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Abstract: A major problem of our time is the ever-increasing resistance to antimicrobial agents
in bacterial populations. One of the most effective ways to prevent these problems is to tar-
get antibacterial therapies for specific diseases. In this study, we investigated the in vitro effec-
tiveness of florfenicol against S. suis, which can cause severe arthritis and septicemia in swine
herds. The pharmacokinetic and pharmacodynamic properties of florfenicol in porcine plasma
and synovial fluid were determined. After a single intramuscular administration of florfenicol at
30 mg/kgbw, the AUC0–∞ was 164.45 ± 34.18 µg/mL × h and the maximum plasma concentration
was 8.15 ± 3.11 µg/mL, which was reached in 1.40 ± 0.66 h, whereas, in the synovial fluid, these
values were 64.57 ± 30.37 µg/mL × h, 4.51 ± 1.16 µg/mL and 1.75 ± 1.16 h, respectively. Based
on the MIC values of the 73 S. suis isolates tested, the MIC50 and MIC90 values were 2 µg/mL and
8 µg/mL, respectively. We successfully implemented a killing–time curve in pig synovial fluid as
a matrix. Based on our findings, the PK/PD breakpoints of the bacteriostatic (E = 0), bactericidal
(E = −3) and eradication (E = −4) effects of florfenicol were determined and MIC thresholds were
calculated, which are the guiding indicators for the treatment of these diseases. The AUC24h/MIC
values for bacteriostatic, bactericidal and eradication effects were 22.22 h, 76.88 h and 141.74 h,
respectively, in synovial fluid, and 22.42 h, 86.49 h and 161.76 h, respectively, in plasma. The critical
MIC values of florfenicol against S. suis regarding bacteriostatic, bactericidal and eradication effects in
pig synovial fluid were 2.91 ± 1.37 µg/mL, 0.84 ± 0.39 µg/mL and 0.46 ± 0.21 µg/mL, respectively.
These values provide a basis for further studies on the use of florfenicol. Furthermore, our research
highlights the importance of investigating the pharmacokinetic properties of antibacterial agents at
the site of infection and the pharmacodynamic properties of these agents against different bacteria in
different media.
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1. Introduction

Antimicrobial resistance (AMR) is one of the leading health issues of our time, in
human and veterinary medicine alike. This is underlined by the increasingly stringent
regulation of the use and consumption of antibacterial agents [1]. In addition to the time-
consuming and costly development of new antibacterial agents, the other solution is the
repositioning of already authorized agents for new, different indications. In this case,
a good method may be to use pharmacokinetic/pharmacodynamic (PK/PD) analysis [2].
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Florfenicol is an example of why the accurate dose and time interval of the treatment for
different indications should be determined, as it has been shown to promote the selection
of florfenicol-resistant Escherichia coli strains in the microbiota despite high concentrations
in the pig gastrointestinal tract [3].

Florfenicol, a member of the phenicol group, is a broad-spectrum antibacterial agent
with a bacteriostatic mode of action, which is achieved by binding to the 50S subunit of the
ribosome via inhibition of the enzyme peptidyl transferase [4–8]. It is widely used in the pig
industry to treat respiratory diseases caused by Pasteurella multocida, Actinobacillus pleurop-
neumoniae, Mycoplasma hyopneumoniae, M. hyorhinis, Glässer-disease caused by Glaesserella
parasuis and septicemia, polyserositis, meningitis and arthritis caused by Streptococcus
suis. Furthermore, it is also used to treat bovine, sheep, goats, poultry and fish [5,9–23].
Although most products containing florfenicol are not authorized for diseases caused by
S. suis in the European Union, studies to date have demonstrated its efficacy in septicemia
caused by S. suis [23–25].

In order to provide data for the use of florfenicol in additional diseases caused by
S. suis, the pharmacokinetic (PK) properties of florfenicol at the site of infection need to
be investigated [26,27]. The pharmacokinetics of florfenicol in pigs have already been
investigated in plasma and the lung. The pharmacokinetic properties of florfenicol vary
widely between individual pigs [28]. Overall, it has excellent absorption and distribution
in the pig body system, with a very low binding to plasma protein [24,28–32]. In a previous
study, we investigated the pharmacokinetics of florfenicol in pig synovial fluid at a dose
of 15 mg/kgbw following a single intramuscular administration. Based on this, it was
concluded that florfenicol can only be used to treat arthritis caused by S. suis in pig if the
minimum inhibitory concentration (MIC) of S. suis is less than or equal to 1.42 µg/mL [23].
In addition to the pharmacokinetic parameters, it is very important to continuously monitor
the sensitivity of S. suis strains against florfenicol [26] because most studies show that the
susceptibility of S. suis to florfenicol is not always as clear, as indicated by the MIC50 and
MIC90 values of 2 µg/mL or lower in almost all countries, which is the breakpoint set by
Clinical and Laboratory Standards Institute [15,16,22–25].

