATM; the third
tube with CZA; and the fourth tube with ATM and CZA. The microtubes were vortexed
and incubated, without agitation, for 3 h at 35 ± 2 ◦C. Afterward, the suspensions were
centrifuged at 16,060× g (13,000 rpm) for 2 min. The supernatant was discarded, and 150
µL of distilled water was added to the microtubes. The microtubes were vortexed and cen-
trifuged at 16,060× g (13,000 rpm) for 2 min. The supernatant was discarded, and 100 µL of
ethanol 70% (Merck®, Darmstadt, Germany) was added to each microtube. The microtubes
were vortexed, left to rest at room temperature for 5 min, and centrifuged at 16,060× g
(13,000 rpm) for 2 min. The supernatant was discarded, and the pellet was left to air dry
at room temperature. Subsequently, 10 µL of formic acid 70% (Sigma–Aldrich®/Merck®,
Darmstadt, Germany) and 10 µL of acetonitrile 100% (Merck®) containing an internal stan-
dard (RNase B 20 g/L; Sigma–Aldrich®) were added, and the microtubes were vortexed
and centrifuged at 16,060× g (13,000 rpm) for 2 min. A volume of 1 µL of the supernatant
was spotted, in quadruplicates, onto a polished steel target plate and left to air dry. A
volume of 1 µL of α-cyano-4-hidroxy-cinnamic acid (HCCA; Bruker) at 10 mg/mL in
acetonitrile 50% and trifluoracetic acid 2.5% (Sigma–Aldrich®) was added, and the spots
were left to air dry at room temperature.

https://cge.food.dtu.dk/services/ResFinder/
https://cge.food.dtu.dk/services/ResFinder/


Antibiotics 2023, 12, 1063 5 of 12

For spectra acquisition, a Microflex LT (Bruker Daltonics®) mass spectrometer was
used with flexControl 3.4 software (Bruker Daltonics®). The parameters applied were the
same as used for microbial identification (ion source 1, 20 kV; ion source 2, 18.25 kV; lens,
6 kV; detector gain, 2850 V), with a range from 2.000 to 20.000 Da (method MBT_FC.par, set
by the manufacturer). The mass spectrometer was externally calibrated using the bacterial
test standard—BTS (Bruker®, Billerica, MA, USA), according to manufacturer instructions.
An automated MBT_AutoX programming was used for the acquisition of the spectra.

Spectra were analyzed with flexAnalysis 3.4 software (Bruker Daltonics®). For each
spectrum, four peaks were manually selected (two peaks from the bacterium and two peaks
from the internal standard), and their intensities were annotated after baseline subtraction
and smoothing. Peaks from bacteria were selected between the ranges 6000–6300 and
9000–10,000 m/z, while peaks from the internal standard were approximately 7454 and
14,910 m/z. The peaks from the bacteria were carefully selected after comparison with the
spectrum of RNase B alone in order to avoid choosing peaks from the internal standard. For
each quadruplicate, the sum of the intensities from the bacterium (IntBac) was normalized
with the sum of the intensities from the internal standard (IntRNase B). Then, the RG
value was calculated by the ratio of the median of the normalized peaks from bacteria
incubated with antibiotic (IntATB) with the median of the normalized peaks from bacteria
incubated without antibiotic (IntBHI). RG values were calculated as follows: RG = Median
(∑ IntBac+ATB/∑ IntRNase B+ATB)/Median (∑ IntBac+BHI/∑ IntRNase B+BHI). For each isolate,
three RG values were calculated, considering ATM and CZA alone and in combination: RG
ATM; RG CZA; and RG ATM + CZA. Synergism was defined as a decrease ≥ 0.3 at the RG
value of the antibiotic combination compared to the RG value of the most active antibiotic
alone, whether RG ATM or RG CZA.

2.7. Double-Disk Synergism Assay

The double-disk method to evaluate synergism was performed according to EUCAST
standard susceptibility testing by disk diffusion method [38], with ATM 30 µg and CZA
10/4 µg disks placed at a 20 mm center-to-center distance. Such distance was chosen
because it is the same distance between disks when using an antibiotic disk dispenser
device. When the presence of an inhibition zone, also known as a “ghost zone”, was
observed between the disks, the test was considered positive for synergism. Double-disk
synergism testing was performed for all isolates except for Kp20 to Kp22.

