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Abstract: The presence of antimicrobial-resistant Enterococci in poultry is a growing public health
concern worldwide due to its potential for transmission to humans. The aim of this study was
to determine the prevalence and patterns of antimicrobial resistance and to detect drug-resistant
genes in Enterococcus faecalis and E. faecium in poultry from four districts in Zambia. Identification
of Enterococci was conducted using phenotypic methods. Antimicrobial resistance was determined
using the disc diffusion method and antimicrobial resistance genes were detected using polymerase
chain reaction and gene-specific primers. The overall prevalence of Enterococci was 31.1% (153/492,
95% CI: 27.1–35.4). Enterococcus faecalis had a significantly higher prevalence at 37.9% (58/153, 95% CI:
30.3–46.1) compared with E. faecium, which had a prevalence of 10.5% (16/153, 95% CI: 6.3–16.7). Most
of the E. faecalis and E. faecium isolates were resistant to tetracycline (66/74, 89.2%) and ampicillin and
erythromycin (51/74, 68.9%). The majority of isolates were susceptible to vancomycin (72/74, 97.3%).
The results show that poultry are a potential source of multidrug-resistant E. faecalis and E. faecium
strains, which can be transmitted to humans. Resistance genes in the Enterococcus species can also be
transmitted to pathogenic bacteria if they colonize the same poultry, thus threatening the safety of
poultry production, leading to significant public health concerns.

Keywords: antimicrobial resistance; antimicrobial resistance genes; Enterococcus faecalis; Enterococcus
faecium; prevalence; poultry; Zambia

1. Introduction

Enterococcus is a genus of Gram-positive bacteria in the family Enterococcaceae, the
order Lactobacillales and the phylum Firmicutes [1]. Enterococcus is part of the normal flora
in the gastrointestinal tract (GIT) of mammals, fish, reptiles, insects, and birds [2,3]. Being
ubiquitous in nature, it is also found in soil, plants, sewage and fresh and salt water [4,5].
Species in the genus Enterococcus (E) have emerged as pathogens of medical and public
health importance [6]. This is partly due to their adaptability to the selective pressures of
antimicrobials. They also have the ability to acquire, express, and transmit mobile genetic
elements (MGEs) from/to pathogenic as well as non-pathogenic species in the same or
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different genus [7,8], leading to the development of antimicrobial resistance. MGEs play
an important role in facilitating horizontal genetic exchange and promoting the acquisi-
tion and transmission of resistance genes [9]. These properties have made Enterococcus
an important human pathogen responsible for a number of clinical conditions, includ-
ing urinary tract infections (UTI), endocarditis, bacteremia and mastitis in humans and
animals [10,11]. Enterococcus species also cause locomotive disorders and septicemia in
broilers [12]. Enterococci is ranked among the major causes of nosocomial infections world-
wide [13]. This is especially true for Enterococcus (E) faecalis and E. faecium. The emergence
of multidrug-resistant (MDR) Enterococci such as vancomycin-resistant Enterococci (VRE)
and drug-resistant Enterococci in poultry are of major public health concern because of
the limited treatment options available for infections caused by such species, as well as
the possibility of dispersion between poultry and humans [3,14–16] and the transfer of
resistance genes to other bacteria (9). This has led to an increase in infections caused by
multidrug-resistant Enterococci, which can not only be very difficult to treat but can also
lead to increased mortality rates [17].

Enterococcal infections can be serious and are associated with increased healthcare
costs, including the cost of hospitalization, laboratory testing and antibiotic treatment [18].
Enterococcal infections can also lead to lost productivity due to missed work or school.

Although Enterococcus faecalis and Enterococcus faecium are commonly found in the
guts of poultry, they can cause infections in poultry that can lead to significant economic
losses for the industry. Enterococcal infections in poultry can result in decreased growth
rates, reduced feed efficiency and increased mortality rates [19]. Poultry and food products
of poultry origin are the most consumed worldwide [20]. Enterococci can contaminate
poultry products and pose a risk to human health if consumed [21]. Antibiotic resistance
in Enterococci is also a concern for the poultry industry, as the use of antibiotics in poultry
production can contribute to the development and spread of antibiotic-resistant strains [22].
Therefore, the presence of antimicrobial-resistant Enterococci, especially multidrug resis-
tance Enterococcus species, in poultry is of public health concern as it may serve as a pool
from which antimicrobial resistance genes are disseminated. VRE is a nosocomial pathogen
that exhibits multidrug resistance (MDR) and virulence.

