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Abstract: The similarity of commensal Escherichia coli isolated from healthy cattle to antimicrobial-
resistant bacteria causing extraintestinal infections in humans is not fully understood. In this study,
we used a bioinformatics approach based on whole genome sequencing data to determine the
genetic characteristics and phylogenetic relationships among faecal Escherichia coli isolates from
beef cattle (n = 37) from a single feedlot in comparison to previously analysed pig faecal (n = 45),
poultry extraintestinal (n = 19), and human extraintestinal E. coli isolates (n = 40) from three previous
Australian studies. Most beef cattle and pig isolates belonged to E. coli phylogroups A and B1, whereas
most avian and human isolates belonged to B2 and D, although a single human extraintestinal isolate
belonged to phylogenetic group A and sequence type (ST) 10. The most common E. coli sequence
types (STs) included ST10 for beef cattle, ST361 for pig, ST117 for poultry, and ST73 for human isolates.
Extended-spectrum and AmpC β-lactamase genes were identified in seven out of thirty-seven (18.9%)
beef cattle isolates. The most common plasmid replicons identified were IncFIB (AP001918), followed
by IncFII, Col156, and IncX1. The results confirm that feedlot cattle isolates examined in this study
represent a reduced risk to human and environmental health with regard to being a source of
antimicrobial-resistant E. coli of clinical importance.

Keywords: Escherichia coli; genotype; epidemiology; phylogeny

1. Introduction

Escherichia coli is a Gram-negative, facultative anaerobic, rod-shaped bacterium com-
monly isolated as a normal component of the autochthonous microbiota of the animal
and human gut [1]. However, many different E. coli pathotypes containing a diverse array
of virulence genes (VGs) also exist, and these are capable of causing both intestinal and
extraintestinal infections in both animals and humans [2]. Although many E. coli sub-types
are relatively host-specific [3,4], some lineages have a broad host range and can potentially
spread between humans, animals and their products, and the environment [5–7]. The
ability of E. coli to spread to various hosts and environments whilst causing different infec-
tion types (i.e., both intestinal and extraintestinal infections) emphasizes the importance
of monitoring spread and taking measures to regulate it. The most common methods to
regulate the spread of specific E. coli pathotypes include the judicious use of antimicrobial
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agents, following good hygiene practices, and limiting the movement of infected animals
and/or their contaminated products through strict biosecurity [8].

Antimicrobials have played a crucial role in the treatment and management of both
intestinal and extraintestinal E. coli infection in animals and humans. However, selec-
tive pressure exerted by antimicrobials is assumed to be one of the main factors in the
emergence and spread of antimicrobial resistance (AMR) among both pathogenic and
commensal E. coli [9]. Although there is a clear link between the use of antimicrobials and
the development of resistance among E. coli, there are also other factors in play such as the
transmission rate of pathogenic subtypes to different hosts, the rates at which pathogenic
lineages mutate and/or exchange accessory genes with commensals, and the selection of
co-resistance to unrelated antimicrobials [10,11].

Both antimicrobial resistance genes (ARGs) and VGs may be easily transferred between
E. coli strains because they are often located within transferable genetic elements such as
bacteriophages, genomic islands, insertion sequences (ISs), integrons, transposons, and
plasmids [12]. E. coli can also easily acquire mobile genetic elements containing these genes
from other closely related bacteria. Pan genome analyses of E. coli isolates from multiple
hosts have shown the ability of this species to rapidly evolve through gene acquisition and
genetic modification whilst largely retaining a clonal population structure [5]. Additionally,
a genetic similarity between certain broad host range bacterial clonal lineages of E. coli
(such as ST10, ST58 and ST648) isolated from humans and animals suggests that frequent
cross-species transmission is probable for these subtypes [13–15].

Whilst many studies have identified virulence and ARGs in E. coli isolated from
various animal and human populations [16–23], few studies have undertaken valid com-
parisons between these diverse groups. Hence, little is known to what extent different
livestock-associated commensal E. coli seed the environment and contribute to the AMR
burden relevant to human health. Therefore, regular surveys are crucial for the effective
management of AMR and infection control for both animal and human health. Australia
has strict registration and regulation protocols for antimicrobial use in livestock production
systems [24,25], and represents a unique study site given that there are also bans in place
on the importation of live, food-producing animals, strict quarantine laws, and no land
borders with other countries. Although Australia has implemented measures to prevent
AMR, the spread of AMR is a complex issue that requires ongoing monitoring throughout
the food chain. Regular monitoring and surveillance of animal production systems aims
to identify AMR hot spots that may need immediate attention to implement effective
prevention strategies [26,27].