Similar studies needed to use PK/PD analysis to determine the dose and duration of
florfenicol treatments and the time interval between two drug administrations as accurately
as possible.

In a previous study, we investigated the PK of florefnicol in pig plasma and synovial
fluid at a dose of 15 mg/kgbw following a single intramuscular administration, in which the
results were inconclusive and we could not conclude that florfenicol can be recommended
for the treatment of pig arthritis caused by S. suis in the approved dosage regimen. The
aim of the present study was to determine the plasma and synovial PK of florfenicol at
a dose of 30 mg/kgbw following a single intramuscular injection; thus, at a dose higher
than the approved dosage regimen. In addition, the in vitro efficacy of florfenicol against
S. suis bacteria isolated from clinical lesions in Hungary was investigated using PK/PD
analysis. Moreover, our aim was to test the efficacy of florfenicol against S. suis strains
in an in vitro experiment, characterized, in this case, by synovial fluid. For this purpose,
we prepared killing curves of an S. suis isolate (SS96) in pig synovial fluid, plasma and
cation-adjusted Mueller–Hinton broth (CA-MHB).

2. Results
2.1. Pharmacokinetics of Florfenicol

Pharmacokinetic parameters were computed via non-compartmental analysis from
plasma and synovial fluid concentration data for 8 pigs. Florfenicol was administered
intramuscularly at a single injection of 30 mg/kgbw. Table 1 presents mean PK parameters
and standard deviation. The semi-logarithmic plasma and synovial fluid concentration–
time curves of florfenicol after single i.m. administration of 30 mg/kgbw are illustrated
in Figure 1. The mean Cmax of 8.15 ± 3.11 µg/mL in plasma was achieved with a Tmax
of 1.40 ± 0.66 h. Florfenicol reached peak concentration in the synovial fluid more slowly
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after i.m. administration, and the Cmax 4.51 ± 1.16 µg/mL was achieved in 1.75 ± 1.16 h.
The mean plasma and synovial fluid AUC24h following i.m. administration of florfenicol
were 102.91 ± 19.90 µg/mL × h and 41.90 ± 16.93 µg/mL × h, respectively.

Table 1. Plasma and synovial fluid PK parameters (mean ± SD) of florfenicol (Nuflor) in pigs
following intramuscular administration of 30 mg/kgbw (n = 8).

PK Parameters Units Plasma Synovial Fluid

Cmax µg/mL 8.15 ± 3.11 4.51 ± 1.16

Tmax h 1.40 ± 0.66 1.75 ± 1.16

T1/2 h 18.19 ± 11.40 12.27 ± 7.45

AUC24h µg/mL × h 102.91 ± 19.90 41.90 ± 16.93

AUC0–∞ µg/mL × h 164.45 ± 34.18 64.57 ± 30.37

Cl/F L/h/kg 0.19 ± 0.04 0.59 ± 0.32

MRT0–∞ h 25.56 ± 15.53 21.16 ± 12.21
Cmax: maximum plasma and synovial fluid concentrations; Tmax: time to peak plasma and synovial fluid
concentrations; T1/2: terminal elimination half-life; AUC24h: area under the curve for 24 h; AUC0–∞: area under
the curve from zero time to infinity; AUC24hss: area under the curve in steady-state conditions over 24 h; Cl/F:
drug clearance scaled by bioavailability; MRT0–∞: mean residence time.
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Figure 1. Semi-logarithmic plot illustrating the concentration–time curve of florfenicol in plasma and
synovial fluid samples of pigs after a single i.m. administration of 30 mg/kgbw (n = 8).