Enterococcus faecium has transitioned from a commensal organism to an ESKAPE
(E. faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterobacter species) pathogen. ESKAPE is an acronym for a group of life-
threatening nosocomial pathogens that successfully evade the effect of antimicrobial drugs
and represent a model for pathogenesis, transmission, and resistance [23]. VRE cause a
greater number of infections than other nosocomial pathogens in hospitals in the United
States [23].

Vancomycin-resistant Enterococci have been reported worldwide [24], including in
Zambia [25]. However, they have not been given the same attention as other commensals of
the GIT such as Staphylococci, Salmonella, Shigella, Campylobacter and Escherichia coli. Zambia
developed a multi-sectoral national action plan in recognition of the public health threat
of morbidity, mortality, and economic outcomes of antimicrobial resistance. However,
minimal surveillance and research have been conducted on MDR Enterococci in Zambia.
This study aimed to determine the prevalence of antimicrobial resistance and the presence
of antimicrobial-resistant genes in Enterococcus faecalis and Enterococcus faecium isolates
from poultry in four districts in Zambia.

2. Results
2.1. Identification
2.1.1. Identification of Enterococci Using Analytical Profile Index (API)

Of the 37 poultry isolates subjected to API identification using BioMérieux’s Analytical
Profile Index (API) 20 Strep test kits, 19 were identified as Enterococcus faecalis, 15 as
Enterococcus faecium and one as Enterococcus durans. Two were not identified. The reason
for performing API tests on only 37 isolates was due to insufficient reagents. Particularly,
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the NIN, VP 1 + VP 2, ZYM A and ZYM B were enough for only 38 samples (one control
Enterococcus faecalis ATCC 29212 strain and the 37 isolates).

2.1.2. Identification of Enterococci Using Polymerase Chain Reaction (PCR)

PCR was run on 343 suspect Enterococcus DNA samples extracted from poultry drop-
pings using genus-specific primers for elongation factor (tuf ) and d-alanine-d-alanine ligase
(ddl) genes. PCR was subsequently run on 153 positive DNA samples using species-specific
primers for Enterococcus faecalis and Enterococcus faecium. The most common Enterococcus
species was E. faecalis (37.9%), followed by E. faecium (10.5%). Remarkably, 38.6% of the
isolates contained more than one species, with 34.6% of the total enterococcus isolates con-
taining both E. faecalis and E. faecium. Adding the latter to E. faecalis and E. faecium, E. faecalis
would still be the most predominant species, followed by E. faecium (Figure 1). The word
“Other” represents Enterococcus species—identified by PCR using genus-specific ddl and
tuf gene primers—which could not be identified through PCR due to lack of additional
species-specific primers, or DNA sequencing due to the unavailability of reagents. Figure 1
shows the species identified using E. faecalis and E. faecium species-specific primers.
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Figure 1. Enterococcus species identified using species-specific E. faecalis and E. faecium primers.

2.1.3. Comparing API and PCR Identification

API and PCR results were compared to ascertain the agreement between the two meth-
ods. API correctly identified 17 (45.9%) of the 37 isolates. API could not identify isolates
with more than one species and only picked one of the species in samples with two or
more species (16, 43.2%). It also misidentified an isolate that contained E. faecalis and
another species as E. faecium, and it was not able to identify two isolates. Additionally, API
identified one isolate as E. durans1, but this could not be confirmed as the corresponding
species-specific primers were not available (Table 1).
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Table 1. API and PCR Identities.

Study ID PCR ID API ID Study ID PCR ID API ID

80 E. faecalis E. faecalis 454 E. faecalis + E. faecium E. faecium
82 E. faecium E. faecium 455 E. faecalis + E. faecium E. faecalis
84 E. faecalis + E. faecium E. faecalis 476 E. faecalis + E. faecium E. faecium
87 E. faecalis E. faecalis 477 E. faecalis + E. faecium E. faecalis
88 E. faecalis + Other E. faecium 501 Other enterococci Not identified
89 Other enterococci Not identified 552 E. faecalis + E. faecium E. faecalis
90 E. faecium E. faecium 555 E. faecium E. faecium
92 Other enterococci E. durans1 576 E. faecalis + E. faecium E. faecalis
93 E. faecalis E. faecalis 585 E. faecalis + E. faecium E. faecium
94 E. faecium E. faecium 619 E. faecalis E. faecalis
96 E. faecalis E. faecalis 627 E. faecium E. faecium
99 E. faecalis + E. faecium E. faecium 630 E. faecalis + E. faecium E. faecalis

100 E. faecalis + E. faecium E. faecium 702 E. faecalis + E. faecium E. faecium
101 E. faecalis + E. faecium E. faecium 704 E. faecalis + E. faecium E. faecalis
102 E. faecalis E. faecalis 714 E. faecalis + E. faecium E. faecalis
106 E. faecalis E. faecalis 718 E. faecalis + E. faecium E. faecium
107 E. faecium E. faecium 725 E. faecalis E. faecalis
361 E. faecalis E. faecalis 734 E. faecalis E. faecalis
399 E. faecalis E. faecalis

PCR = Polymerase Chain Reaction, API = Analytical Profile Index, ID = Identity.