3. Results

A total of 19 K. pneumoniae isolates (Kp01 to Kp19) were resistant to both ATM and
CZA by disk diffusion standard susceptibility testing, presenting blaNDM and/or blaKPC
genes as determined by qPCR-HRM; all isolates were analyzed by MALDI-TOF-MS for
spectral grouping (Table 2). The four isolates (Kp04, Kp08, Kp10, and Kp16) that were
tested for TKC assay presented high MIC for ATM and CZA, and all were positive for
synergism (Table 3), as the combination of ATM and CZA presented a decrease ≥ 2 log10
CFU/mL in comparison to each antibiotic alone (Figure 2). WGS of these four isolates
confirmed the presence of carbapenemase genes and demonstrated the presence of ESBL
genes (Table 3).

The isolates tested for TKC were tested for SynMALDI and demonstrated a significant
decrease at RG of ATM plus CZA in comparison to RG of ATM and of CZA individually.
Subsequently, all isolates were tested for SynMALDI (Table 4). ATM-resistant isolates
presented RG of ATM ≥ 0.5617 and a mean ± standard deviation of 0.8520 ± 0.1655,
while CZA-resistant isolates presented RG of CZA ≥ 0.5841 and a mean of 0.9341 ± 0.2715
(Figure 3). The RG of ATM plus CZA ranged from 0.0486 to 0.5338, with a mean of
0.1335 ± 0.1293. The comparison of the RG of ATM plus CZA with individual results of RG
of ATM and CZA indicated that all isolates presented a lower value when both antibiotics
were combined, with a minimum difference to RG ATM of 0.3630 and to RG CZA of 0.4709.
Therefore, we considered that all isolates, resistant to both ATM and CZA, demonstrated
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synergism by SynMALDI, as all presented a minimum difference of 0.3 of RG of ATM plus
CZA values in relation to the RG of the most active antibiotic alone. Interestingly, the mean
of the RG differences considering ATM and CZA, in comparison to ATM plus CZA, were
0.7186 ± 0.1647 and 0.8155 ± 0.2817, respectively. Isolates tested as control (Kp20, Kp21,
and Kp22) that were susceptible to ATM and/or CZA demonstrated RG values ≤ 0.3426
and ≤ 0.0647, respectively. These three isolates did not present a minimum difference of
0.3 of the RG of ATM plus CZA compared to the RG of the single most active antibiotic.

Table 2. Carbapenemases, spectral grouping, and susceptibility of all isolates included in this study.

Isolate Cp Cluster
ATM CZA

DD (mm) Cat. DD (mm) Cat.

Kp01 KPC, NDM F 8 R 7 R
Kp02 KPC, NDM H 10 R 6 R
Kp03 KPC, NDM A 6 R 8 R
Kp04 KPC, NDM A 6 R 8 R
Kp05 KPC, NDM H 6 R 6 R
Kp06 KPC, NDM E 6 R 9 R
Kp07 KPC, NDM C 6 R 6 R
Kp08 KPC, NDM E 6 R 8 R
Kp09 KPC, NDM E 6 R 9 R
Kp10 KPC, NDM G 6 R 8 R
Kp11 NDM G 6 R 9 R
Kp12 NDM G 12 R 7 R
Kp13 NDM B 8 R 8 R
Kp14 NDM G 9 R 10 R
Kp15 NDM D 6 R 6 R
Kp16 NDM F 6 R 6 R
Kp17 NDM F 6 R 6 R
Kp18 NDM C 6 R 6 R
Kp19 NDM D 6 R 8 R
Kp20 NDM D 30 S 8 R
Kp21 KPC F 6 R 20 S
Kp22 NT F 30 S 24 S

ATM: Aztreonam. Cat.: Antimicrobial susceptibility categorization according to EUCAST. Cp: Carbapenemase.
CZA: Ceftazidime/avibactam. DD: disk diffusion. R: Resistant. S: Susceptible. NT: Not tested.

Table 3. Minimum inhibitory concentration and time–kill curve assay results of four representa-
tive isolates.