2.2. MIC of Florfenicol against S. suis

The florfenicol susceptibility of 73 S. suis isolates from pigs is summarized in Figure 2.
The MIC50 and MIC90 were determined from the MIC values of 73 S. suis clinical isolates
against florfenicol. According to the EUCAST [33] (The European Committee on Antimicro-
bial Susceptibility Testing) ECOFF (epidemiological cut-off) value (≤4 µg/L), 78.08% (57) of
the S. suis isolates were wild-type, whereas 21.92% (16) were considered as non-wild-type
to florfenicol. The CLSI breakpoints, however, indicate that 57.53% (42) of S. suis isolates
are susceptible, 20.55% (15) are intermediate and 21.92% (16) are resistant to florfenicol.
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Figure 2. Minimum inhibitory concentration (MIC) distribution of florfenicol against S. suis in
Hungary between 2018 and 2022 (n = 73).

2.3. PK and PD of Florfenicol after i.m. Administration of 30 mg/kgbw to Eight Healthy Pigs

The AUC/MIC50 and AUC/MIC90 values were calculated based on the AUC24h values
determined in the plasma (102.91 ± 19.90 µg/mL × h) and synovial fluid
(41.90 ± 16.93 µg/mL × h) of eight pigs for 24 h and the MIC50 and MIC90 values (2 µg/mL,
8 µg/mL) of 73 S. suis isolates. The AUC/MIC50 and AUC/MIC90 values in pig plasma
were 51.45 ± 9.95 h and 12.86 ± 2.49 h, respectively. The AUC/MIC50 and AUC/MIC90
values in pig synovial fluid were 20.95 ± 8.47 h and 5.24 ± 2.12 h, respectively.

2.4. In Vitro Killing–Time Curves of Florfenicol against S. suis 96 Strain in Three Different Media
(Pig Synovial Fluid, Pig Plasma, CA-MHB)

The MIC values of the investigated SS96 S. suis strain against florfenicol were 2 µg/mL,
2 µg/mL and 2 µg/mL in pig synovial fluid, pig plasma and CA-MHB, respectively. There
was no difference between MIC values in different media. In all three media, a 3 log10
bacterial count decrease was achieved after 4 h at concentrations of 8 µg/mL and 16 µg/mL
of florfenicol. The bacterial count reduction was 1 log10 or more when the concentration of
florfenicol was greater than 2 µg/mL. The in vitro killing–time curves of florfenicol against
SS96 S. suis strains in three different media are shown in Figure 3.
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2.5. PK/PD Integration

The relationship between synovial fluid AUC24h/MIC and the reduction in bacterial
counts is shown in Figure 4. The AUC24h/MIC values required to result in a bacteriostatic
effect were 22.22 h, 22.42 h and 14.21 h for florfenicol in synovial fluid, plasma and CA-
MHB, respectively, as shown in Table 2. The corresponding values for bactericidal (E = −3)
activity were 76.88 h, 86.49 h and 163.16 h, respectively. AUC24h/MIC values for bacterial
eradication (E = −4) were higher in synovial fluid and plasma at 141.74 h and 161.76 h,
respectively, whereas, in CA-MHB, florfenicol did not reach this level even at the highest
concentration (16 µg/mL).
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Table 2. PK/PD breakpoints determined from the sigmoidal Emax inhibition equation in porcine
synovial Fluid, plasma and CA-MHB.

Parameters Units Synovial Fluid Plasma CA-MHB

Log Emax CFU/mL −8.00 ± 1.00 −6.76 ± 1.71 −6.89 ± 2.63

Log EC50 h 34.99 ± 7.10 46.80 ± 16.94 45.28 ± 47.16

Log E0 CFU/mL 2.87 ± 0.36 1.77 ± 0.50 2.02 ± 0.43

Gamma - 1.28 ± 0.27 1.41 ± 0.58 0.76 ± 0.33

AUC24h/MIC for
bacteriostatic effect

(E = 0)
h 22.22 22.42 14.21

AUC24h/MIC for
bactericidal effect

(E = −3)
h 76.88 86.49 163.16

AUC24h/MIC for
4 log10 reduction

(E = −4)
h 141.74 161.76 - *

Emax = maximum (response) killing capacity, EC50 = in vitro concentration of florfenicol capable of half the
maximum killing capacity expressed in hours, E0 = initial bacterial viable cell count, Gamma = Hill coefficient
(slope of the curve).* Florfenicol did not reach this level even at the highest concentration (16 µg/mL).