2.2. Prevalence of Enterococci
2.2.1. Overall Prevalence

The overall prevalence of Enterococci was 31.1% (153/492, CI: 27.1–35.4), while the
prevalence in Lusaka Province was 30.8% (33/107, CI: 22.5–40.6) and the prevalence in
Copperbelt Province was 31.2% (120/385, 26.6–36.1). Table 2 contains summaries of the
prevalence of E. faecalis and E. faecium (combined and separate) in poultry from districts in
the Copperbelt and Lusaka Provinces.

Table 2. Prevalence of Enterococcus in Poultry from the four Districts.

Factor Categories n Tested n Positive Prevalence (%) 95% CI

Overall Positivity 492 153 31.1 27.1–35.4

Province
Lusaka 107 33 30.8 22.5–40.6

Copperbelt 385 120 31.2 26.6–36.1

District

Lusaka 50 22 44.0 30.3–58.7
Chongwe 57 11 19.3 10.5–32.3

Kitwe 245 78 31.8 26.1–38.1
Ndola 140 42 30.0 22.7–38.4

Enterococci isolates

E. faecium 153 16 10.5 6.3–16.7
E. faecalis 153 58 37.9 30.3–46.1

All other Enterococcus
species 153 79 51.6 43.5–59.7

n = number, % = percent, CI = confidence interval.

2.2.2. Species-Specific Prevalence of Isolates

The prevalence of Enterococci varied significantly across the districts. Lusaka district
had the highest prevalence at 44.0% (22/50, CI: 30.3–58.7) compared with the other three
districts of Kitwe, Ndola and Chongwe (p = 0.038). The prevalence of E. faecalis was higher
than that of E. faecium in all districts (p = 0.012) except Kitwe district (p = 0.044) (Table 3).
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Table 3. Prevalence of specific species across the study area.

Factors Categories Species n Tested n Positive Prevalence (%) 95% CI

Districts

Chongwe

E. faecium 57 1 1.8 0.1–10.6
E. faecalis 57 5 8.8 3.3–20.0

E. faecalis + E. faecium 57 1 1.8 0.1–10.6
E. faecalis + other 57 2 3.5 0.6–13.2

Other 57 2 3.5 0.6–13.2
Total 57 11 19.3 10.5–32.3

Lusaka

E. faecium 50 5 10.0 3.7–22.6
E. faecalis 50 8 16.0 7.6–29.7

E. faecalis + E. faecium 50 4 8.0 2.6–20.1
E. faecium + other 50 1 2.0 0.1–12.0
E. faecalis + other 50 1 2.0 0.1–12.0

Other 50 3 6.0 1.6–17.5
Total 50 22 44.0 30.3–58.7

Kitwe

E. faecium 245 8 3.3 1.5–6.6
E. faecalis 245 26 10.6 7.2–15.3

E. faecalis + E. faecium 245 39 15.9 11.7–21.2
Other 245 5 2.0 0.8–5.0
Total 245 78 31.8 26.1–38.1

Ndola

E. faecium 140 2 1.4 0.2–5.6
E. faecalis 140 19 13.6 8.6–20.6

E. faecalis + E. faecium 140 8 5.7 2.7–11.3
E. faecalis + E. faecium + other 140 1 0.7 0.0–4.5

E. faecalis + other 140 2 1.4 0.2–5.6
Other 140 10 7.1 3.7–13.1
Total 140 42 30.0 22.7–38.4

Species Overall

E. faecium 492 16 3.3 1.9–5.3
E. faecalis 492 58 11.8 9.1–15.1

E. faecalis + E. faecium 492 52 10.6 8.1–13.7
E. faecalis + E. faecium + other 492 1 0.2 0.0–1.3

E. faecium + other 492 1 0.2 0.0–1.3
E. faecalis + other 492 5 1.0 0.4–2.5

Other 492 20 4.1 2.6–6.3
Total Isolates 492 153 31.1 27.1–35.4

n = number, % = percent, CI = confidence interval, other = unidentified enterococcus species.