The monitoring of AMR in E. coli can take place at various levels, including at the farm,
environment, retail, and consumer level. In our previous study, tetracycline resistance
increased by 17.8% in faecal-origin E. coli isolated from healthy cattle at feedlot entry
compared to exit [28]. The prevalence of extended-spectrum β-lactamase (ESBL)-producing
E. coli also rose from 0.7% to 4.0% between entry and exit samples. However, any possible
links between these isolates and the E. coli isolated from other food animals and humans in
Australia has not yet been determined. Therefore, this study compared the genetic similarity,
ARG, plasmid, and VG profile of these cattle-origin E. coli isolates to contemporaneous
isolates from other food animals and humans in Australia. This was undertaken to assess
both the risk of animal-to-human isolate transfer via direct contact, food, and/or the
environment, and the potential for horizontal gene transmission and spread among the
various hosts.

2. Results
2.1. Phylogroup, Sequence Types and SNP Analyses

The E. coli isolates were distributed into phylogroups predominantly according to
their host species of origin, with most cattle and pig isolates belonging to A and B1 and
most poultry and human isolates belonging to B2 and D (Table 1).



Antibiotics 2023, 12, 895 3 of 17

Table 1. The frequency of different phylogroups in E. coli isolated from beef cattle, pig, poultry, and
human sources.

Sample Source
Phylogroup (%)

A B1 B2 C D E F G

Beef (n = 37) 16 (43.2) 19 (51.3) 0 1 (2.7) 0 1 (2.7) 0 0
Pig (n = 45) 29 (64.4) 14 (31.1) 0 0 1 (2.2) 1 (2.2) 0 0

Poultry (n = 19) 1 (5.3) 2 (10.5) 3 (15.8) 0 4 (21.0) 4 (21.0) 0 5 (26.3)
Human (n = 40) 1 (2.5) 2 (5.0) 26 (65.0) 0 8 (20.0) 0 3 (7.5) 0

Further genomic analyses revealed a high diversity of sequence types (STs) among
the beef cattle E. coli isolates (18 known STs), the most frequently identified being broad
host range ST10 (27.0%), ST278 (18.9%), and ST109, ST515, ST641, and ST2035 (5.4% each).
The remaining 12 cattle STs were represented by single isolates only. The most common
STs identified among the pig (faecal), poultry (extraintestinal), and human (extraintestinal)
E. coli isolates were ST361, ST117, and ST73, respectively. As expected for extraintestinal
isolates, most poultry and human isolates belonged to STs located within phylogroups B2
and D. (Figure 1; Table S1). By comparison, most cattle and pig faecal isolates belonged to
STs associated with commensal phylogroups A and B1. In this way, most cattle and pig
isolates were distributed into two clades (Clade 1 containing phylogroup B1 isolates, in-
cluding those belonging to ST278, and Clade 2 containing phylogroup A isolates, including
those belonging to ST10). Clade 2 ST10 isolates were more genetically diverse compared to
Clade 1 ST278 isolates. Additionally, occasional human or poultry extraintestinal clinical
isolates were found in Clade 1 (three isolates, one human and two poultry, all representing
single STs) or Clade 2 (a single human ST10 isolate that was genetically distinct from
cattle isolates).
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Figure 1. A mid-point rooted, maximum-likelihood phylogenetic tree constructed based on analysis
of single-nucleotide polymorphisms (SNPs) of the core SNPs of 141 E. coli genomes isolated from
beef (n = 37), pig (n = 45), poultry (n = 19), and human (n = 40) sources. Branches are coloured by
clade and subclade according to the legend. Phylogroups (inner ring), sequence types (STs) (middle
ring), and sources of the isolates (outer ring) are annotated according to the legend.
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2.2. Antimicrobial Resistance Genes