2.6. Critical MIC Values of Florfenicol against S. suis Bacteriostatic, Bactericidal and
Eradication Effects

Dividing the AUC24hss values calculated for eight pigs by the AUC24h/MIC break-
points ratios gives the concentrations as MIC values, which can result in bacteriostatic,
bactericidal and eradication effects in synovial fluid and plasma. Numerically, they were
2.91 ± 1.37, 0.84 ± 0.39 and 0.46 ± 0.21 for S. suis in synovial fluid and 7.34 ± 1.52,
1.90 ± 0.40 and 1.02 ± 0.21 in plasma, respectively (Table 3).

Table 3. Critical MIC values of florfenicol against S. suis regarding bacteriostatic, bactericidal and
eradication effects in pig synovial fluid and plasma.

Effect Unit Synovial Fluid Plasma

Bacteriostatic µg/mL ≤2.91 ± 1.37 ≤7.34 ± 1.52

Bactericidal µg/mL ≤0.84 ± 0.39 ≤1.90 ± 0.40

Eradication µg/mL ≤0.46 ± 0.21 ≤1.02 ± 0.21

3. Discussion

Florfenicol is characterized by a high lipid solubility and low protein binding, the latter
being less than 15% in pig plasma, which results in a high Vd value for florfenicol [34,35].
The pharmacokinetics of florfenicol have been extensively studied in pigs; however, apart
from our previous study, the concentration of florfenicol in synovial fluid has not yet been
determined [23]. Our results regarding plasma florfenicol data are similar to previous
studies. The maximum plasma concentration of florfenicol administered intramuscularly
at a dose of 15 mg/kgbw was 3.04 ± 1.82 µg/mL, reached in 1.94 ± 0.87 h, which is almost
identical to the results of our previous study, where Cmax and Tmax were 3.58 ± 1.51 µg/mL
and 1.64 ± 1.74 h, respectively, in porcine plasma, whereas, in synovial fluid, they were
2.73 ± 1.2 µg/mL and 3.4 ± 1.67 h, respectively [23,32]. Following the intramuscular
administration of florfenicol at a dose of 20 mg/kgbw, the maximum plasma concentration
was 7.3 ± 6.0 µg/mL, which was reached in 2.3 ± 1.2 h [31]. In the present study, florfenicol
was administered intramuscularly at a dose of 30 mg/kgbw, after which the Cmax and
Tmax were 8.15 ± 3.11 µg/mL, which was reached in 1.40 ± 0.66 h. Here, the Cmax is
higher than in a similar study, where the Cmax after application of the same dose was
4.44 ± 1.02 µg/mL [24]. All of this suggests that florfenicol is rapidly absorbed from the
site of administration and rapidly distributed throughout the pig body system, including
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the synovial fluid. It can be clearly seen that higher values are also obtained in the synovial
fluid following the administration of higher doses. Following administration at a dose of
30 mg/kgbw, the Cmax, AUC0–∞ and Tmax were 4.51 ± 1.16 µg/mL, 64.57 µg/mL × h and
1.75 ± 1.16 h, respectively. Figure 1 shows that lower concentrations are measured in the
synovial fluid after the intramuscular administration of florfenicol compared to the first and
fourth hours, which can be explained by the flip-flop kinetics of florfenicol, as the vehicle
delays the absorption of the drug after intramuscular and subcutaneous administration.

Regarding the area under the concentration–time curve, florfenicol reaches higher
values in plasma than in the synovial fluid, as already described in our previous publication;
however, here, it is also valid at a higher dose. Since it has been shown in horses that, in
acute arthritis, greater drug concentrations are achieved in synovial fluid than in healthy
joints, we can assume that this is also the case in the synovial fluid of pigs [36].

In the present study, MIC values of 73 S. suis isolates were determined and the MIC50
and MIC90 were calculated. Among these values, the MIC50 is the same as the MIC50 value
determined in a previous study, whereas the MIC90-values are closer to the results of studies
conducted in other countries based on the results of our present study [16,37,38]. Although,
in an Italian study, only 3% of 78 S. suis strains were resistant based on the CLSI breakpoint,
in our study, 16% of 73 S. suis strains were resistant to florfenicol [39]. The susceptibility of
S. suis to antibacterial agents is influenced by many factors, so continuous monitoring is
recommended, even on a farm-by-farm basis, which is mandatory under current legislation,
as antibacterial therapy can be used based on prior antibiotic susceptibility testing.