2.3. Antimicrobial Susceptibility Test Results
2.3.1. Antimicrobial Susceptibility of Enterococci

All intermediate test results were considered resistant. Both Enterococcus species
showed very high (97.3%) resistance to tetracycline, while 94.6% were resistant to ery-
thromycin and 77.0% were resistant to ciprofloxacin. Remarkably, 64.9% of both Enterococ-
cus species were susceptible to vancomycin. More than 90.0% of E. faecalis isolates were
resistant to erythromycin and tetracycline and more than 50.0% were resistant to ampicillin,
chloramphenicol and ciprofloxacin. Less than 20.0% of the E. faecalis isolates were resistant
to vancomycin. All E. faecium isolates in this study were resistant to erythromycin. More
than 80.0% of E. faecium isolates exhibited phenotypic resistance to ampicillin, ciprofloxacin
and tetracycline, while less than 40.0% showed resistance to chloramphenicol and van-
comycin. Susceptibility profiles of E. faecalis and E. faecium to the eight antimicrobials tested
are provided in Table 4.



Antibiotics 2023, 12, 657 6 of 15

Table 4. Antimicrobial Susceptibility Profiles of Enterococcus faecalis and Enterococcus faecium.

Species Susceptibility
Test Result

AMP
n (%)

CHL
n (%)

CIP
n (%)

ERY
n (%)

NIT
n (%)

PEN
n (%)

TET
n (%)

VAN
n (%)

E. faecalis
Resistant 37 (63.8) 35 (60.3) 44 (75.9) 54 (93.1) 37 (63.8) 31 (53.4) 58 (100) 19 (32.8)

Susceptible 21 (36.2) 23 (39.7) 14 (24.1) 4 (6.9) 21 (36.2) 27 (46.6) 0 39 (67.2)

E. faecium
Resistant 14 (87.5) 6 (37.5) 13 (81.3) 16 (100) 8 (50) 8 (50) 14 (87.5) 7 (43.7)

Susceptible 2 (12.5) 10 (62.5) 3 (18.7) 0 8 (50) 8 (50) 2 (12.5) 9 (56.3)

Total
E. faecalis 51 (68.9) 41 (55.4) 57 (77.0) 70 (94.6) 45 (60.8) 40 (54.1) 72 (97.3) 26 (35.1)

E. faecium 23 (31.1) 33 (44.6) 17 (23.0) 4 (5.4) 29 (39.2) 34 (46.0) 2 (2.7) 48 (64.9)

n = number, % = percent, AMP = ampicillin, CHL = chloramphenicol, CIP = ciprofloxacin, ERY = erythromycin,
NIT = nitrofurantoin, PEN = penicillin, TET = tetracycline, VAN = vancomycin.

2.3.2. Number of Enterococcus Isolates Resistant to One, Two, Three or More
Antimicrobial Classes

Multidrug resistance (MDR) is defined as resistance to three or more classes of an-
timicrobials. The results of our study show that none of the isolates were susceptible to
all antimicrobial classes tested. Of the 74 E. faecalis and E. faecium isolates tested against
eight antimicrobials, only two (2.7%) were resistant to one class of antimicrobials. A total
of 5 (6.8%) isolates were resistant to two classes of antimicrobials. The majority of E. faecalis
and E. faecium isolates (67, 90.5%) were MDR (Table 5).

Table 5. Number of Isolates Resistant against one, two, three or more Antimicrobial Classes.

Isolate (Total Number) All Susceptible
n (%)

Resistant to One Class of
Antibiotic, n (%)

Resistant to Two Classes
of Antibiotics, n (%)

Resistant to Three or
More Classes of

Antibiotics, n (%)

All Efs and Efm (74) 0 (0) 2 (2.7%) 5 (6.8%) 67 (90.5%)
E. faecalis (58) 0 (0) 2 (3.5%) 4 (6.9%) 52 (89.7%)
E. faecium (16) 0 (0) 0 (0) 1 (6.3%) 15 (93.8%)

n = number, % = percent, Efs = E. faecalis, Efm = E. faecium.

2.4. Detected Antimicrobial Resistance Genes
2.4.1. Presence of Antimicrobial Resistance Genes in E. faecalis and E. faecium

The aac(6′)-Ie-aph(2”)-LA resistance gene encoding resistance to gentamycin was de-
tected in 33 and 12 E. faecalis and E. faecium isolates, respectively, representing 60.8% of
the isolates. The ermB resistance gene was more common in both E. faecalis and E. faecium
compared with the ermA gene. The vanA resistance gene was detected in only two E. faecalis
isolates and in none of the E. faecium isolates. Table 6 shows the number of different
resistance genes detected in the E. faecalis and E. faecium isolates.

