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Abstract: Chronic osteomyelitis is still a serious health problem that causes disabling conditions
and has an impact on the quality of life. The objective of this study was to determine the clinical
efficacy and safety of localized antibiotics delivery via impregnated microporous nanohydroxya-
patite (nHA-ATB) beads for chronic osteomyelitis treatment. A total of 62 patients were enrolled
in this study. After radical surgical debridement, the bone defect was filled with three types of
antibiotics (vancomycin or gentamicin or fosfomycin) impregnated HA beads. The follow-up period
was 48 weeks. It was found that the success rate was approximately 98% with a re-infection in
only one patient. Quality of life of all patients after treatment improved significantly over time.
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Systemic exposure to vancomycin and gentamicin after beads implantation was limited and high
local antibiotics concentrations were found in wound drainage fluid at 24, 48 and 72 h. Blood bio-
chemistry measurements did not show any nephrotoxic or hepatotoxic effects. 20 adverse events
were reported, but 90% of the events were resolved without having to remove the beads and the
patients recovered. Satisfactory outcomes were observed in terms of success rate, quality of life and
adverse effect. nHA-ATB beads impregnated by vancomycin or gentamicin or fosfomycin could
potentially be employed as an alternative product of choice for localized antibiotics delivery in
chronic osteomyelitis treatment.

Keywords: osteomyelitis; infection; localized antibiotics delivered beads; hydroxyapatite

1. Introduction

Chronic osteomyelitis is one of the common orthopedic problems that can cause
disabling conditions and have an impact on the quality of life globally. The cost of infected
bone treatment was estimated to be 1.2-fold to six-fold higher than those of non-infected
cases [1]. The exact epidemiology of osteomyelitis is largely unknown and varied by
several factors including counties, ages, locations, and risk factors. The incidence of
pediatric osteomyelitis in high-income countries is 1.94–13 per 100,000 populations is
lower than that of low-income countries which is 43–200 per 100,000 populations [2]. The
annual prevalence and incidence of pediatric osteomyelitis were reported to be 20 and
9.2–13 cases per 100,000 individuals respectively [3–6]. The prevalence of osteomyelitis
in Germany was 16.7 cases per 100,000 population in 2018 which increased by 10.44%
from 2008 [7] while the incidence of osteomyelitis in the United States was reported to be
90 cases per 100,000 patients per year [8]. Osteomyelitis in diabetic patients could be as
high as 10–20% [9,10].

Several factors, including hematogenous spread and direct contamination through
an open wound, particularly open fractures, might contribute to this complication [11–13].
The patients usually present with recurrent sinus tract, pain, and delayed healing of
the fracture. The general principles of chronic osteomyelitis treatment include adequate
surgical debridement to remove all non-vitalized tissue and dead bone, adequate soft
tissue coverage and administration of systemic antibiotics. Nevertheless, the limited blood
circulation of bone tissue and the secretion of biofilm in the infected area results in poor
antibiotic penetration at the infected bone resulting in the remnant of microorganisms in
the necrotic bone tissue, especially in the area that has not undergone adequate surgical
debridement. High dose and prolonged systemic antibiotics are thus often administrated for
effective eradication of the bacteria which may induce systemic toxicity to the patients. To
overcome these risks, local antibiotics delivery in the form of antibiotics loaded beads have
been shown to be an effective solution for providing a sustained, local, high concentration of
antibiotics at the site of infection and lower systemic side effects compared with intravenous
antibiotics [14–17]. Although no clear agreement on the advantage of local antibiotic beads
over intravenous antibiotics has been established, this localized treatment plays a vital role
in treatment strategy especially in chronic osteomyelitis [18].

Polymethylmethacrylate (PMMA) has been long used as a local antibiotic released
carrier and is commercially available as a ready-to-use antibiotic containing bead chain
or antibiotic bone cement for manual bead preparation. It is a nonbiodegradable material
that needs a second operation for bead removal and generates heat during the reaction
which limits the use of only heat-stable antibiotics [19]. There was also a concern about the
increase of bacterial antibiotic resistance of antibiotic-loaded PMMA, and a local substra-
tum for bacterial inoculation on its surface although there is no strong clinical evidence for
these concerns [20–22]. Moreover, the use of PMMA could induce foreign body reactions
and there might be a need for bone graft to fill the defect. To overcome these disad-
vantages, various materials including calcium sulfate [23–26], polycaprolactone [27,28],
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polylactide/polyglycolide [29,30], chitosan [31], calcium sulfate/calcium carbonate [32,33]
were extensively investigated as alternatives. Among these, pure calcium sulfate and a
mixture with calcium carbonate or hydroxyapatite were commercially available and have
been increasingly used in place of PMMA. However, there is still not a prominent level
of clinical evidence and studies that can explicitly prove which materials are superior to
other materials.