In the present study, we were the first to grow S. suis bacteria in pig synovial fluid
and to implement an in vitro killing–time curve, the results of which will help to refine
treatment protocols for arthritis caused by S. suis strains with florfenicol. The matrix effect,
supported by several studies, could not be demonstrated in this study, as the MIC value
of SS96 (2 µg/mL) was the same in all three media (synovial fluid, plasma, CA-MHB).
The difference between the three media was observed in the failure to achieve the 4 log10
bacterial count reduction in the CA-MHB, even with the highest concentration of florfenicol
(16 µg/mL). As no killing–time curve has been performed in synovial fluid before, our
data could not be compared with other studies. Our data in plasma and in CA-MHB differ
from the results of a previous study in which the AUC24h/MIC values for the bacteriostatic
(E = 0), bactericidal (E = −3) and eradication (E = −4) effects of florfenicol determined ex
vivo were 37.89 ± 4. 25 h, 44.02 ± 4.85 h and 46.42 ± 6.45 h in pig serum [24]. We obtained
lower values for the bacteriostatic effect in all three media, whereas higher values were
obtained for the bactericidal and eradication effects. The reasons for the difference may
be that the two studies did not use the same S. suis strains, or that Lei at al. [24] used
tryptic soy broth whereas we used CA-MHB. The differences in plasma could be due to the
presence of antibodies. The importance of these studies is to characterize the behavior of
the bacteria in the medium, with which in vitro models can be built at the site of infection.
Modeling the site of infection will provide a basis for refining the use of antibiotics and
thus increasing the effectiveness of treatments [40].

Based on the results of our present study, a bacteriostatic effect of florfenicol in swine
arthritis caused by S. suis can be achieved below MIC values of 2 µg/mL, whereas, for
septicemia, an MIC value of 7 µg/mL is recommended as a threshold value. A bactericidal
effect can be expected if the MIC value for S. suis strains in arthritis is ≤0.8 µg/mL or in
septicemia is ≤1.9 µg/mL in plasma. The critical MIC values for the eradication effect in
arthritis and septicemia are ≤0.46 µg/mL and ≤1 µg/mL, respectively. It is important to
note that these thresholds do not apply after intramuscular administration at the autho-
rized dose of 15 mg/kgbw, but after a single intramuscular administration at the dose of
30 mg/kgbw used in our study, in which case, as we are deviating from the instructions for
use, it is now the responsibility of the veterinarian to determine the withdrawal period,
which should be taken into account for all therapies. On the basis of the known MIC values,
our previous studies and other studies [23,24], we believe that florfenicol has a place in
the treatment of swine arthritis caused by S. suis, but it would be worthwhile to perform
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further pharmacokinetic studies in an infection model and to confirm the results of the
studies performed so far with clinical trials.

4. Materials and Methods
4.1. Experimental Animals and Design

In this study, we used 8 male pigs (Danish Landrace × Danish Yorkshire × Danish
Duroc) with an average body weight (BW) of 28.93 ± 3.64 kg. In pig herds, clinical cases are
most common between 4–8 weeks of age [41]. In our study, piglets were selected at 11 weeks
of age, as this is also the age at which S. suis arthritis is most likely to occur, as maternal
antibodies are certainly depleted. The animals were purchased from a local commercial pig
farm in Hungary. The animals had not received any antimicrobial treatment prior to the
experiment and were vaccinated against porcine circovirus 2 at 4 weeks of age. They were
kept at 22–23 ◦C with adequate ventilation conditions, the relative humidity was 70% and
the number of hours of light and darkness was 12 h each. Standard commercial feed and
drinking water were provided ad libitum without medication prior to the experiment and
no medication other than florfenicol was given to the pigs during the experiment. The pigs
arrived at the experimental place a week earlier and did not show any clinical signs during
this time, so it can be said that the investigation was carried out on clinically health animals.
The study was authorized by the Local Animal Welfare Committee of the University of
Veterinary Medicine, Budapest, and by the Government Office of Pest County, Food Chain
Safety, Plant Protection and Soil Conservation Directorate, Budapest, Hungary (admission
No. PE/EA/00367-6/2022).