2.4.2. Resistance Genes in E. faecalis and E. faecium isolates across the Study Area

The most common resistance genes in E. faecalis isolates from Chongwe district in Lusaka
Province were tetL and tetM, as they were found in all five isolates. These were followed by
aac and tetK, which were detected in four of the five isolates, and ermB, which was detected in
three isolates. The most common resistance genes in isolates from Lusaka district were tetK
and tetM, which were found in all 8 E. faecalis isolates. These were followed by tetL (7/8), aac
(6/8) and ermB (5/8). Resistant genes commonly detected in E. Faecalis from Ndola district
were tetM (16/20), tetL (15/20), aac (13/20), ermB (12/20) and tetK (11/20). In E. faecalis isolates
from Kitwe, tetK (17/25) was the most prevalent resistance gene, followed by tetM (16/25),
ermB (15/25), tetL (14/25) and aac (10/25). The most commonly detected resistance genes in
E. faecium isolates from Kitwe district were aac (5/8) and ermB (5/8), followed by tetM (4/8)
and tetK (3/8). In Lusaka district, the most common genes were aac (5/5) followed by ermB
(4/5), tetL (4/5), tetK (3/5) and tetM (3/5). Table 7 shows all resistance genes detected in
E. faecalis and E. faecium isolates from the four districts in Zambia.
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Table 6. The number of different resistance genes detected in E. faecalis and E. faecium isolates.

Resistance Gene Total Isolates Tested

Detected

Undetected
E. faecalis (58) Proportion

(E. faecalis) E. faecium (16) Proportion
(E. faecium)

aac(6′)-Ie-aph(2”)-LA 74 33 44.6% 12 16.2% 29

ermA 74 1 0.01% 1 0.01% 72

ermB 74 35 47.3% 10 13.5% 29

tetK 74 40 54.1% 8 10.8% 26

tetM 74 45 60.8% 10 13.5% 19

tetL 74 41 55.4% 8 10.8% 25

tetX 74 3 0.04% 2 0.03% 69

vanA 74 2 0.03% 0 0 72

Table 7. Resistance genes detected in E. faecalis and E. faecium isolates from poultry in Copperbelt
and Lusaka Provinces.

Area Species #RG

Resistance Genes

TRGaac ermA ermB tetK tetL tetM tetX vanA

Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg Pos Neg

Lusaka Province
E. faecalis 13 10 3 0 15 8 5 12 1 13 0 13 0 1 12 1 12 13

E. faecium 6 6 0 0 6 5 1 4 2 5 1 4 2 1 5 0 6 6

Copperbelt Province
E. faecalis 45 23 22 1 44 27 18 28 17 29 16 32 13 2 43 1 44 32

E. faecium 10 6 4 1 9 5 5 4 6 3 7 6 4 1 9 0 10 6

Chongwe
E. faecalis 5 4 1 0 5 3 2 4 1 5 0 5 0 0 5 0 4 5

E. faecium 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1

Lusaka
E. faecalis 8 6 2 0 8 5 3 8 0 7 1 8 0 1 7 0 8 8

E. faecium 5 5 0 0 5 4 1 3 2 4 1 3 2 1 4 0 5 4

Ndola
E. faecalis 20 13 7 0 20 12 8 11 9 15 5 16 4 0 20 0 20 16

E. faecium 2 1 1 0 2 2 0 1 1 2 0 2 0 0 2 0 2 2

Kitwe
E. faecalis 25 10 15 1 24 15 10 17 8 14 11 16 9 2 23 1 24 17

E. faecium 8 5 3 1 7 5 5 3 5 1 7 4 4 1 7 0 5 5

#RG = number of isolates in which resistance-gene detection was conducted; Pos = detected, Neg = undetected,
TRG = total number of isolates containing resistance genes.

2.5. Association between Antimicrobials and Resistance Genes

Differences in antimicrobial resistance patterns and resistance genes in both enterococ-
cus species were analyzed to assess possible associations between resistance phenotypes
and their corresponding genotypes. A positive association between phenotype and geno-
type was found for tetracycline (p = 0.047) and erythromycin (p = 0.008), but there was
no association between genotype and the vancomycin resistance phenotype (p = 0.051)
(Table 8).

Table 8. Association between antimicrobial results and their corresponding resistance genes.