Concerning synthetic bone graft substitutes for bone defect reconstruction, calcium
phosphates, particularly hydroxyapatite (HA), is probably the most popular due to its
resembled chemical composition to the inorganic constituent of bone. It is a highly bio-
compatible material and possesses osteoconductive properties. It is typically used as a
bone substitute to regenerate a new bone in the defect area. In recent years, HA has been
investigated as a local antibiotic delivery system since it could provide a bone regenera-
tion capability by providing the osteoconductive structure that helped filling dead space
and promoted new tissue ingrowth which in turn led to the repair of osseous defects
while releasing high concentration of antibiotics. This eliminated the need for subsequent
removal of the antibiotics carrier and the use of additional grafting materials [34–37].
However, it was also noted that the antibiotic elution profile or biodegradation profile
was not efficient and predictable for local drug release which might be partly due to the
ability of antibiotics to bind on its dense surface only [38–40]. Typical HA was generally
fabricated by high temperature sintering technique resulting in pore-less microstructure
with high crystallinity and low resorption rate. Recently, low temperature phosphorization
of calcium sulfate to HA was developed as a new technique to produce low crystalline
nanostructure hydroxyapatite (nHA) which is closer to that of natural bone [41,42]. In
comparison to the typical high-temperature sintering route, this low-temperature route
produced microporous nano-hydroxyapatite with osteoconductivity and resorbability due
to its nanostructure and low crystallinity. This material has been evaluated for its purity
of composition, toxicity, biocompatibility with bone cells, microstructure, in vivo safety
and clinical efficacy as bone graft and also its capability for antibiotics impregnation for
using as locally delivered antibiotic bead [43,44]. Due to its numerous interconnected
micropores, antibiotics could be absorbed throughout the matrix, retained and released
more effectively compared to the surface-bound antibiotics as in the case of typical sintered
hydroxyapatite. In medical device development, the clinical evaluation is an essential step
to demonstrate the safety and performance of the medical device for either pre-marketing
or post-marketing purposes. Due to their market availability, a vast number of literature
reviewing or reporting the clinical evaluation of commercial PMMA and calcium sulfate
for local antibiotics delivery was noted [19,23–26,32,33], but the clinical evaluation of using
hydroxyapatite as a local antibiotic carrier was still scarce and performed in a small number
of patients [45–49]. This work is aimed to expand the knowledge of using calcium phos-
phate as a local antibiotic carrier and; in particular, to determine the efficacy and safety of
using developed nHA-ATB for chronic osteomyelitis treatment in a large group of patients
and in a multicenter setting in terms of success rate, wound status, antibiotic side effect,
quality of life of the patient and adverse event. The knowledge gained from this study can
be useful for justifying the use of nHA-ATB, revealing its advantages and drawbacks, and
elucidating the precautions that should be taken when this material is used in the clinical
setting for osteomyelitis treatment.

2. Results
2.1. Demographics and Clinical Characteristics

Sixty-three patients were eligible for the study. One patient was excluded as the
condition was not fulfilled to chronic osteomyelitis. Sixty-two patients were thus enrolled
for treatment. Nine patients were discontinued from the study due to (1) Infected with
multidrug-resistant gram-negative bacteria from an intra-operative culture (one patient),
(2) discontinued by the decision of the investigator due to the presence of acute on-top
chronic osteomyelitis and the clinical outcome was not improved (one patient), (3) with-
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drew their consent due to inconvenience in traveling (two patients), (4) loss to follow-up
(four patients), and (5) died from other causes (one patient). Therefore, 53 patients partici-
pated in the whole 48 weeks follow-up in the study. Diagram of the study flow according
to CONSORT guideline is shown in Figure 1. The demographic data including sex, age,
wound location, Cierny-Mader (C-M) classification (anatomic type, physiological condition
and risk factors), causes, and history of previous surgery for osteomyelitis are summarized
in Table 1. Forty-nine patients (79%) were male. The mean age was 47.2 years. The major
cause of osteomyelitis was post-traumatic injury in 48 patients (77.4%) while 14 patients
(22.6%) were infected from hematogenous spreading. Fifteen patients (24.2%) never had
a history of previous surgery for this condition while 47 patients (75.8%) had at least one
operation. According to the Cierny-Mader classification for anatomic type which was
categorized into 11 type I, 3 type II, 37 type III and 11 type IV, 47 patients (75.8%) had
good immune systems (C-M Class A hosts), while 15 patients (24.2%) had compromised
locally or systemically risk factors (C-M Class B hosts). Most of the patients had no risk
factor (66.1%) according to the Cierny-Mader classification such as cellulitis or abscess
formation, smoking history, diabetes mellitus, anemia, chronic lung disease, poor soft
tissue requiring flap, adjacent joint stiff/arthritic, or heterotopic ossification. The tibia
was the most common location in 34 patients (54.8%), followed by the femur (30.6%), the
humerus (6.5%), the calcaneus (3.2), the clavicle (1%), the forearm (1%) and the fibula (1%).
The mean operative time was 93 min. The median number of nHA-ATB beads used was
60 beads (range 6–130 beads). The minimum number of beads used was 6 beads and the
maximum number was 180 beads. The ratio of each antibiotic impregnated bead used was
1:1:1 for each case. Staphylococcus was the most common organism (25.8%) and followed
by Pseudomonas spp. (12.9%) while 17 patients (54.8%) had no significant growth. The
operative details are shown in Table 2.
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Table 1. Demographic data.