Florfenicol (Nuflor injection A.U.V., Intervet International B.V., Boxmeer, Netherlands)
was administered intramuscularly at a dose rate of 30 mg/kgbw. The drug was administered
to the left neck muscles of the pigs after blind samples were taken. Subsequently, blood
samples were then taken at the following times: 10, 20, 30, 40, 50, 60 min, 2, 3, 4, 5, 6, 7,
8, 10, 12, 24, 48 and 72 h, while synovial fluid samples were taken at the following time
points: 1, 2, 3, 4, 8, 12, 24, 48 and 72 h. Blood samples were collected from the cranial
vena cava of the animals using a 21 G × 2” needle and lithium heparin blood tube, and
the blood samples were centrifuged at 1482× g for 10 min after sampling. For synovial
fluid sampling, joint puncture was performed in the carpal and tarsal joints in continuous
rotation using a 22 G × 1 1/2” needle and 1 mL syringe. Samples were stored in low binding
tubes at −80 ◦C until analysis.

4.2. Tandem Mass Spectrometry Analysis

Florfenicol was quantitated on the basis of the method published earlier [23]. Briefly:
a Sciex 6500QTrap tandem mass spectrometer (Sciex, Framingham, MS, USA) was used in
multiple reaction monitoring (MRM) mode, where the quantifier and qualifier transitions
were 358.2/241 and 358.2/170, respectively. The mass spectrometer was operated in
electrospray ionization with spray voltage of 5000 V. An Agilent 1100 HPLC system was
coupled to the MS. A Kinetex XB C18 (50_2.1 mm, 2.6_m) column (Phenomenex) was
applied for the separation by using water and acetonitrile, both containing 0.1% formic
acid, in gradient mode. Five-point calibration model was applied. Analyst 1.6.3 software
was used for data processing and controlling the measurements.

4.3. Pharmacokinetic Analysis

A non-compartmental pharmacokinetic analysis was used to determine the pharma-
cokinetic parameters of florfenicol in plasma and synovial fluid. The maximum drug
concentration (Cmax) and the time of onset of maximum drug concentration (Tmax) were
computed. The area under the 24 h concentration–time curve (AUC24h) and the area un-
der the infinity extrapolated curve (AUC0–∞) were determined using a linear trapezoidal
method. The half-life (T 1

2
), total body clearance (Cl/F) and mean residence time (MRT∞)

were computed. For florfenicol, binding to plasma protein in pig was below 5% as it is
negligible, so binding to plasma proteins was not considered [34,35,42]. Pharmacokinetic
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calculations and statistical analysis were performed using the Phoenix WinNonLin 8.3
software (Certara, Princeton, NJ, USA).

4.4. Minimum Inhibitory Concentration

The antibiotic susceptibility to florfenicol of 73 S. suis isolates from clinical samples
of pig origin in Hungary were determined by broth microdilution method according to
the CLSI (Clinical and Laboratory Standards Institute) description [43]. The isolation of
S. suis was performed in 2022. The isolates were collected from Hungarian pig farms, each
isolated from clinical lesions of dissected pigs. In each case, the samples were taken from
untreated pigs.

The broth microdilution method was performed using CA-MHB (Mueller–Hinton
Broth 2, Merck KGaA, Darmstadt, Germany). The isolates were stored at −80 ◦C and
incubated in the presence of 5.0% CO2 at 37 ◦C for 24 h as recommended before broth mi-
crodilution method. After incubation, for the determination of the germ count, the bacterial
suspensions were centrifuged at 3000× g for 10 min, washed in sterile physiological saline
(Salsol solution infusion, TEVA Gyógyszergyár Zrt., Debrecen, Hungary), centrifuged again
at 3000× g for 10 min and finally resuspended in physiological saline. The optical density
of the suspensions at 600 nm was set to 0.1 (OD600 = 0.1), with the appropriate amount of
physiological saline, which corresponded to 108 colony forming units (CFU)/mL bacterial
density and a standard of 0.5 on the MacFarland scale. A suspension of 5 × 105 CFU/mL
was prepared with a 200-fold dilution. The germ count of the suspensions was tested
with inoculation to blood agar plates and counting the number of CFUs. The sensitivity of
S. suis isolates to florfenicol was tested by the broth microdilution method in the range of
32 µg/mL to 0.0625 µg/mL. Each isolate was included in the investigation with positive
and negative control wells. This was followed by incubation period, and then the MIC val-
ues were read. This was the lowest concentration where no bacterial growth was detected.
MIC50 and MIC90 values were computed as the MIC that inhibited the growth of 50% and
90%, respectively, of the isolates in different clusters. Determination of MIC and calculation
of MIC50 and MIC90 were performed according to CLSI.