Antibiotic Genes X2—Value p-Value

TET tet 3.945 0.047 ***

ERY erm 6.947 0.008 ***

VAN vanA 3.795 0.051

X2 = Chi-square value; ***: p-Value = significant at <0.05; TET = Tetracycline; ERY = Erythromycin;
VAN = Vancomycin; tet = all tetracycline genes (tetM, tetL, tetK and tetX); erm = both ermA and ermB genes.
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3. Discussion

The prevalence, antimicrobial susceptibility patterns and presence of resistance genes
in poultry droppings from four districts in Zambia were determined. The overall prevalence
of Enterococci was 31.1%. This is in agreement with other studies that reported similar
results in Poland [26], Malaysia [27] and Nigeria [28]. However it was lower than that
reported in a similar study conducted in Zambia, where the prevalence was 88.4% in laying
hens [29]. This could be due to differences in sampling methods, farms sampled and the
number of farms sampled. Another previous study [30] also reported a higher prevalence
than that reported in the present study. Conversely, the prevalence rate in our study
was higher than the rates reported in Ethiopia [31], Pakistan [32] and Thailand [33]. The
differences in the isolation rates of Enterococci can be attributed to several factors, including
antibiotic use, environmental factors and methodology. The widespread use of antibiotics
has led to the selection and dissemination of antibiotic-resistant Enterococci. Enterococci are
found in soil and water and can persist in the environment for long periods of time, making
them more difficult to control and leading to increased isolation rates. The isolation rate
can also be influenced by the type of culture method used and the presence of selective
media that may preferentially isolate Enterococci [34].

Among the Enterococcus species isolated in this study, E. faecalis was the most prevalent
(37.9%), followed by E. faecium (10.5%). This was in agreement with other studies [35–38]
which found E. faecalis to be the most prevalent species in poultry. However, our study
differed slightly from some studies that found species other than E. faecalis to be the most
predominant [16,39,40]. The variations in species levels between studies might be due
to differences in the type of poultry, source of chicks, sampling methods, geographical
disparities, the time of study and isolation and identification procedures [40].

Although API 20 strep is considered the best identification system for bacteria [41],
it does not accurately identify some species of Enterococci [42]. In the present study, we
validated API 20 strep results using PCR. PCR conducted using species-specific primers
identified 91.9% of samples containing both single and multiple species. API 20 strep
accurately identified 45.3% of Enterococcus species, but identified only one species in
isolates containing more than one species. It also misidentified 2.7% of the Enterococcus
species. Our findings were in agreement with the results of previous studies [42–45].

In the present study, phenotypic resistance to critically important antimicrobials, as
defined by the WHO [46], was observed and 90.5% of E. faecalis and E. faecium isolates
were multidrug resistant (MDR) (Table 4). Notably, all E. faecalis and E. faecium isolates
were resistant to one or more of the tested antimicrobials (Table 5). These findings were
similar to those of a study done earlier [47] in which the majority of E. faecalis and E. faecium
isolates were resistant to one or more of the tested antimicrobials. Resistance to all tested
antimicrobials was also observed in both E. faecalis and E. faecium isolates.

More than 50.0% of E. faecalis isolates were resistant to all tested antimicrobials, while
100.0% of the isolates were resistant to tetracycline. On average, E. faecium exhibited
increased resistance to antimicrobials in comparison with E. faecalis. Our findings are
in agreement with a recent study conducted in Zambia [29]. Our study also has some
similarities with a study conducted in the Czech Republic [48], in which increased resistance
of Enterococci to tetracycline, erythromycin and nitrofurantoin were observed, as well
as a study from USA [49], in which Enterococci resistance to tetracycline, penicillin and
ciprofloxacin was documented. Furthermore, our results are consistent with findings from
previous studies [50–56] where high tetracycline resistance was reported. Our results were
also comparable with those of the study by Fracalanzza et al. [57], which recorded the
resistance of Enterococci to erythromycin to be at 82.0% when intermediate results were
included. Nevertheless, that study noted reduced resistance to tetracycline (38.3%) and
chloramphenicol (5.7%) compared with our study. The observed increase in resistance to
all the antimicrobials tested indicate that poultry from these four districts in Zambia can
be a source of MDR Enterococci. However, our study contrasted with other studies [58,59],
which reported lower levels of resistance to antimicrobials.
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Although the gene aac(6′)-Ie-aph(2”)-LA, which encodes resistance to gentamicin, was
detected in 60.8% of both Enterococci species tested, an association with susceptibility could
not be determined, as discs containing high concentrations of gentamicin (for example
120 µg or 500 µg), which are used to detect high-level aminoglycoside resistance, were not
available.