Characteristics n = 62 n (%)

Sex
Male 49 (79.0)
Female 13 (21.0)

Age (Mean ± SD) 47.2 ± 14.7
Location

Tibia 34 (54.8)
Femur 19 (30.6)
Humerus 4 (6.5)
Calcaneus 2 (3.2)
Clavicle 1 (1.6)
Forearm 1 (1.6)
Fibula 1 (1.6)

Cierny-Mader Grade
Type I Medullary osteomyelitis 11 (17.7)
Type II Superficial osteomyelitis 3 (4.8)
Type III Localized osteomyelitis 37 (59.7)
Type IV Diffuse osteomyelitis 11 (17.7)

Physiological class
Class A Good immune system and delivery 47 (75.8)
Class B Compromised locally or systemically risk factors 15 (24.2)
Class C requires suppressive or no treatment; minimal disability 0 (0)

Causes
Post-traumatic 48 (77.4)
Hematogones (non-trauma, sepsis) 14 (22.6)

Previous surgery for this condition
0 15 (24.2)
1 19 (30.6)
2 13 (21.0)
3 8 (12.9)
4 2 (3.2)
5 2 (3.2)
6 1 (1.6)
>7 2 (3.2)

Risk factor
No risk factor 41 (66.1)
Risk 21 (33.9)

Major risk factor: cellulitis or abscess formation 5 (23.8)
Minor systemic risk factor: subject had smoking history 7 (33.3)
Minor systemic risk factor: diabetes mellitus 3 (14.3)
Minor systemic risk factor: anemia 2 (9.5)
Minor systemic risk factor: chronic lung disease 1 (4.8)
Minor local risk factor: poor soft tissue requiring flap 9 (42.9)
Minor local risk factor: adjacent joint stiff/arthritic 7 (33.3)
Minor local risk factor: heterotopic ossification 1 (4.8)

Table 2. Surgical details and cultured results.

Surgery Data Quantity
(Median, IQR (Min-Max))

d 93, 57
Number of antibiotics loaded hydroxyapatite beads used 60, 54 (6–180)

Gentamicin beads 20, 18 (2–60)
Vancomycin beads 20, 20 (2–60)
Fosfomycin beads 20, 20 (2–60)

Cultured organism n (%)
No 3 (4.8)
Yes 59 (95.2)
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Table 2. Cont.

Surgery Data Quantity
(Median, IQR (Min-Max))

No growth 28 (47.5)
Cultured organism (2 organisms found) 7 (11.9)

Acinetobactor baumannii and E. coli (ESBL-Producing) 1 (14.3)
Acinetobactor baumannii and Pseudomonas aeruginosa 1 (14.3)
Morganella morganii and Klebsiella pneumoniae (MDR) 1 (14.3)
Pseudomonas aeruginosa (MDR) and Staphylococcus

haemolyticus (MR-CoNS) 1 (14.3)

Pseudomonas aeruginosa and Enterococcus avium 1 (14.3)
Pseudomonas aeruginosa and Shewanella putrefaciens 1 (14.3)
Staphylococcus aureus and Staphylococcus epidermidis 1 (14.3)

Cultured organism (1 organism found) 24 (40.7)
Pseudomonas aeruginosa 9 (37.5)

Staphylococcus aureus 4 (16.7)
Staphylococcus aureus (MRSA) 1 (4.2)
Aerobic culture 1 (4.2)
Aerococcus viridans 1 (4.2)
Coagulase Negative Staphylococci 2 (8.4)
Enterobacter cloacae 1 (4.2)
Enterococcus faecalis 1 (4.2)
Serratia marcescens 1 (4.2)
Staphylococcus cohnii 1 (4.2)
Staphylococcus haemolyticus 1 (4.2)
Staphylococcus hominis 1 (4.2)

Vancomycin sensitivity (n = 38)
Sensitive 8 (21.1)
Intermediate 0 (0)
Resistant 0 (0)
Results not reported by hospital lab 30 (78.9)

Gentamicin sensitivity (n = 38)
Sensitive 19 (50)
Intermediate 1 (2.6)
Resistant 4 (10.5)
Results not reported by hospital lab 14 (36.8)

Fosfomycin sensitivity (n = 38)
Sensitive 9 (23.7)
Intermediate 1 (2.6)
Resistant 2 (5.3)
Results not reported by hospital lab 26 (68.4)

IQR = Interquartile range.

2.2. Blood Biochemistry and Therapeutic Drug Monitoring

Table 3 shows blood biochemistry of patients at each follow-up period. No signifi-
cant difference in CBC (data not shown), liver function or renal function results between
baseline values before surgery and values at each follow-up time was seen. Although
some tests might display significant differences at some follow-up, but they were clinically
insignificant. However, CRP and ESR decreased with follow-up times. The values at
8 weeks were not significantly different from baseline values, but CRP and ESR reached
significant differences at longer periods of 12 weeks, 24 weeks and 48 weeks. Table 4
displays the therapeutic drug monitoring of antibiotics in serum and wound drainage fluid.
The vancomycin level from wound drainage fluid was 128.74 µg/mL, 175.79 µg/mL and
125.43 µg/mL at 24, 48 and 72 h after surgery, respectively. The gentamicin level from
wound drainage fluid was 412.04 µg/mL, 53.03 µg/mL and 58.41 µg/mL at 24, 48 and 72 h
after surgery, respectively. In contrast, the serum vancomycin level was in the range of
2.67–6.94 µg/mL while serum gentamicin level was in the range of 0.36–0.40 µg/mL which
were lower than the toxic levels of 50 and 6 µg/mL for both antibiotics, respectively.
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Table 3. Blood biochemistry.