Overall, 60 ARGs were identified in the 141 E. coli isolates, encoding resistance
to aminoglycosides (fourteen ARGs), amphenicols (four ARGs), ß-lactams (twenty-one
ARGs), fluoroquinolones (three ARGs), folate synthesis inhibitors (ten ARGs), macrolides
(five ARGs), and tetracyclines (three ARGs). The mean number of ARGs present in isolates
obtained from each host species were: beef cattle (n = 3), poultry and human (n = 4), and
pig (n = 7). Most pig E. coli isolates were MDR (extremely high: 42/45; 93.3%) compared
to humans (very high: 24/40; 60.0%), poultry (high: 9/19; 47.4%), and beef cattle isolates
(high: 14/37; 37.8%) (Figure 2). The study investigated pig and poultry isolates known
to have the Class 1 integrase gene incl1, but the gene was also found in 10.8% (4/37) of
the beef cattle isolates and 67.5% (27/40) of the human extraintestinal isolates. Among
the intI1-containing E. coli isolated from beef cattle, three were originally isolated from
ESBL selective agar. The study found that beef cattle E. coli isolates carrying the intI1
gene were more likely to contain multiple ARGs, including those encoding resistance to
extended-spectrum ß-lactams, and were identified as ST88, ST1102, ST9967, and ST540
(Table S1).
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Figure 2. Antimicrobial resistance gene (ARG) profiles clustered on the basis of the Figure 1 SNP-
based phylogenetic tree composed of 141 Escherichia coli genomes isolated from beef cattle (n = 37),
pig (n = 45), poultry (n = 19), and human (n = 40) sources. Branches are coloured by clade and
subclade, according to the legend. The remaining columns indicate: (1) isolate source, (2) isolate
phylogroup, (3) isolate sequence type, (4) ARGs detected in the isolate, and (5) multidrug resistance
profile of the isolate. The detected ARGs are clustered according to their respective antimicrobial
classes, as follows: aminoglycosides (14 ARGs shown in dark green), amphenicols (4 ARGs shown
in light green), β-lactams (21 ARGs shown in red), fluoroquinolones (3 ARGs shown in purple),
folate synthesis inhibitors (10 ARGs shown in blue), macrolides (5 ARGs shown in magenta), and
tetracyclines (3 ARGs shown in brown).

β-Lactam Resistance Genes

A high proportion of the total isolate collection possessed the aminopenicillin resis-
tance gene blaTEM-1B (70/141; 49.6%), with the next most commonly identified genes being
blaCTX-M-15 (low prevalence: 6/141; 4.2%) and blaCTX-M-27 (low prevalence: 5/141; 3.5%),
both imparting resistance to expanded-spectrum cephalosporins (Table 2). These were
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also the most prevalent β-lactam resistance genes identified among the beef cattle isolates
(blaTEM-1B [8/37, high prevalence: 21.6%], blaCTX-M-15 and blaCTX-M-27 [low prevalence: 3/37;
8.1% each]). The blaCMY-2 plasmid-mediated AmpC β-lactamase gene was also identified in
two bovine isolates.

Table 2. The diversity of ß-lactam resistance genes identified among 141 E. coli isolated from beef
cattle, pig, poultry, and human sources.

β-Lactam Sample Source

Resistance
Genes Beef Cattle (n = 37) Pig (n = 45) Poultry (n = 19) Human (n = 40)

Frequency
(%)

Phylogroup
(n)

Frequency
(%)

Phylogroup
(n)

Frequency
(%)

Phylogroup
(n)

Frequency
(%)

Phylogroup
(n)

ampC - - - - - - 1 (2.5) D (1)
blaCARB-2 - - 1 (2.2) A (1) 1 (5.3) G (1) - -
blaCMY-2 2 (5.4) A (1), E (1) - - - - - -

blaCTX-M-15 3 (8.1) A (1), B1 (2) - - - - 3 (7.5) B2 (1), D (2)
blaCTX-M-27 3 (8.1) A (2), C (1) - - - - 2 (5.0) B2 (1), D (1)

blaOXA-1 - - - - - - 2 (5.0) A (1), B2 (1)
blaSHV-1 - - - - - - 1 (2.5) B2 (1)
blaSHV-48 - - - - - - 1 (2.5) B2 (1)
blaSHV-102 - - - - - - 1 (2.5) B2 (1)
blaTEM-1A - - - - 3 (15.8) B2 (2), E (1) - -

blaTEM-1B 8 (21.6) A (6), B1 (2) 42 (93.3)
A (26), B1
(14), D (1),

E (1)
3 (15.8) A (1), B1

(1), D(1) 17 (42.5) B2 (12), D (5)

blaTEM-1C 2 (5.4) A (1), B1 (1) - - 1 (5.3) G (1) 1 (2.5) B2 (1)
blaTEM-33 - - - - - - 1 (2.5) B2 (1)
blaTEM-34 - - - - - - 2 (5.0) B1 (1), B2 (1)
blaTEM-57 - - - - - - 1 (2.5) B2 (1)
blaTEM-141 - - 1 (2.2) A (1) - - 1 (2.5) B2 (1)
blaTEM-206 - - 2 (4.4) A (2) 1 (5.3) D (1) 1 (2.5) B2 (1)
blaTEM-209 - - 1 (2.2) A (1) - - - -
blaTEM-213 - - - - - - 1 (2.5) B2 (1)
blaTEM-214 - - 2 (4.4) A (2) 1 (5.3) D (1) - -
blaTEM-216 - - 1 (2.2) A (1) - - - -

