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Abstract: The necessity for the discovery of innovative antimicrobials to treat life-threatening diseases
has increased as multidrug-resistant bacteria has spread. Due to antibiotics’ availability over the
counter in many nations, antibiotic resistance is linked to overuse, abuse, and misuse of these drugs.
The World Health Organization (WHO) recognized 12 families of bacteria that present the greatest
harm to human health, where options of antibiotic therapy are extremely limited. Therefore, this
paper reviews possible new ways for the development of novel classes of antibiotics for which there
is no pre-existing resistance in human bacterial pathogens. By utilizing research and technology such
as nanotechnology and computational methods (such as in silico and Fragment-based drug design
(FBDD)), there has been an improvement in antimicrobial actions and selectivity with target sites.
Moreover, there are antibiotic alternatives, such as antimicrobial peptides, essential oils, anti-Quorum
sensing agents, darobactins, vitamin B6, bacteriophages, odilorhabdins, 18β-glycyrrhetinic acid, and
cannabinoids. Additionally, drug repurposing (such as with ticagrelor, mitomycin C, auranofin, pen-
tamidine, and zidovudine) and synthesis of novel antibacterial agents (including lactones, piperidinol,
sugar-based bactericides, isoxazole, carbazole, pyrimidine, and pyrazole derivatives) represent novel
approaches to treating infectious diseases. Nonetheless, prodrugs (e.g., siderophores) have recently
shown to be an excellent platform to design a new generation of antimicrobial agents with better
efficacy against multidrug-resistant bacteria. Ultimately, to combat resistant bacteria and to stop the
spread of resistant illnesses, regulations and public education regarding the use of antibiotics in hos-
pitals and the agricultural sector should be combined with research and technological advancements.

Keywords: antibiotic; resistance; antimicrobial agents; nanoparticles; antimicrobial
peptides; siderophores

1. Introduction

Prior to the turn of the 20th century, infectious diseases were the main contributor
to high morbidity and mortality rates around the world [1]. The period of antibiotics,
which saw the discovery and development of numerous antibacterial drugs, began with
Fleming’s discovery of penicillin in 1929. Regrettably, the emergence of resistant strains
was brought on by the overuse and careless use of antibiotics [2,3]. According to 2019
systemic analytic research, there were 4.95 million fatalities attributable to antimicrobial
resistance (AMR). With 27.3 deaths per 100,000 people, western sub-Saharan Africa has the
highest mortality rate, whereas Australasia has the lowest mortality rate with 6.5 deaths per
100,000 people [4]. Twelve families of bacteria have been identified by the World Health
Organization (WHO) as the most dangerous to human health and have been divided
into three priority groups: critical pathogens (Acinetobacter, Pseudomonas, and Enterobacte-
riaceae), high priority pathogens (Enterococcus faecium, Staphylococcus aureus, Helicobacter
pylori, Campylobacter, Salmonella spp., Nisseria gonorrhoeae), and medium priority pathogens
(Streptococcus pneumoniae, Shigella spp.) [5–8]. The presence of multidrug-resistant (MDR)
ESKAPE pathogens (including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneu-
moniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and
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extensively drug-resistant (XDR) bacteria has rendered even the most effective drugs inef-
fective. Therefore, its necessary to develop novel strategies and approaches to overcome
the problem of increasing AMR [9–11]. This review outlines various strategies employed in
the design and development of new antimicrobial agents. These include the utilization of
nanotechnology and computational methods (such as in silico and fragment-based drug
design (FBDD)) which have led to improved antimicrobial efficacy and enhanced selectivity
towards target sites. In addition, antibiotic alternatives (antimicrobial peptides, essen-
tial oils, anti-Quorum sensing, darobactins, vitamin B6, bacteriophages, odilorhabdins,
18β-glycyrrhetinic acid, cannabinoids), drug repurposing (ticagrelor, mitomycin C, aura-
nofin, pentamidine, and zidovudine) and synthesis of novel antibacterial agents (lactones,
piperidinol, sugar-based bactericide, isoxazole, carbazole, pyrimidines, and pyrazoles
derivatives) are novel approaches to treat infectious diseases. Furthermore, prodrugs
(e.g., siderophores) and combinatorial treatments have recently been shown to be an ex-
cellent platform to design a new generation of antimicrobial agents with better efficacy
against multidrug-resistant bacteria.