Results Baseline
Mean ± SD

8 Weeks
Mean ± SD

12 Weeks
Mean ± SD

24 Weeks
Mean ± SD

48 Weeks
Mean ± SD

Liver function test
AST (SGOT) (U/L) 29.31 ± 13.85 30.25 ± 16.02 27.53 ± 12.04 31.08 ± 14.85 29.37 ± 14.75
ALT (SGPT) (U/L) 32.78 ± 29.95 34.5 ± 29.32 28.81 ± 24.86 31.67 ± 22.80 27.07 ± 19.47

Alkaline Phosphatase (ALP)
(U/L) 103.36 ± 47.29 103.81 ± 34.84 97.96 ± 32.60 94.37 ± 33.25 83.44 ± 25.98

Renal function test
Serum Creatinine (mg/dL) 0.81 ± 0.20 0.85 ± 0.25 1.13 ± 1.74 0.85 ± 0.21 0.88 ± 0.20 #

eGFR (ml/min/1.73 m2) 103.11 ± 21.84 97.67 ± 25.52 # 98.55 ± 23.59 # 100.46 ± 19.9 96.58 ± 20.86 #

BUN (mg/dL) 14.03 ± 13.28 12.24 ± 4.47 11.65 ± 3.64 13.22 ± 4.28 12.90 ± 3.80
C-reactive protein (CRP)

(mg/dL) 12.30 ± 27.82 3.96 ± 4.86 3.12 ± 4.52 # 2.7 ± 4.11 # 2.45 ± 2.65 #

Erythrocyte sedimentation
rate (ESR) (mm/hour) 45.11 ± 32.83 40.09 ± 26.53 27.37 ± 21.68 # 26.72 ± 27.67 # 25.13 ± 26.70 #

# Denoted significantly different compared to the baseline values, p < 0.1.

Table 4. Therapeutic drug monitoring of antibiotics level.

Antibiotics Duration
(h)

Concentration
(µg/mL)

Mean ± SD

Wound drainage fluid

Vancomycin 24 128.64 ± 134.49
48 175.79 ± 153.96
72 125.43 ± 159.87

Gentamicin 24 412.04 ± 646.01
48 53.03 ± 74.06
72 58.41 ± 97.81

Serum

Vancomycin 24 4.00 ± 0.00
48 2.67 ± 2.31
72 6.94 ± 4.16

Gentamicin 24 0.38 ± 0.17
48 0.36 ± 0.12
72 0.40 ± 0.00

2.3. Treatment Outcome

The success rate of treatment by using nHA-ATB beads at 12 weeks was 98.28%
(57/58) since one patient was reported to remain infected and the clinical outcome did
not improve at 12 weeks postoperatively. The surgeon decided to discontinue this patient
from the study. There was no other patient who demonstrated evidence of re-infection
until 48 weeks post-operatively and the overall success rate was 98.11% (52/53). Sequential
radiographs by X-ray were also performed at 6, 12, 24, and 48 weeks to determine the
treatment outcome (Figure 2). Progressive improvement with follow-up times was seen
in most of them without osteolytic lesions, bone destruction or sign of infection excepting
one patient that was discontinued from the study. Among 53 patients, 30 patients (56.60%)
were evaluated for bone union at 24 weeks after treatment. No change in alignment was
seen for all of them while bone union, consolidation and callus formation were seen in
twenty-one patients (70%). At 48 weeks, nHA-ATB beads were still seen in all cases without
displacement or migration and there was an incorporation of the nHA-ATB beads with the
surrounding bone.
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Figure 2. Representative radiographic images showing nHA-ATB beads in the bone cavity:
(a) Immediate post-operatively; (b) 48 weeks post-operatively. The incorporation of nHA-ATB
beads with surrounding bone and no translucency which might be suggestive of infection recurrence
was observed.

2.4. Quality of Life by SF-36 Questionnaire

The quality of life in both physical and mental categories generally increased with
follow-up periods. At 6 weeks, all domains in physical health and mental health of the
patients were significantly greater than the baseline values before surgery excepting only
physical function, vitality and social function which did not differ significantly from the
baseline values. At 12 weeks and 24 weeks, the data demonstrated that both the physical
health and mental health of patients after surgery significantly improved in all domains
compared to the baseline values as shown in Table 5.

Table 5. Quality of life of participants at each follow-up as evaluated by SF-36 questionnaire.

Results Baseline
Mean ± SD

6 Weeks
Mean ± SD

12 Weeks
Mean ± SD

24 Weeks
Mean ± SD

Physical health 37.14 ± 4.23 47.94 ± 14.77 # 55.51 ± 13.78 # 60.63 ± 14.64 #

Physical functioning 46.86 ± 26.10 50.49 ± 26.91 63.98 ± 26.12 # 72.93 ± 23.49 #

Role-physical 5.27 ± 8.14 11.52 ± 10.71 # 14.29 ± 10.67 # 16.98 ± 9.65 #

Bodily pain 46.96 ± 26.56 64.39 ± 20.34 # 73.47 ± 18.29 # 78.89 ± 19.95 #

General health 49.45 ± 19.50 65.35 ± 17.69 # 70.31 ± 16.84 # 73.72 ± 17.99 #

Mental health 47.44 ± 17.48 58.99 ± 14.12 # 64.81 ± 12.83 # 67.21 ± 13.63 #

Vitality 66.79 ± 24.48 80.76 ± 21.24 87.88 ± 19.53 # 91.44 ± 20.89 #

Social function 56.62 ± 25.54 67.40 ± 20.78 75.00 ± 19.09 # 80.16 ± 19.82 #

Role- emotional 7.35 ± 9.67 15.03 ± 10.41 # 17.01 ± 10.06 # 18.12 ± 10.14 #

Mental health 58.98 ± 21.99 72.78 ± 14.24 # 79.35 ± 12.09 # 79.13 ± 13.38 #

# Denoted significantly different compared to the baseline values, p < 0.1.

2.5. Adverse Events

Twenty adverse events were reported comprising 1 definitely related event, 2 possibly
related events and 17 unlikely or not related events as shown in Table 6. Three related
events consisted of exposure to the nHA-ATB beads from wound dehiscence, acute on-top
chronic osteomyelitis and wound complication. These patients were treated with a revised
wound closure and the wound later healed uneventfully. In the case of acute on-top chronic
osteomyelitis event, the patient was discontinued from the study since the clinical outcome
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was not improved. Concerning the consequences of 20 reported adverse events, 18 events
were resolved. However, two events could not be resolved including one patient who died
of causes unrelated to osteomyelitis or surgery and one patient who could not be contacted
to obtain the information due to loss to follow-up and was discontinued from the study.