2.3. Disinfectant Resistance Genes

Only Quaternary ammonium compound (qacE) and hydrogen peroxide (sitABCD)
resistance genes were detected among the 141 E. coli isolates (Figure 3). Both disinfectants
are commonly used in hospitals, healthcare facilities, and the food industry. The highest
proportions of disinfectant resistance genes were detected among poultry clinical isolates
(qacE [12/19, very high: 63.1%] and sitABCD [10/19, very high: 52.6%], respectively) and
human clinical isolates (qacE [18/40, high: 45%]; sitABCD [28/40, very high: 70.0%]). By
comparison, the prevalence of disinfectant resistance genes was much lower among pig
commensal isolates (both 9/45; moderate: 20.0%) and beef cattle commensal isolates (qacE
[1/37, low: 2.7%] and sitABCD [2/37, low: 5.4%]).
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n = 37), pigs (blue branches, n = 45), poultry (orange branches, n = 19), and human sources (red
branches, n = 40). Purple circles indicate the isolates shown to contain the qacE disinfectant resistance
gene (imparting resistance to quaternary ammonium compounds), whereas the blue circles indicate
that the isolates shown contain the sitABCD gene (imparting resistance to hydrogen peroxide). Most
beef and pig isolates are located within phylogroups A and B1, which are encompassed within the
square box.

2.4. Identification of Plasmid Replicons

Overall, the PlasmidFinder analysis identified 35 different plasmid replicons in the
141 studied isolates (Figure 4). Twenty-seven Incompatibility (Inc) plasmid types were
identified, the most common being IncFIB (AP001918) (89/141; 63.1%), IncFII (52/141;
36.9%) and IncX1 (25/141; 17.7%). Overall, 114/141 (80.8%) of the isolates contained
more than two different plasmid replicons, with a high proportion of isolates (46/141;
32.6%) harbouring both IncFIB (AP001918) and IncFII replicons, whilst 5/141 isolates (3.5%)
harboured IncFIB (AP001918), IncFII, and IncX1 replicons. Isolates that harboured two or
more plasmid replicons included 24/37 beef cattle (64.8%), 37/45 pig (82%), 19/19 poultry
(100%), and 34/40 human (85%) isolates. Seven Col plasmids containing genes responsible
for the production of bacteriocins or colicins were also found in the isolate collection. These
included Col156 (27/141; 19%), Col (BS512) (10/141; 7.1%), and ColpVC (6/141; 4.2%). Only
13/141 isolates (9.2%) did not possess any of the tested Inc replicons or colicin-associated
genes. A total of 18 different plasmid types were identified among the beef cattle isolates,
of which the most common were IncFIB (AP001918) (23/37; 62.2%), IncFII (16/37; 43.2%),
IncFIC (FII) (8/37; 21.6%), and IncFIA, IncFII (pHN7A8), and IncI1-I (Alpha) (7/37; 18.9%,
each). Among the IncF plasmids found in beef cattle, a total of 14 distinct pMLSTs were
detected. A total of 8/37 beef cattle isolates (21.6%) did not contain any plasmids. The most
frequently occurring pMLST was F89:A-:B- (5/14; 35.7%), followed by F89:A-:B-, F95:A-:B-,
and F104:A-:B16 (3/14, 21.4% each). Among human isolates, the most commonly observed
pMLST were F29:A-:B10 (8/40; 20%), F-:A-:B- (5/40; 12.5%), and F51:A-:B10 (4/40; 10%)
(Table S1).
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Figure 4. Plasmid replicon profiles clustered on the basis of the Figure 1 SNP-based phylogenetic
tree composed of 141 Escherichia coli genomes isolated from beef cattle (n = 37), pig (n = 45), poultry
(n = 19), and human (n = 40) sources. Branches are coloured by clade and subclade according to the
legend. The remaining columns indicate: (1) isolate source, (2) isolate phylogroup, (3) isolate sequence
type, and (4) plasmid replicon detected in the isolate. The detected plasmids are clustered according
to their respective types, as follows: Col (7 plasmid replicons shown in dark green), IncB/O/K/Z
(1 plasmid replicon shown in yellow), IncF (13 plasmid replicons shown in blue), IncH (4 plasmid
replicons shown in light purple), IncL (2 plasmid replicons shown in dark blue), IncN (1 plasmid
replicon shown in dark red), IncQ (1 plasmid replicon shown in light green), IncR (1 plasmid replicon
shown in purple), IncX (3 plasmid replicons shown in dark brown), IncY (1 plasmid replicon shown
in light red), and p0111 (1 plasmid replicon shown in green).