Isolate
Beta-Lactamase

Genes

ATM CZA ATM + CZA

MIC (mg/L) TKC * MIC (mg/L) TKC * TKC *

Kp04

NDM-1, KPC-2,
CTX-M-15,
SHV-187,
TEM-181

>1024 10.42 >256 10.34 5.65

Kp08
NDM-1, KPC-2,

OXA-1, SHV-187,
TEM-181

>1024 10.86 >256 10.83 3.34

Kp10

NDM-1, KPC-2,
OXA-1, CTX-M-15,

SHV-187,
TEM-181

>1024 10.28 >256 10.42 0.00

Kp16

NDM-1, OXA-1,
CTX-M-15,
SHV-187,
TEM-181

>1024 10.70 >256 10.46 6.98

* Log10 CFU/mL at 24 h incubation in time–kill curve (TCK) assay. ATM: Aztreonam. CZA: Cef-
tazidime/avibactam. MIC: Minimum inhibitory concentration.
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Table 4. Relative growth (RG) values obtained for aztreonam (ATM) and ceftazidime (CZA) in
combination and alone.

Isolate
ATM + CZA ATM CZA

RG RG Dif. * RG Dif. *

Kp01 0.1082 1.1196 1.0114 1.4997 1.3915
Kp02 0.0544 0.8271 0.7726 0.9160 0.8616
Kp03 0.1190 0.7915 0.6725 1.1907 1.0717
Kp04 0.0793 0.9360 0.8566 0.9123 0.8330
Kp05 0.1938 0.5617 0.3679 0.6647 0.4709
Kp06 0.0704 0.7019 0.6316 0.7411 0.6708
Kp07 0.0966 0.8282 0.7315 0.9710 0.8744
Kp08 0.1042 0.8389 0.7346 1.5111 1.4068
Kp09 0.0486 0.6440 0.5955 0.5841 0.5356
Kp10 0.0841 0.8880 0.8040 0.7833 0.6993
Kp11 0.0874 0.8129 0.7255 0.6141 0.5267
Kp12 0.1127 0.7160 0.6033 0.7209 0.6082
Kp13 0.4411 1.3313 0.8902 0.9592 0.5181
Kp14 0.0912 0.7752 0.6840 0.8864 0.7952
Kp15 0.0821 0.7618 0.6797 0.7712 0.6891
Kp16 0.0696 0.9395 0.8699 1.0962 1.0266
Kp17 0.0796 0.9623 0.8827 0.8398 0.7602
Kp18 0.0813 0.8581 0.7768 1.2394 1.1581
Kp19 0.5338 0.8967 0.3630 1.1305 0.5967
Kp20 0.0528 0.3416 0.2888 0.6501 0.5973
Kp21 0.0585 0.8503 0.7918 0.0647 0.0062
Kp22 0.0311 0.2195 0.1884 0.0314 0.0003

* Difference of RG value in relation to RG ATM + CZA.
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Figure 3. Boxplot of mean values of relative growth (RG) for aztreonam (ATM) and cef-
tazidime/avibactam (CZA) alone and in combination. (A) ATM and CZA resistant isolates positive
for blaKPC and blaNDM. (B) ATM and CZA-resistant isolates positive for blaNDM only.

Double-disk synergism, which was performed for isolates resistant to both ATM and
CZA, demonstrated the “ghost zone”, indicating a positive result of synergism for all
isolates (Kp01 to Kp19).

4. Discussion

Although clinical studies demonstrating the efficacy of ATM plus CZA to treat in-
fections of CRE co-producing NDM and KPC are scarce, empiric treatment with this
combination of antibiotics is recommended by IDSA and ESCMID [14,15]. However, the
synergism of ATM plus CZA is expected if the resistance mechanism is due to serine and
MBL co-production only. Resistance to CZA by mechanisms other than MBL production
has been reported, such as amino acid substitutions at the active site of beta-lactamases
(which is the case of isolates harboring KPC-3 mutations), decreased membrane perme-
ability due to porin and/or PBP mutations, among others [39]. Synergism of ATM plus
CZA may not occur if resistance to CZA is due to resistant mechanisms other than MBL
production, and in order to better guide the therapy, it is necessary to evaluate in vitro
whether ATM and CZA are synergic. Thus, we developed a fast and easy method to
determine ATM and CZA synergism with the use of MALDI-TOF MS.

The principle of the TKC assay to evaluate synergism is based on the decrease in
the growth rate of the bacterium incubated with combined antibiotics when compared
to the most active agent alone. We have used the same principle to consider synergism
by the SynMALDI method, i.e., a significant decrease in the RG value of the bacterium
with combined antibiotics versus the bacterium with the antibiotic alone. In our study, for
the determination of ATM and CZA synergism, we found a minimal difference of around
0.3 to 0.4 and a mean difference of around 0.7 to 0.8. Considering a decrease ≥ 0.3 of
RG value of ATM plus CZA, all isolates that were resistant to both ATM and CZA were
considered positive for synergism by SynMALDI, as was expected according to TKC and
double-disk synergism assays. Conversely, it was also expected that control strains Kp20 to
Kp22 would not present synergism since they already presented susceptibility and low RG
values for ATM or CZA individually; therefore, the addition of a second antibiotic would
not significantly increase the activity of the first antibiotic against the bacterium. Therefore,
we suggest performing SynMALDI for ATM with CZA only if the isolate demonstrates to
be resistant to both antibiotics individually.