Table 6. Adverse events and their relations to nHA-ATB beads.

Relations to nHA-ATB Beads
Adverse Events (n = 20)

SAE or Non-SAE Severity Events

Definitely related
- HA exposed from wound dehiscence Non-SAE Grade I 1

Possibly related
- Serum oozing from the surgical wound Non- SAE Grade I 1
- Acute on-top chronic left tibia

osteomyelitis SAE Grade III 1

Unlikely
- Anterior shoulder dislocation Non-SAE Grade II 1
- Loosening of external fixator SAE Grade I 1
- Gastrointestinal hemorrhage, unspecified SAE Grade II 1

Not related
- Leg pain Non-SAE Grade I 1
- Wrist drop due to radial nerve palsy Non-SAE Grade II 1
- Acute pyelonephritis SAE Grade I 1
- Adjust external fixation SAE Grade I 1
- Bone fracture SAE Grade I 1
- Prolonged hospitalization of chronic

osteomyelitis of left distal femur due to
financial problem

SAE Grade I 1

- Revised external fixation SAE Grade I 1
- Wound dehiscence SAE Grade I 2
- Surgical wound with drainage SAE Grade II 1
- Wound dehiscence after debridement and

switch HA-ATB to cement ATB SAE Grade II 1

- Broken Steinman Pin SAE Grade III 1
- Nonunion of the fracture site SAE Grade IV 1
- Death from other causes SAE Grade V 1

3. Discussion

The success rates of osteomyelitis treatment of long bones were reported to vary
between 70 and 90% with a recurrence in 6–9% of the patients depending on the severity
of the injury [50,51]. Localized antibiotic delivery has been shown to have a success rate
of approximately 90%, but also varied depending on several factors [16,52,53]. Generally,
localized antibiotics could be used alone or in combination with antibiotics administration
via intravenous (IV) injection. Gauland demonstrated that the treatment of 323 patients
with confirmed chronic osteomyelitis of the lower extremity with the combination of
debridement and localized delivery beads without IV antibiotics administration had the
encouraging result with a success rate of 86.4% [53]. Another study demonstrated the local
application of gentamicin loaded calcium sulphate/carbonate beads in which half of the
patient was not administrated with antibiotics injection showed an infection control rate
of 80% without nephrotoxic or hepatotoxic effects [33]. The combined treatment using
both IV antibiotic administration and localized antibiotic beads was also seen to provide
a better outcome than IV antibiotics administration alone. Calhoun et al. demonstrated
the success rate of IV antibiotic administration was 83.3% while the combined treatment
of gentamicin loaded PMMA beads, and IV drug administration yielded a success rate
of 89.3% [54]. In another study, the combined treatment of gentamicin loaded PMMA
beads, and IV drug administration resulted in a 100% success rate while only 95% was
achieved in the antibiotics IV administration group only [55]. The use of calcium sulphate
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carrier containing tobramycin for the treatment of chronic osteomyelitis showed a success
rate of 90.8% with the recurrent infection (9.2%) occurring at a mean of 10.3 months post-
operatively. McNally et al. reported the mid- to long-term result of single-stage surgery
for patients with chronic osteomyelitis using a bioabsorbable gentamicin-loaded calcium
sulphate/hydroxyapatite with 94% infection control [56]. No recurrence of infection was
seen after using calcium hydroxyapatite block filled with antibiotic powder in the center
during follow-up ranging from 24 to 75 months was reported [45] while the success rate of
antibiotic impregnated hydroxyapatite blocks ranged 85–100% at the follow-up periods of
1–6 years [46–48]. In this study, the success rate of treatment by using nHA-ATB at 12 weeks
was 98.28% while the overall success rate at 48 weeks was 98.11%. The recurrence rate at
48 weeks was 1.89% (1/53). Although it might be argued that a high success rate in this
study may be due to our patients having good physiological status (75.8% was class A host)
since it was reported previously that patients with class A host showed 96% success rate,
while a success rate of 74% was seen for class B host [57]. Nevertheless, it was reported in
another study that the re-infection rate was not significantly related to the physiological
class of the host, microbiological culture, or the presence of an infected nonunion before
surgery [56]. Therefore, the infection control rate by adjuvant use of nHA-ATB beads was
not inferior and was comparable with other localized systems in previous studies.