The associations between antimicrobial resistance phenotypes and genotypes in
E. faecalis and E. faecium isolates were analyzed. Associations were found between geno-
types and tetracycline and erythromycin resistant phenotypes. However, genotypes
showed no relationship with vancomycin resistant phenotypes. The disparity observed
between the phenotypes and genotypes in the case of vancomycin could be due to the fact
that vancomycin resistance in Enterococci can be conferred by different gene clusters [60–62].

4. Materials and Methods
4.1. Study Design and Sites

A cross-sectional study was conducted in selected farms in Chongwe and Lusaka
(Lusaka Province) and Ndola and Kitwe (Copperbelt Province) districts in Zambia (Figure 2).
The two provinces are among those that harbor most of the commercial poultry farms
in Zambia.
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4.2. Sample Collection

A total of 492 freshly voided poultry droppings were collected from layers, broilers
and village chickens. Five different visits were made to selected poultry farms in four
districts in the Copperbelt and Lusaka Provinces in Zambia (Figure 2). Of the total samples
collected, 57 were from farms in Chongwe, while 50 were from Lusaka district in Lusaka
Province. Of the 385 samples from Copperbelt Province, 140 and 245 came from Ndola and
Kitwe districts, respectively.

4.3. Laboratory Investigations
4.3.1. Isolation of Enterococci

Conventional microbiological assays were performed to detect and identify Enterococcus
species as described by Facklam and Collins [63]. Briefly, 1 g of poultry droppings was
suspended in 9 mL buffered peptone water (BPW) (HIMEDIA, India), mixed and incubated
at 37 ◦C for 24 h. A loopful of the BPW suspension was streaked on Bile Esculin Agar (BEA)
(HIMEDIA, India) and incubated at 37 ◦C for 24 h. Following this, colonial traits were noted
and smears of suspect colonies (small black shiny colonies on BEA) were made and stained
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using Central Drug House’s (CDH) Gram’s color staining kit from India. Gram-positive
cocci appearing in chains, doubles or singles were characteristic of enterococci. A total of
343 suspected Enterococcus isolates were recovered from the 492 samples tested. These were
stored in 20% glycerol at −20 ◦C for subsequent experiments.

4.3.2. Identification of Enterococci Using Analytical Profile Index (API)

Species identification based on phenotypic characteristics and biochemical tests was
conducted using BioMérieux’s Analytical Profile Index (API) 20 Strep test kits. A total of
37 isolates were identified using the API 20 Strep test kits. The reasons for this are stated in
Section 2.1.1.

4.3.3. DNA Extraction

Colonies grown overnight on a blood agar plate were placed in a test tube containing
0.5 mL of molecular grade water, vortexed and boiled at 95 ◦C for 10 min and then
centrifuged for 5 min at 1500× g. The supernatant was pipetted into cryo-vials and stored
at −20 ◦C for further analysis.

4.3.4. Molecular Identification of Enterococci

Molecular identification of the Enterococcus species was conducted using single PCR
and the genus-specific and species-specific primers shown in Table 9, following the proce-
dure described by Li et al. (2012) [64]. PCR amplification of elongation factor (tuf ) and D -Ala-
D -Ala ligase (ddl) in the extracted DNA was conducted using Phusion Flash High-Fidelity
PCR Master Mix (Thermofisher Scientific, USA) in a thermal cycler (Applied Biosystems,
Chiba, Japan) under the following PCR conditions: initial denaturation at 98 ◦C for 2 min
followed by 30 cycles of denaturation at 98 ◦C for 5 s, annealing at 56 ◦C for 5 s, and
extension at 72 ◦C for 30 s. A final extension was performed at 72 ◦C for 1 min. PCR
amplicons were run on 1.5% agarose gels. The expected bandwidths for tuf and ddl PCR
products were 112 bp and 475 bp, respectively. For species identification, species-specific
primers (Table 1) targeting the superoxide dismutase (sodA) gene in E. faecalis and E. faecium
were used. No primers were available for other species. The PCR conditions were similar
to those used for genus amplification, except for the annealing temperature, which was set
to 52 ◦C for both species.

Table 9. Primers for Enterococcus Genus and Species identification.