2.5. Agreement between Plasmid Replicons and ARG Arrays

The most common plasmid replicons, IncFIB (AP001918) and IncFII, were co-associated
with high proportions of multiple ARGs representing several classes, indicating the likeli-
hood that these genes are co-located on specific dominant plasmids. These included the
aminoglycoside ARGs aph(3'')-Ib and aph(6)-Id, ß-lactam ARG blaTEM-1B, tetracycline ARGs
tet(A) and tet(B), and folate synthesis inhibitor ARGs dfrA5, sul2 and sul1 (Figure 5).
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Figure 5. Cross-tabulation heat map showing the degree of correlation between plasmid replicon
types and the presence of an antimicrobial resistance gene (ARG) for 141 isolates of Escherichia coli
isolated from beef cattle (n = 37), pig (n = 45), poultry (n = 19), and human (n = 40) sources. Plasmid
replicons are listed horizontally (total number identified in the 141 isolates is also indicated), whereas
the ARGs are listed vertically in their classes. The colour strips indicate the number of isolates (in
multiples of 5) exhibiting each particular plasmid/ARG match.

2.6. Virulence Genes

A total of 103 VGs were identified in the 141 isolates; each isolate carried between
1 and 37 VGs (Figure 6). Eighty isolates (56.7%) had ≥10 VGs, which were distributed
by phylogenetic group as follows: phylogroup B2 (29/141; 36.2%), B1 (13/141; 16.2%),
D (12/141, 15.0%), A (11/141; 13.7%), E (6/141; 7.5%), G (5/141; 6.2%), F (3/141; 3.7%),
and C (1/141; 1.2%). Isolates with the least VGs were mostly obtained from cattle and pigs
and distributed into phylogenetic groups A and B1, whereas isolates with the most VGs
associated with extraintestinal infection (as expected) were distributed into phylogenetic
groups B2 and D, predominantly sourced from humans and poultry.



Antibiotics 2023, 12, 895 9 of 17
Antibiotics 2023, 12, x FOR PEER REVIEW 11 of 20 
 

 

Figure 6. Virulence gene (VG) profiles clustered on the basis of the Figure 1 SNP-based phylogenetic tree composed of 141 Escherichia coli genomes isolated from 

beef cattle (n = 37), pig (n = 45), poultry (n = 19), and human (n = 40) sources. Branches are coloured by clade and subclade according to the legend. The remain-

ing columns indicate: (1) isolate source, (2) isolate phylogroup, and (3) isolate sequence type. The remaining columns refer to the presence (black) or absence 

(grey) of 103 specific VGs identified in the collection. 

 

Figure 6. Virulence gene (VG) profiles clustered on the basis of the Figure 1 SNP-based phylogenetic
tree composed of 141 Escherichia coli genomes isolated from beef cattle (n = 37), pig (n = 45), poultry
(n = 19), and human (n = 40) sources. Branches are coloured by clade and subclade according to the
legend. The remaining columns indicate: (1) isolate source, (2) isolate phylogroup, and (3) isolate
sequence type. The remaining columns refer to the presence (black) or absence (grey) of 103 specific
VGs identified in the collection.

3. Discussion

Whilst some international studies have suggested that food-producing animals can
be an important reservoir for virulent pathogens and their ARGs [29–31], other studies
are more equivocal in their findings [32,33]. Given Australia’s unique animal production
systems and their potential impact on the evolution of animal microbes in isolation from
the rest of the world, the aim of this study was to compare the antimicrobial/disinfectant
resistance, plasmid, and VG repertoires of commensal E. coli isolated from healthy beef
cattle (n = 37) from a single feedlot, in comparison to previously characterised pig faecal
(n = 45), poultry (n = 19), and human extraintestinal isolates (n = 40). This study had
three major findings. First, the phylogenic analyses revealed that most beef cattle isolates
clustered together with pig isolates in two main clades of related STs (within phylogroups
A and B1), while most poultry and human isolates clustered together in phylogroups
B2 and D. Second, while a significant proportion of beef cattle isolates carried plasmid-
encoded extended-spectrum cephalosporin resistance genes (7/37; 18.9%), further analysis
in comparison to human extraintestinal isolates suggested that they are of limited impact
to human health. Third, a significant number of the beef cattle E. coli isolates (10/37; 27%)
belonged to broad-host range ST10, including three isolates (30%) carrying genes encoding
resistance to extended-spectrum cephalosporins.

The phylogenetic tree derived from the SNPs showed that isolates from beef cattle and
pigs clustered together in phylogenetic groups (A and B1) not typically associated with
highly virulent extraintestinal infection, whereas most poultry and human isolates were
intermixed in separate clades in phylogroups B2 and D. This is consistent with previous
research on poultry and human E. coli isolates, which suggested that clinical isolates
from these sources share a high degree of genetic and pathotypic similarity, suggesting
frequent anthropozoonotic exchange [34–36]. Additionally, studies conducted in Europe
also confirmed that phylogroups A and B1 were most commonly represented by isolates
obtained from healthy chicken, cattle and pig faeces [37,38]. In the present study, a single
human extraintestinal isolate was identified as ST10; however, it was distinct from beef
cattle and pig isolates within this genetically diverse, broad host range clonal lineage, which
can be of clinical significance to human health [39].