After treatment, PMMA bead chain cannot be left in place since it could prevent bone
ingrowth over time and will also present a risk of secondary infection on its surface [58].
The idea of the antibiotic carrier that could remain in the wound defect without the need
for subsequent removal was; thus, foreseen. Calcium sulfate was later employed as a
biodegradable antibiotic carrier that showed a resorption time in the range of 3 to 12 weeks
as determined radiologically [59–61]. However, the bone regeneration capacity following
the dissolution of the calcium sulfate beads varied and remained inconclusive. It was
reported that either no bone filling, partial bone filling or complete bone filling was seen,
and the mean percentage of bone filling ranged 37.5–49.7% [26,62,63]. This inconsistency
might be related to the resorption rate which might vary for each patient. If the rate of
dissolution was fast and did not match with the osteogenesis, limited new bone formation
occurred during the resorption period and led to new bone cavities [26,63]. In addition, too
fast resorption rate would also release high concentrations of antibiotics at short periods
to the surrounding area which might be toxic to nearby stem cells or bone cells and
prevent osteogenesis [64]. Calcium phosphates, particularly hydroxyapatite is typically
used as a synthetic bone substitute to regenerate a new bone in the osseous defect area.
Its resorption rate was relatively lower than that of calcium sulfate and provided bone
regeneration capability through its osteoconductive scaffold for cells or tissues to ingrowth
and integrate. Lowering the resorption rate of calcium sulfate by mixing with calcium
phosphates to allow sufficient time for the bone to grow was found to show a significantly
higher percentage of new bone formation than calcium sulfate alone at 1 and 6 months [63].
In this study, nHA-ATB beads were still radiologically seen at 48 weeks postoperatively
without obvious evidence of resorption. However, follow-up radiographs showed that
there was the incorporation of the nHA-ATB with surrounding bones as could be seen
from the loss of margins definition and internal architecture of the beads [65]. This agrees
with the previous study there was progress in the incorporation of bone and antibiotic-
filled sintered hydroxyapatite blocks with times for up to five years without radiological
evidence of resorption and some sclerotic areas were developed around the blocks [45].
In addition, some histological studies in those re-operated patients after healing revealed
some degradation of the sintered hydroxyapatite blocks through a cell-mediated process.

Inflammation can occur as either an acute phase resulting from injury or infection or
a chronic phase. Blood tests including ESR and CRP are simple, rapid, and economical
means that are helpful in diagnosing and monitoring inflammation. Elevated ESR was
found to be associated with chronic pain patients. CRP is a protein that emerged in plasma
during infectious or inflammatory conditions and participated in the acute or first phase of
the inflammatory process. In addition, these tests can be used as indicators for the presence
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of pain and inflammation and markers of treatment effectiveness. The osteomyelitis
diagnosis by using ESR and CRP as biomarkers were also reported by many studies, but
the correlation success and cut-off values varied depending on the locations and risk
factors [66–69]. Generally, the combined use of both ESR and CRP was recommended to
gain sufficient specificity and it was regarded as an adjunct tool for diagnosis or monitoring
the treatment success rather than the definite diagnosis [70,71]. In this study, both CRP
and ESR of chronic osteomyelitis patients were observed to continuously and significantly
decreased during follow-up periods after surgical treatment. This corresponded well
with the clinical and radiological evaluation that the number of patients who recovered
from osteomyelitis increased from 4 at 8 weeks to 31 at 48 weeks. The overall number of
patients whose conditions were either recovered or improved ranged from 51–58 patients
at 48 weeks follow-up which accounted for 83.6–95.08% indicating the efficacy of the
treatment. Only one patient was diagnosed as worsening but was not indicated as directly
related to nHA-ATB beads used and might be caused by other complications or causes.

Psychosocial complications resulting from chronic osteomyelitis are common and it
was mainly caused by loss of working ability, loss of medical coverage and loss of family
support which in turn was significantly affected by the number of surgical procedures
or unsuccessful antibiotic treatments [72]. It was observed that the quality of life of
vertebral osteomyelitis patients improved significantly at 1 year post-operatively, but non-
significantly changed from year 1 to year 2 [73]. In another study, the quality of life of
patients in the treatment success group did not differ significantly from the treatment
failure group [74]. In this study, the quality of life of patients after treatment improved
significantly compared to the baseline before surgery in all domains including both physical
health and mental health after 12 weeks and 24 weeks. However, some domains of physical
function, vitality, and social function did not differ significantly at 6 weeks which was
possibly caused by the intervention, which might limit the movement and activity of the
patient in the early stage after surgery.

The pharmacokinetics of the treatment in this study were monitored by measuring the
levels of vancomycin and gentamicin in serum and wound drainage fluid at 24 h, 48 h and
72 h after surgery. Fosfomycin was not determined in this study since no toxicity level was
established. A high concentration of vancomycin and gentamicin in wound drainage fluid
was detected at all periods whereas limited antibiotics concentration was found in serum
even as high as 180 beads were used in one case and all the antibiotics levels were lower
than the toxicity level of vancomycin and gentamicin which were 50 µg/mL and 6 µg/mL
respectively. This demonstrated that high concentrations of antibiotics were locally released
at the bone defect as intended, without systemic release into the bloodstream, and exposing
the patient to antibiotic side effects. Correspondingly, no side effect of antibiotics was
reported in all patients during the study. This was in accordance with previous studies that
high concentrations of gentamicin which was 10–100 times greater than the MIC of bacteria
were detected in the wound drainage fluid of the patients when being treated by gentamicin
loaded polymethylmethacrylate beads [75,76]. In contrast, the low serum gentamicin level
which was not greater than 0.5 µg/mL was found even as high as 80–180 gentamicin loaded
polymethylmethacrylate beads were placed [75,77]. High tissue levels and low serum levels
of antibiotics in patients after treatment were substantiated for calcium sulfate beads as
well [78,79]. The pharmacokinetics of the treatment by using nHA-ATB beads correlated
well with the blood chemistry test especially liver function and renal function which
showed no significant difference at all follow-up indicating no nephrotoxic or hepatotoxic
effects were found after infection treatment by using nHA-ATB beads.