Studies have assessed ATM plus CZA combination by several in vitro methods, at-
tempting to propose a way to detect synergism. Among methodologies using gradient
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strips, MIC:MIC ratio is one of the most used. Although some studies [18,22] have calcu-
lated the fractional inhibitory index, a measure usually determined using the checkerboard
assay to indicate synergy, the MIC:MIC ratio technique is laborious, expensive, and may be
subjective as, depending on the MIC, an inhibition zone around all strip can be formed [18].
Similar methods that have been used are the direct overlaid of the strips [19] and a disk
placed next to the strip [40], which present the same difficulties for interpretation as
MIC:MIC ratio method. Another method also used to evaluate ATM plus CZA synergism
was strip crossing [17,21,22,41]. All methods using gradient strips require the MIC to be pre-
viously determined, which means that it will increase by at least one more day to provide
synergy results. Moreover, such methods will present increased costs, as gradient strips
are expensive. As an alternative, a double-disk synergy test can be performed in order to
reduce costs, although it is a qualitative assay and it requires an overnight incubation [42].

Regardless of the fact that there are several methods to evaluate synergism in vitro, the
standard assays are only TKC and checkerboard. Regarding ATM and CZA combination,
few studies have performed TKC [16,24,25,43] and checkerboard [21,43,44]. They all have
found synergism for the ATM plus CZA combination; however, both assays are laborious
and time-consuming, which would not be suitable for a routine microbiology laboratory.
The studies mentioned above assessing ATM plus CZA synergism have tested various
isolates regarding beta-lactamase production, such as KPC, NDM, other MBL, OXA, and/or
ESBL producers; however, only a few isolates were carbapenemase co-producers, such
as NDM and OXA [43,44]. In fact, two studies evaluated isolates that were KPC and
NDM co-producers [23,43]. We aimed to test carbapenemases-producing isolates according
to our local epidemiology, which indicates an increase in NDM dissemination with the
co-occurrence of NDM and KPC [9]. Similar to our results, studies that tested NDM and
ESBL producers by TKC also found synergism of ATM plus CZA combination [16,24,25].
The first study that evaluated one isolate co-producing KPC and NDM performed a strip
crossing method, also demonstrating synergism [23]. On the other hand, Lu et al. (2022)
demonstrated synergistic activity of ATM plus CZA combination by TKC assays for one
Enterobacter cloacae IMP-producer and one Escherichia coli NDM-producer that were
resistant to both antibiotics. Additionally, they showed synergism by checkerboard for
other species co-producing KPC and NDM, including K. pneumoniae, by checkerboard
method [43]. A limitation of our study and others is that isolates expressing KPC variants
that led to CZA resistance, such as KPC-35, KPC-78, and KPC-33 [45], were not tested
to assess whether synergistic effects would still occur. Although it was not possible to
correlate with clinical outcomes, our results by SynMALDI were confirmed by TKC, which
was performed for four representative isolates of our sample, all K. pneumoniae, and by the
double-disk synergism method.

The method we presented here, SynMALDI, could be performed and provide synergy
results in approximately 4 to 5 h, and once the laboratory already has a MALDI-TOF mass
spectrometer, the costs would be very low (less than US$ 2.00). Additionally, it is a simple
method to be performed, and it does not require additional software for the interpretation
of results. Another advantage is that this methodology can presumably be adapted for
other antibiotic combinations. We adjusted conditions for CZA to correspond to the same
conditions of ATM in order to perform the assay for these antibiotics combined. This is, so
far, the first method proposed to detect synergism by MALDI-TOF MS.

5. Conclusions

As resistance mechanisms against beta-lactam antibiotics tend to evolve faster than
new antibiotics are developed, combined therapy with two or more antibiotics is recom-
mended. Therefore, in order to help guide patient therapy for infections due to CRE co-
producers of carbapenemase, it is important to develop fast methods, such as SynMALDI,
for synergism detection that can be performed in microbiology routine laboratories.
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