The spread of pathogens that are resistant to third-generation cephalosporins is a
critical concern that has extended beyond hospital environments. In this study, the plasmid-
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encoded resistance gene blaTEM-1B, which confers resistance to ß-lactam antimicrobials such
as amoxicillin, was detected in 8/37 (21.6%) beef cattle isolates. Furthermore, the study
found plasmid-mediated blaCTX-M expanded-spectrum cephalosporin ARGs in 6/37 beef
cattle isolates (16.2%) and a blaCMY-2 AmpC ß-lactamase gene in an additional isolate. Con-
trary to this, a study conducted in South Africa, which analysed isolates obtained from
cattle faeces and raw beef samples, found a significantly higher prevalence of β-lactam
resistance genes, including blaTEM (85.5%), blaSHV (69.6%), and blaCTX-M (58.0%) [40]. In
the present study, the amplification of beef cattle-origin isolates carrying ESBL or AmpC
ß-lactamase ARGs in exit (4%) compared to entry (0.7%) samples may indicate that a propor-
tion of the beef cattle population acquire these ARGs during the feeding period, which may
be related to the reserve use of ceftiofur for bovine respiratory disease cases not responding
to first or second line therapy, or those occurring late in the feeding period [25]. A previous
study conducted in the United States found that administering ceftiofur to feedlot cattle
can result in a selective pressure that increases the level of blaCMY-2 carriage [41].

There is widespread evidence from various studies conducted globally documenting
the infrequent isolation of ESBL-producing E. coli in food animal populations such as
beef cattle, pigs, and poultry [42–44]. However, there is currently no concrete evidence
documenting the direct transmission of these bacteria from animals to humans via the
food chain [45]. However, previous studies conducted in pig and poultry industries have
reported a high level of ARG similarity between farmer-derived and animal-origin isolates,
indicating close and direct contact as an important transmission vector [46–52]. Although
the present study found blaCTX-M-15 in 3/40 (7.5%) human E. coli isolates, these appeared
to be unrelated to the contemporaneous animal-origin ESBL genes, especially given the
widespread use of ß-lactam antimicrobials in human medicine and the resulting selection
pressure for the evolution of antimicrobial-resistant bacteria.

In this study, 29.7% of beef cattle isolates were MDR, compared to 93.3% for pig, 47.4%
for poultry, and 60.0% for human isolates. Even though the pig isolates were selected
based on carriage of intl1, the higher proportion of multidrug resistance observed may
be due to the increased use of prophylactic antimicrobial agents in pig farms and the
management practices that facilitate the maintenance and dissemination of antimicrobial
resistance determinants in both the hosts and the farm environment compared to poultry
and cattle [53]. In this study, poultry isolates containing the intl1 gene were also selected.
Unlike the surveillance-derived pig isolates, these pathogenic poultry isolates showed a
lower level of multidrug resistance. This discrepancy might be attributed to the possibility
that pathogenic isolates could shed resistance genes in favour of virulence genes [54],
the clonal nature of some isolates in different hosts [55], and variations in management
practices and sample sizes [56]. By comparison, relatively low rates of multidrug resistance
were observed among the cattle isolates given that the prophylactic administration of
antimicrobial agents for bovine respiratory disease to large numbers of animals is rarely
practiced in Australia and did not occur during this study at the host feedlot [25].

The majority of ARGs detected in the present study were likely to be located on
conjugative plasmids belonging to different incompatibility groups [57–59]. Plasmids in
E. coli can contain multiple replicons that are known to mediate resistance to antimicrobials
and disinfectants as well as imparting increased virulence [60,61]. In this study, 64% of
beef isolates harboured more than two plasmid replicons compared to pig isolates (82%),
poultry (100%), and human (85%) isolates. The plasmid replicons IncFIB (AP001918) and
IncFII were found to be strongly associated with multiple classes of ARGs. These included
genes that confer resistance to ß-lactams (blaTEM-1B), aminoglycosides (aph(3'')-Ib and
aph(6)-Id), tetracycline (tet(A) and tet(B)), trimethoprim (dfrA5), and sulfamethoxazole
(sul2 and sul1). The RepFIB/FIIA plasmids are known to contain and transfer multidrug
resistance-encoding islands and VGs [62]. This highlights the potential of these plasmids to
spread AMR across bacterial populations and contribute to the increasing threat of AMR.
The plasmid IncFIB (AP001918) was also reported to be the most common replicon in E. coli
isolated from pig, poultry, and human isolates [31,63,64]. The IncF plasmids (IB and II) are
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known to contain ARGs, such as the ß lactamase genes blaTEM-1B, blaCMY-2, and blaOXA-1, and
those encoding resistance to sulfonamides and trimethoprim (dfrA8, strA, strB, and sul2), as
well as the tetracycline resistance genes tet(A) and tet(B) [65–68]. Whilst previous studies
have shown that plasmid replicons can be shared among E. coli isolated from humans and
food animals [65], the present study showed that both the frequency and heterogeneity
of ARGs and plasmids were much lower in beef cattle isolates compared to pig, poultry,
and human isolates, thus confirming that feedlot beef cattle from this study population
represent reduced AMR risk to public health and the environment within Australia.