2. Antibiotic Classification

New antibiotic use methods should be implemented on a local and global level to com-
bat resistance, and the development of novel treatments requires a thorough understanding
of how antibiotics function. Table 1 summarizes how antibiotics produce their effects
through a variety of mechanism of action. Antibiotic-mediated cell death is a complicated
process that begins with a physical interaction between the medication and its particular
target in bacteria, altering the bacterium’s biochemical, molecular, or ultrastructural levels.
The development of DNA double-stranded DNA breaks, the halting of DNA-dependent
RNA synthesis, cell envelop damage, protein mistranslation, and stress induction are only
a few of the methods through which antibiotics can cause cell death [12]. Antimicrobial
agents are divided into two categories on the basis of how they affect bacteria in a test tube:
(1) bactericidal (kill bacteria) antibiotics such as β-lactams, glycopeptides, lipopeptides,
rifamycins, aminoglycosides, and fluoroquinolones, and (2) bacteriostatic (prevent bacterial
growth) antibiotics such as sulfonamides–trimethoprim and macrolides. Bacteriostatic
substances can also be described as having a minimum bactericidal concentration (MBC) to
minimum inhibitory concentration (MIC) ratio higher than four, and bactericidal substances
when the MBC to MIC ratio is lower than or equal to four [13].

Table 1. List of antimicrobial agent and their mechanism of action.

Antibiotics Family Mechanism of Action Antibiotics

β-lactam
Binds to the serine active site of penicillin-binding proteins (PBPs) or

the allosteric site in PBP2a to inhibit bacterial cell wall
peptidoglycan transpeptidation [14,15].

Penicillins
Cephalosporins
Carbapenems

Monocyclic β-lactams
β-lactamase inhibitors
(e.g., clavulanic acid)

(Figure 1)

Glycopeptides
Interacts with the membrane-bound lipid II precursor of peptidogly

and can prevent peptidoglycan from being incorporated into an
essential structural cell wall component [16].

Vancomycin
Teicoplanin
Telavancin

Dalbavancin
Oritavancin
(Figure 1)
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Table 1. Cont.

Antibiotics Family Mechanism of Action Antibiotics

Lipopeptide
Carries out their action by causing Gram-positive bacteria’s cell

membrane integrity to be compromised, which results in
cell death [17,18].

Polymyxins
Daptomycin

Amphomycin
Friulimicin

Ramoplanin
Empedopeptin

(Figure 2)

Rifamycins RNA polymerase (RNAP) inhibitors are used to treat
tuberculosis (TB) [19].

Rifampin
Rifabutin

Rifapentine
(Figure 3)

Aminoglycoside By attaching to the 30S ribosome’s A-site on the 16S ribosomal RNA,
they inhibit protein synthesis [20].

Streptomycin
Apramycin
Tobramycin
Gentamcin
Amikacin
Neomycin
Arbekacin
Plazomicin
(Figure 3)

Fluoroquinolones Target DNA gyrase, topoisomerase IV, and topoisomerase type II to
prevent bacteria from synthesizing DNA [21].

Nalidixic acid
Enoxacin

Norfloxacin
Ciprofloxacin

Ofloxacin
Lomefloxacin
Sparfloxacin

Grepafloxacin
Clinafloxacin
Gatifloxacin
Moxifloxacin
Gemifloxacin
Trovafloxacin
Garenoxacin

(Figure 4)

Sulfonamides–
Trimethoprim

Sulfonamides interfere with the activity of the dihydropteroate
synthase enzyme by competing with p-aminobenzoic acid (PABA) in
the process of dihydrofolate production.The dihydrofolate reductase

enzyme is inhibited by trimethoprim because it competes directly
with it [22].

Sulfamethoxazole
Trimethoprim

(Figure 4)

Macrolides

Target the nascent peptide exit tunnel (NPET) of the bacterial 50S
ribosomal subunit, which is responsible for the release of newly
synthesized protein from the ribosome, ultimately preventing

protein synthesis [23,24].

Erythromycin
Clarithromycin
Azithromycin
Fidaxomicin

Telithromycin
(Figure 4)
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Table 1. Cont.