Concerning the reports of complications and adverse events in relation to the use
of local antibiotic beads. In the case of antibiotic loaded PMMA bead chain, mechanical
complications including damage to the bowel or veins, inability to reduce a hip dislocation
secondary and bead migration were reported [80–82]. There have also been reports of
increased antibiotic resistance when PMMA bead chains were implanted for an extended
period [21]. Regarding the calcium sulfate beads, three main complications which were
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related to the beads included prolonged wound drainage, transient hypercalcemia, and
heterotopic ossification. The incidences rate of these complications was 3.2–51%, 5.4–20%
and 1.7% respectively. These complications were hypothesized to occur due to the fast
resorption of calcium sulfate beads which led to a calcium-rich fluid in the wound area,
and it was found to directly correlate with the volume of implanted calcium sulfate beads
especially for wound drainage and hypercalcemia [24,26,59,61,83–86]. It was even sug-
gested that precautions against hypercalcemia which may cause convulsions, coma and
cardiac arrest should be implemented and regulate the number of beads used (40 cc per in-
tervention or 80 cc if used intramedullary) [24,87]. Other complications that could be found
included experiencing pain and discomfort [88]. In this study, twenty adverse events were
encountered for nHA-ATB. Among these, only one event (5%, 1/20) was reported to be
definitely related to nHA-ATB beads, which was the exposure of beads, but the severity
was low. Two possibly related events (10%, 2/20) including serum oozing from the surgical
wound and acute on top chronic left tibia osteomyelitis were also observed. The overall
incidence rate was thus 4.84%. Most of the events were resolved without having to remove
the nHA-ATB beads and the patients recovered. No other complications as seen in the case
of using PMMA or calcium sulfate were encountered. These all supported the safety of
using nHA-ATB beads compared to other commercial products.

The advantages of using nHA-ATB beads as a local antibiotics carrier were; thus,
their ability to provide a sustained, local, high concentration of antibiotics at the site of
infection and lower systemic side effects compared with intravenous antibiotics. It could
be left inside the body without the need for subsequent removal and act as a bone graft
to provide bone regeneration capability in the bone defect. However, the drawbacks of
using local antibiotics beads such as the nHA-ATB beads in this study compared to the
standard intravenous antibiotics treatment would be the additional cost of the product and
additional surgical time in filling the defects with the beads.

Limitations of this study were that the follow-up time is relatively short and no
direct comparison with standard treatment or analysis of the risk of treatment failure was
implemented. Osteomyelitis may recur years later, despite what appears to be a successful
recovery. A longer follow-up period is needed to avoid overestimating the efficacy of the
treatment. A future randomized controlled trial is considered to improve understanding of
the efficacy and safety outcomes of using nHA-ATB beads in chronic osteomyelitis patients.
In addition, the cost of the treatment analysis by using nHA-ATB beads in comparison to
standard treatment should be performed to justify the financial benefit of using it as an
alternative product of choice for chronic osteomyelitis treatment.

4. Materials and Methods
4.1. Patient Enrollment

This study was performed in accordance with the Declaration of Helsinki and the
International Conference on Harmonization (ICH) for Good Clinical Practice (GCP). The
protocol was registered in the Thai Clinical Trials Registry (TCTR20170123002) and ap-
proved by the human research ethical committee in each participated center. Patients
with chronic osteomyelitis in 12 participating centers in Thailand including Thammasat
university, Bhudasothon hospital, Lerdsin hospital, Srinakharinwirot university, Lampang
hospital, Khon Kaen hospital, Pathumtani hospital, Suppasitthiprasong hospital, Bhumibol
Adulyadej hospital, Paholpolpayuhasena hospital, Hatyai hospital and Prince of Songkla
university were eligible to enroll in this multicenter, prospective cohort study. The sample
size was calculated using a confidence interval for a proportion (http://www.sample-size.
net/sample-size-conf-interval-proportion/, accessed on 16 March 2020) and 59 patients
were necessary to provide a study power of 90% with an α of 0.10. Assuming a 5% loss to
follow-up for 48 weeks period; hence, the number of participants was 62 patients.

The inclusion criteria were the age equal or above 18 years old and diagnosed as
chronic osteomyelitis. A sinus, an abscess, intraoperative pus, supporting histology, or
two or more microbiological cultures with identical organisms were all required for the

http://www.sample-size.net/sample-size-conf-interval-proportion/
http://www.sample-size.net/sample-size-conf-interval-proportion/
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diagnosis of chronic osteomyelitis, which was defined as the existence of symptoms for at
least six weeks [89,90]. The exclusion criteria were the patient with a history of vancomycin,
gentamicin or fosfomycin allergy, renal insufficiency, immunocompromise host, multiple
active injuries or head injuries, malignancy at the site of infection, poor control of diabetes
(HbA1C > 8 mg%), pregnancy, human immunodeficiency virus (HIV) infection, infection
with antibiotic-resistant gram-negative bacteria. The participant will be discontinued
from the study if they lose follow-up 2 times consecutively, the drug level is above the
toxicity level (vancomycin > 50 µg/mL, gentamicin > 6 µg/mL), presence of drug allergy
symptoms during the study and antibiotic-resistant gram-negative bacteria from intra-
operative culture. The demographic data including sex, age, wound location, Cierny-Mader
(C-M) (anatomic type, physiological condition and risk factors) [89], causes and history of
previous surgery for osteomyelitis were collected.