The increased detection of E. coli that are resistant to extended-spectrum β-lactam
antimicrobials has been linked to the dissemination of international high-risk clones, such
as ST10, ST38, ST69, ST73, ST115, ST117, ST131, ST354, ST410, ST457, ST517, ST648, ST711,
and ST1193, in animals and humans [69,70]. In this study, the three most common STs
found in beef cattle isolates were ST10 (10/37; 27.0%), ST278 (7/37; 19.0%), and ST109 (2/37;
5.4%). As a cause of human blood stream infections, ST73 (9/40; 22.5%), ST95, and ST131
(7/40; 17.5, each) predominated, whereas among pig isolates ST361 (4/45; 8.9%) and ST48
and ST398 (3/45; 7.5% each) predominated, while among poultry isolates ST 117 (5/19;
26.3%) and ST57 and ST350 (2/19; 10.5%) were most frequently observed. The clonally
diverse group ST10, which belongs to phylogenetic group A, is known to have a broad
host range and can be found in a variety of hosts, including humans, animals, and the
environment [14]. In the present study, the clonal complex ST10 was identified as the most
common lineage among the beef cattle isolates, with a prevalence of 27.0% compared to
4.4% in pigs and 2.5% in humans. Similarly, ST10 was the most commonly identified isolate
from commercial beef cattle farms in the United States and in isolates from the Australian
beef cattle population at slaughter [44,71]. The CC10 E. coli has been reported to carry
ARGs and can sometimes cause infections in dogs, humans, and pigs [39,72]. However,
the transmission of AMR from food animals to humans (and vice versa) is still not fully
understood. Some research has reported direct contact with animals as a potential source
of transmission for zoonotic bacteria, such as ESBL-producing E. coli, while other studies
suggest the transmission is more likely to occur from humans to animals [73–75]. However,
the fact that only a single human clinical isolate in the present study belonged to ST10
indicates that in Australia it is not a significant opportunistic human pathogen regardless
of host source.

This study had some limitations. Firstly, the study included seven ESBL-producing
E. coli isolated from beef cattle using selective media. However, it is important to note that
the use of selective media could have introduced a selection bias in amplifying these ESBL-
producing E. coli isolates, which would not normally be selected as the most common colony
type on less inhibitory agar. Secondly, the E. coli data from pigs, poultry, and humans used
in the study were obtained from a universal database as secondary information; ideally,
the studies should have been prospective in design and more synchronised. Thirdly, E. coli
isolates obtained from pigs and poultry were selected on the basis of possessing Class
1 integrons, which is considered as an indication of having an antimicrobial resistance
genotype, whereas most of the beef cattle isolates were selected on the basis of being
resistant to one or more antimicrobials from a previous study [26]. Fourthly, the limited
sample size, particularly the availability of only 19 poultry isolates that met the selection
criteria for comparison, may not be as representative of larger populations; ideally more
isolates would have provided firmer conclusions. Lastly, the short-read sequencing data
analysed in this study did not allow for the identified ARGs and virulence genes to be
mapped to specific plasmids, which requires long read sequencing [76,77].