Antibiotics Family Mechanism of Action Antibiotics

Tetracyclines Bind to the small subunit’s decoding site and prevent bacterial
protein synthesis [25,26].

Chlortetracycline
Oxytetracycline Tetracycline

Demeclocycline
Doxycycline
Minocycline
Lymecycline
Meclocycline
Methacycline

RolitetracyclineTigecycline
Omadacycline

Sarecycline
Eravacycline

(Figure 5)

Oxazolidinones
Block the translation sequence by interacting with the 50S subunit
(A-site pocket) at the peptidyl transferase center (PTC) to inhibit

protein synthesis [27].

Linezolid
Sutezolid

Eperezolid
Delpazolid
Tedizolid

Tedizolid phosphate Radezolid
TBI-223

(Figure 5)

Streptogramins

Inhibit protein synthesis during the elongation step by attaching to
bacterial ribosomes [28]. The antibiotic has two unique structural

groups (A and B) that cooperate to increase the affinity of group B in
the nearby nascent peptide exit tunnel (NPET) when group A binds

to the peptidyl transferase center (PTC) [29].

Quinupristin
Pristinamycin
Virginiamycin

(Figure 6)

Phenicoles Inhibit protein synthesis by binding to the 50S ribosomal subunit [30].

Chloramphenicol
Thiamphenicol

Florfenicol
(Figure 6)

Lincosamides

Activate amino acid monomers by aminoacyl-tRNA, chain initiation,
elongation, and termination of the formed polypeptides on the

ribosome, which disrupts bacterial growth and death. These are only
a few of the many processes that can be affected to prevent microbial

protein synthesis [31].

Lincomycin
Clindamycin

(Figure 6)

1 
 

Figure 1. Cont.
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2 

 

Figure 1. Chemical structure of penicillins, cephalosporins, carbapenems, monocyclic β-
lactams, clavulanic acid (β-lactamase inhibitors), vancomycin, teicoplanin, telavancin, dalbavancin,
and oritavancin.
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Figure 2. Chemical structure of polymyxins, daptomycin, amphomycin, friulimicin, ramoplanin, 
and empedopeptin. 
Figure 2. Chemical structure of polymyxins, daptomycin, amphomycin, friulimicin, ramoplanin,
and empedopeptin.