4.2. Preparation of Antibiotic Impregnated Microporous Nanohydroxyapatite Beads

Antibiotic impregnated microporous nanohydroxyapatite (nHA-ATB) beads were
prepared as described in the previous study [43]. Premixed calcium sulfate-based powder
was loaded into a powder-based three-dimensional (3D) printing machine (Z400, Z Corpo-
ration, Burlington, MA, USA) to print spherical beads having a diameter of 7 mm by using
water-based binder (Zb 7, Z Corporation, USA) as a jetting media and a layer thickness of
0.1 mm. The as-fabricated calcium sulfate beads were then transformed to hydroxyapatite
by immersing them in 1 M of disodium hydrogen phosphate solution at 80 ◦C for 48 h.
After reaching the period, the beads were taken out, cleaned by sonication in deionized
water and oven dried. The compressive strength of nHA was 0.60 MPa and its porosity
and mean pore size were 63.92% and 0.15 microns, respectively [43]. nHA beads were
impregnated with one of three types of antibiotics intravenous injection solution including
gentamicin, vancomycin or fosfomycin using a vacuum-assisted method under the same
condition each time. After impregnation, the samples were taken out and dried in the
room atmosphere for 48 h. The representative samples were randomly selected to measure
antibiotic content in the beads to make sure that the preparation is consistent. They were
then packed in a Tyvek heat-seal sterilization pouch, sterilized by ethylene oxide gas, and
kept in dry conditions at room temperature until use.

4.3. Operative Procedure

The patient was under general anesthesia or regional anesthesia depending on the
location of the infected bone. The sterile preparation was done, and the sinus tract was
excised. The debridement was down to the infected bone. Any dead bone and non-
vitalized tissue were removed. The multiple deep tissue samplings were collected for
microbiological study before the administration of intravenous antibiotics. The cultured
isolates were identified by colony characteristics and biochemical reactions. Antibiotic
sensitivity was done by Kirby Bauer disc diffusion method on Mueller Hinton agar as
per Clinical Laboratory Standards Institutes (CLSI) guidelines. The infected bone was
curetted with a mechanical burr until the healthy bleeding bone was reached and then
was copiously irrigated with normal saline until no gross infection was present. The nHA-
ATB beads were placed into the defect site at an equal ratio (1:1:1) of each antibiotic to
completely fill the defect (Figure 3). The rationale of using three antibiotics in this study
was to deliver broad-spectrum antibiotics locally to cover the most common organisms
generally found in chronic osteomyelitis. Gel foam was applied to cover the beads securely
within the intramedullary canal or defect. Hemostasis was achieved and the radivac drain
was inserted. The subcutaneous and skin were closed, respectively. Flap was considered in
case of inadequate soft tissue coverage. The intravenous cephalosporin was administered
immediately after tissue sampling and the appropriate antibiotic was adjusted as soon
as the culture result was obtained for 1 to 6 weeks or longer as advised by the infectious
disease team. Therapeutic drug monitoring of gentamicin and vancomycin was performed
on thirty-four patients (30% of the total number of patients) from Thammasat university or
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the Prince of Songkla university. Blood samples (10–15 mL) and wound drainage fluid via
a radivac catheter were collected at 24 h, 48 h, and 72 h after surgery.
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Figure 3. Intra-operative photographs showing the debridement and placement of nHA-ATB into
the bone cavity: (a) The infected bone was curetted and was irrigated with copious normal saline;
(b) The bone cavity was completely filled with nHA-ATB beads.

The follow-up evaluations were scheduled at 2 weeks, 4 weeks, 6 weeks, 12 weeks,
24 weeks, and 48 weeks postoperatively. The laboratory test including CBC, ESR, CRP, liver
function test and renal function was done at 6 weeks, 12 weeks, 24 weeks, and 48 weeks. The
radiographic examination of the treated site was performed to evaluate the radiographic
union and the resorption of the materials. Adverse events and complications were recorded
at all time points. All patients gave informed consent.

The primary endpoints of the study were the success rate at 12 weeks and the re-
infection rate within 24 weeks period after the operation. The success of treatment was
defined as no recurrent infection, no recurrence of sinus drainage, normal level of ESR and
CRP or no requirement of antibiotics for persistent symptoms during the follow-up. The
secondary endpoints were the quality of life of the participants at 0, 6, 12 and 24 weeks
postoperatively which was evaluated by the Thai version of the SF-36 questionnaire [91]
and the incidence of adverse effects which was graded according to National Cancer
Institute criteria [92].

4.4. Statistical Analysis

All the data were analyzed using statistical analysis software (STATA version 14,
StataCorp LLC, College Station, TX, USA). The data were described as the mean ± standard
deviation. Blood biochemistry and quality of life were compared before and after surgery for
each participant using a paired t-test. A p-value < 0.1 was considered statistically significant.

5. Conclusions

Microporous nanohydroxyapatite beads impregnated with vancomycin or gentamicin
or fosfomycin could be employed as an alternative product of choice for chronic osteomyeli-
tis treatment. Within the scope of this study, good outcomes in infection treatment were
observed throughout the follow-up period and the material was safe and well tolerated
while providing the enhancement in quality of life of the patients.
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