IDENTIFICATION PRIMERS

Target Gene Primer Name Primer Sequence 5′-3′ Amplicon Size bp References

tuf
tuf-F TACTGACAAACCATTCATGATG

112 [65]
tuf-R AACTTCGTCACCAACGCGAAC

ddl
ddlF CACCTGAAGAAACAGGC

475 [66]
ddlR ATGGCTACTTCAATTTCACG

sodAEfm
sodAEfm1 CAGCAATTGAGAAATAC

190 [67]
sodAEfm2 CTTCTTTTATTTCTCCTGTA

sodAEfs
sodAEfs1 CTGTAGAAGACCTAATTTCA

209 [67]
sodAEfs2 CAGCTGTTTTGAAAGCAG

bp = base pairs.

4.3.5. Determination of Antimicrobial Resistance Levels

Susceptibility to vancomycin (30 µg), erythromycin (15 µg), ampicillin (10 µg), peni-
cillin (10 U), tetracycline (30 µg), nitrofurantoin (300 µg), ciprofloxacin (5 µg) and chloram-
phenicol (30 µg) was determined using the disk diffusion method according to the Clinical
and Laboratory Standards Institute guidelines [68]. The disks used for susceptibility testing
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were manufactured by HIMEDIA, India. Diameters of the zones of inhibition were recorded
in millimeters (mm) and interpreted as susceptible, intermediate or resistant. In this study,
intermediate results were taken as resistant. A reference strain, Enterococcus faecalis 29,212,
was used as a control strain.

4.3.6. Detection of Antimicrobial Resistant Genes (ARG)

Genes conferring resistance to aminoglycosides [aac(6′)-le-aph(2”)-LA], which in this
study was abbreviated as “aac”, macrolides (ermA and ermB), tetracyclines (tetM, tetL, tetK,
and tetX) and glycopeptides (vanA) were detected in a single PCR using the gene-specific
primers shown in Table 10. One Taq Quick-load 2X Master Mix (Biolabs, Durham, NC,
USA) was used for amplification in a thermal cycler (Applied Biosystems, Chiba, Japan).
The following PCR conditions were employed: initial denaturation at 93 ◦C for 3 min
followed by 35 cycles of denaturation at 93 ◦C for 60 s, annealing at 52 ◦C for 60 s and
elongation at 72 ◦C for 60 s. The final elongation step was performed at 72 ◦C for 5 min.
PCR amplicons were run on 1.5% agarose gels. The expected sizes of the PCR products
differed for each gene (Table 10).

Table 10. Primers used for the Detection of Resistance Genes.

PRIMERS FOR RESISTANCE GENES

Target Gene Primer Name Primer Sequence 5′-3′ Amplicon Size (bp) References

aac(6′)-Ie-aph(2”)-LA
aacF CAGGAATTTATCGAAAATGGTAGAAAAG

369 [69]
aacR CACAATCGACTAAAGAGTACCAATC

ermA
ermAF TATCTTATCGTTGAGAAGGGATT

139 [70]
ermAR CTACACTTGGCTTAGGATGAAA

ermB
ermB-1 GAAAAGTACTCAACCAAATA

639 [71]
ermB-2 AGTAACGGTACTTAAATTGTTTA

tetK
tetK-1 TTAGGTGAAGGGTTAGGTCC

697 [72]
tetK-2 GCAAACTCATTCCAGAAGCA

tetM
tetM-1 GTTAAATAGTGTTCTTGGAG

576 [72]
tetM-2 CTAAGATATGGCTCTAACAA

tetL
tetL-1 CATTTGGTCTTATTGGATCG

456 [72]
tetL-2 ATTACACTTCCGATTTCGG

tetX
tetXF CAATAATTGGTGGTGGACCC

468 [73]
tetXR TTCTTACCTTGGACATCCCG

vanA
vanAF CTGCAATAGAGATAGCCGCTAACA

751 [74]
vanAR TGTATCCGTCCTCGCTCCTC

bp = base pairs.

4.4. Data Analysis

Data were entered, cleaned and validated in a Microsoft™ excel spreadsheet (MS
Office Excel® 2016). The data were then exported to SPSS software ver. 21 (IBM Corp.,
Armonk, NY, USA). PCR results (positive or negative) were reference variables for descrip-
tive analyses. Univariate analyses were conducted for descriptive statistics and data are
presented as frequencies, percentages and prevalence.
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review and editing, G.M., B.M.H., H.K. and S.A.K.; visualization, G.M., B.M.H., H.K. and S.A.K.;
supervision, B.M.H., C.N. and Y.S.; project administration, G.M.; funding acquisition, G.M., C.N. and
Y.S. All authors have read and agreed to the published version of the manuscript.
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37. Stępień-Pyśniak, D.; Marek, A.; Banach, T.; Adaszek, Ł.; Pyzik, E.; Wilczyński, J.; Winiarczyk, S. Prevalence and antibiotic
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