4.5. PK and PD of Florfenicol

PK/PD indices, calculated individual 8 pigs’ PK values of florfenicol after i.m. ad-
ministration of 30 mg/kgbw and MIC50- and MIC90-values of 73 S. suis isolates were:
AUC24h/MIC50, AUC24h/MIC90. Among the PK/PD relationships, AUC/MIC was se-
lected as it better describes the clinical efficacy of long-acting formulations [44,45]. Since, in
veterinary medicine, the AUC/MIC is not always projected to 24 h, we consider that, in
this case, it is appropriate to use the unit h to denote this value [2].

4.6. In Vitro Model of Pig Synovial Fluid

To investigate the efficacy of florfenicol, an in vitro pig synovial fluid model was
established and implemented as follows. Synovial fluid samples for bacterial growth
were collected within 24 h prior to experiments from clinically healthy and untreated pigs.
During the sampling, the skin surface of the joints was properly prepared, i.e., disinfected
after shaving the hair, and then sampled for synovial fluid as described above. The syringes
were then transported cooled at 4 ◦C and the needles were removed from syringes under
laboratory conditions under laminar box to avoid contamination of the synovial fluid.
Subsequently, 10 µL of each sample was inoculated on blood agar plate (Bak-Teszt Kft.,
Budapest, Hungary) and incubated at 37 ◦C for 18–24 h to check the sterility of the synovial
fluids. Under the laminar box, the samples were individually placed in sterile tubes and
stored at 4 ◦C until the start of the experiment. In the case where the synoval fluid was
frozen (−20 ◦C), we observed a strong gelation, rendering the synovial fluids unsuitable
for further investigation.

Before starting the experiment, we checked the blood agar results and included only
those synovial fluid samples that were sterile; then these samples were in the ratio of 9:1
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with sterile physiological saline, with the exception of the control (0 µg/mL florfenicol)
sample, in order to inject the appropriate amount of florfenicol to form a two-fold dilution
(0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 µg/mL) and to facilitate handling of the synovial fluid.
These solutions were used to set up the killing–time curve.

4.7. Killing–Time Curve In Vitro

In order to generate the killing–time curves, we used an isolate of S. suis SS96, which
was isolated from pig arthritis. Its MIC was determined in both pig serum and pig synovial
fluid. The growth of the SS96 isolate was tested in florfenicol-free CA-MHB, pig serum and
pig synovial fluid, which were the controls in the study, and the efficacy of florfenicol was
also tested in the same media at the following concentrations: 0.125, 0.25, 0.5, 1.0, 2.0, 4.0,
8.0 and 16.0 µg/mL. Prior to the test, SS96 isolate was incubated in CA-MHB for 18 h in
ambient air at 37 ◦C to achieve the appropriate initial germ count. This was determined
as described above and the starting germ count was adjusted to 6.5 × 104 CFU/mL in
CA-MHB, pig serum and pig synovial fluid media. Subsequently, the different media
were incubated in ambient air at 37 ◦C for 24 h at different concentrations of florfenicol.
Following incubation, ten-fold dilution series were prepared and inoculated onto blood
agar and, after incubation, in ambient air at 37 ◦C for 24 h with 5% CO2, the 24-h germ
count was determined.

4.8. PK/PD Integration and Breakpoints

The sigmoidal Emax equation was used to model AUC24h/MIC data from killing–time
curves using the non-linear regression program WinNonLin to predict plots of log10 change
in CFU/mL versus AUC24h/MIC. PK/PD breakpoints were determined for three levels of
growth inhibition after 24 h incubation: E = 0, bacteriostatic, which is a 0 log10 reduction in
CFU/mL; E = −3, bactericidal, 3 log10 reduction in CFU/mL; and E = −4, 4 log10 reduction
in bacterial count [2].

Dividing the AUC24hss values calculated for 8 pigs in vivo by the AUC24h/MIC break-
points ratios gives the concentrations as critical MIC values, which can result in bacterio-
static, bactericidal and 4 log10 number reductions in synovial fluid and plasma in vitro.

E = E0 −
Emax ∗ CGamma

(t)

ECGamma
50 + CGamma

(t)

Hill equation. E = log10-based change in live cell count, E0 = initial log10-based
bacterial live cell count, Emax = maximum (response) kill capacity, C(t) = AUC24h/MIC,
EC50 = in vitro concentration of florfenicol capable of half the maximum kill capacity
Gamma= Hill coefficient (slope of the curve).
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