4. Materials and Methods
4.1. Whole Genome Sequencing and Phylogenetic Analysis

The current study was a follow-up to previous work focused on determining the
prevalence of antimicrobial resistance among rectal E. coli isolates obtained at entry to
and exit from an Australian beef cattle feedlot [28]. A total of thirty-three E. coli isolates
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determined to be resistant to at least one antimicrobial (including seven that were resistant
to extended-spectrum β-lactams isolated from ESBL selective agar rather than MacConkey
agar), together with four E. coli isolates that were susceptible to all tested agents, were
randomly selected in the study. DNA extraction, whole genome sequencing (WGS), and
genomic assembly have been described in our previously published research [28]. Raw
genomic sequences were deposited in the NCBI under BioProject PRJNA844571. The whole-
genome sequenced commensal E. coli isolated from beef cattle (n = 37; this study) were
compared with retrieved genomic data from three previous studies undertaken in Australia.
These included: (i) 45 E. coli isolates carrying the Class 1 integrase gene (intI1) isolated
from sows and their offspring at a commercial pig breeding operation (accession number
PRJNA509690) [78]; (ii) 19 avian pathogenic E. coli isolates that also carried intI1, which
were originally obtained from post-mortem lesions from deceased or culled birds with
signs of an APEC infection at different poultry operations in Australia (accession number
PRJNA479542) [79]; and (iii) 40 E. coli isolates from bloodstream infections in humans in
Australia (accession number PRJNA480723) [80]. Assembled sequences with less than 30x
coverage and fewer than 25,000 SNPs were excluded from further analysis.

Genetic relationships between isolates were examined using single nucleotide poly-
morphism (SNPs) found from cleaned WGS reads mapped to an E. coli complete genome
(NCBI Assembly Accession: BA000007.3). The software Snippy v4.6.0 (https://github.
com/tseemann/snippy (accessed on 11 September 2022)) was used to call core SNPs, i.e.,
SNPs that can be determined in all isolates. A maximum likelihood (ML) tree was con-
structed with RAxML v8.2.10 using the model GTRCAT and a rapid bootstrap analysis
with 100 bootstraps for the best scoring ML tree [81]. This was followed by recombination
removal using ClonalFrameML v1.12 [82]. The final phylogenetic tree and heat map were
manipulated with iTOL (https://itol.embl.de/ (accessed on 11 September 2022)) for dis-
play [83]. A heat map illustrating the presence or absence of each trait for each isolate was
created to assess all data elements for all isolates.

4.2. Determination of Genotypes, Antimicrobial Resistance Genes, and Virulence Genes

Multilocus sequence type (MLST) and phylogenetic group were determined using
MLST 2.0 [84] and ClermonTyping [85], respectively. To identify ARGs, we used ResFinder
4.0 [86]. To further pinpoint the chromosomal point mutations associated with AMR, we
used PointFinder [87]. The input to start search in ResFinder and PointFinder was the
assembled E. coli genome. Additionally, AMR genes were predicted using the Antibiotic
Resistance Genes Database (ARDB) and the Comprehensive Antibiotic Resistance Database
(CARD) [88]. PlasmidFinder was used with a minimum identity of 95% and coverage
of 60% to detect plasmid replicons, while pMLST 2.0 was employed to perform plasmid
multi-locus sequence typing [89]. Virulence genes were identified using VirulenceFinder
2.0 [90,91]. IntegronFinder was utilized to identify integrons and their unique components
(accessed on 28 March 2023) [92] and confirmed using BLAST with a minimum identity of
95% (https://blast.ncbi.nlm.nih.gov/Blast/ (accessed on 28 March 2023)) [93].

4.3. Statistical Analyses

Categorical measured traits including ARGs, disinfectant resistance genes, the pres-
ence of plasmid replicons, and VGs were converted into numerical code with 1 indicating
presence and 0 indicating absence. The resistance profile was categorised as MDR if the
isolate exhibited resistance to one or more antimicrobials in three or more antimicrobial
classes [94]. AMR and disinfectant gene frequencies were described as rare: <0.1%; very
low: 0.1% to 1.0%; low: >1% to 10.0%; moderate: >10.0% to 20.0%; high: >20.0% to 50.0%;
very high: >50.0% to 70.0%; and extremely high: >70.0%, according to the European Food
Safety Authority (EFSA) and the European Centre for Disease Prevention and Control
(ECDC) [95].

https://github.com/tseemann/snippy
https://github.com/tseemann/snippy
https://itol.embl.de/
https://blast.ncbi.nlm.nih.gov/Blast/
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5. Conclusions

This study highlighted the relative abundance of ARGs (to both antimicrobials and dis-
infectants), plasmid replicons, and virulence-associated genes in commensal E. coli isolated
from Australian beef cattle in comparison to additional commensals and extraintestinal
pathogens isolated from food-producing animals (pigs and poultry, respectively) and ex-
traintestinal pathogens from humans. The results confirmed that beef cattle represent a
reduced risk to public health and the environment given that most isolates belonged to
phylogenetic groups typically associated with commensal bacteria. Whilst a significant
proportion of beef cattle isolates were ESBL/AmpC producing E. coli (some of which be-
longed to broad host range ST10), there was limited evidence that these higher risk clones
are problematic in human medicine in Australia.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antibiotics12050895/s1, Table S1. Prevalence of antimi-
crobial resistance genes, pMLST, and Class 1 integrase gene in E. coli isolated from beef cattle, pig,
poultry, and human.
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