Antibiotics 2023, 12, 628 7 of 62Antibiotics 2023, 12, x 7 of 67 
 

NH

OOH

HO

O

O

O
O

O

O

OH OH

OH

N
N

N

Rifampin

NH

O
N

NH

O

O

N

O

O

O
O

OH

HO

OH

O

Rifabutin

HN

N
N N

O
OH

O

O OH

O

HO

OO

OH OH

O

Rifapentine

NH

HO

NH
NH2

HNOH

OH

H2N

HN
O

OHO

O

O

O
HO

HO

HO HN

Streptomycin

OHO
NH2

HO
NH2

O
OH

H2NHO OH
O O

HN OH
O

NH2

Apramycin

O

OO

O

NH2

OHOH

NH2H2N OH

NH2

HO

H2N OHTobramycin

O

O

NH

H2N O
HO

NH2
NH2

HO O
H

HN

O

Gentamycin

N
H

O
H2N

OH

O

O
OH

OH
H2N

HO OH
O

O

NH2

OH

OH
OH

NH2

Amikacin

O
HOHO H2N

O
NH2 NH2

HO

NH2

O
O

OH
O

HOOHO
HO

H2N
H2N Neomycin

O

O O

O

NH2HN

OH

HN
HO

H2N

NH
HO

OH
O

HO

H2N Plazomicin

O

OH
H2N

HO

HO

O

HO
O O

NH2

H2N

NH2

HN

O

OH

NH2

Arbekacin
 

Figure 3. Chemical structure of rifampin, rifabutin, rifapentine, streptomycin, apramycin, 
tobramycin, gentamycin, amikacin, neomycin, arbekacin, and plazomicin. 
Figure 3. Chemical structure of rifampin, rifabutin, rifapentine, streptomycin, apramycin, tobramycin,
gentamycin, amikacin, neomycin, arbekacin, and plazomicin.
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Figure 4. Chemical structure of nalidixic acid, enoxacin, norfloxacin, ciprofloxacin, ofloxacin, 
lomefloxacin, sparfloxacin, grepafloxacin, clinafloxacin, gatifloxacin, moxifloxacin, gemifloxacin, 
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Figure 4. Chemical structure of nalidixic acid, enoxacin, norfloxacin, ciprofloxacin, ofloxacin,
lomefloxacin, sparfloxacin, grepafloxacin, clinafloxacin, gatifloxacin, moxifloxacin, gemi-
floxacin, trovafloxacin, arenoxacin, sulfamethoxazole, trimethoprim, erythromycin, clarithromycin,
azithromycin, fidaxomicin, and telithromycin.
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Figure 5. Chemical structure of chlortetracycline, oxytetracycline, tetracycline, demeclocycline, 
doxycycline, minocycline, lymecycline, meclocycline, methacycline, rolitetracycline, tigecycline, 
omadacycline, sarecycline, eravacycline, linezolid, sutezolid, eperezolid, delpazolid, tedizolid, 
tedizolid phosphate, radezolid, and TBI-223. 

Figure 5. Chemical structure of chlortetracycline, oxytetracycline, tetracycline, demeclocycline, doxy-
cycline, minocycline, lymecycline, meclocycline, methacycline, rolitetracycline, tigecycline, omada-
cycline, sarecycline, eravacycline, linezolid, sutezolid, eperezolid, delpazolid, tedizolid, tedizolid
phosphate, radezolid, and TBI-223.
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3. Antimicrobial Resistance

The World Health Organization (WHO) describes antimicrobial resistance as a natural
phenomenon that happens when germs cease responding to antibiotics that they were
previously susceptible to before. Resistance makes treating infections more difficult or
impossible [8,32]. In bacteria, there are two types of resistance: acquired and natural [33].
Natural resistance can either be produced or intrinsic (expressed in a species without
connection to horizontal gene transfer) (the natural bacterial genes are only expressed
to resistance levels after exposure to an antibiotic). Contrarily, acquired resistance can
develop after acquiring genetic material that already exhibits it through horizontal gene
transfer (HGT) (transformation, transposition, and conjugation) or by causing a muta-
tion in the cell’s DNA during replication [8,33,34]. Antimicrobial resistance mechanisms
include drug inactivation, decreased intracellular drug concentration, and altered drug
targets (Figure 7) [35,36]. One of the most significant mechanisms of acquired resistance
is the change or degradation of antibiotics. Bacterial enzymes have the ability to alter a
number of antibiotics, including aminoglycoside, chloramphenicol, and β-lactam [37,38].
By increasing efflux or decreasing influx, one can lower drug concentration [39]. Bacteria
can develop a high level of inherent resistance owing to this method. Porin mutations in
resistant strains alter the permeability of bacterial membranes, which reduces medication
uptake into the cell. For instance, OprD, a particular porin in strains of P. aeruginosa, can
result in a mutation for carbapenem resistance [40]. The Proteobacterial Antimicrobial
Compound Efflux (PACE) superfamily, the Resistance Nodulation Division (RND) family,
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the Small Multidrug Resistance (SMR) superfamily, the Multidrug and Toxic Compound
Extrusion (MATE) superfamily, and the ATP (adenosine triphosphate)-Binding Cassette
(ABC) superfamily are the six families that make up the transmembrane proteins that make
up efflux pumps [41,42]. The most prevalent efflux pumps in both Gram-positive and
Gram-negative bacteria are MFS and RND pumps [39]. The medication target changing
is another method of resistance. Examples include the resistance to glycopeptide and
polymyxin antibiotics caused by enzymes that chemically alter components of the cell
membrane necessary for antibiotic binding. Methyltransferases are another example of
target modifying enzymes since they change the rRNA elements on the ribosome and
thus become resistant to antibiotics including aminoglycoside, lincosamide, macrolide,
streptogramin, and oxazolidinone [43]. Another phenomenon known as “target protection”
occurs when an antibiotic target’s resistance protein protects it from antibiotic-induced
inhibition (target protection protein). Tetracycline ribosomal protection proteins (TRPPs)
are an illustration of this mechanism [44].
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Figure 7. Mechanism of antimicrobial resistance which include reduce intracellular antibiotic concen-
tration, antibiotic inactivation, and target site alteration.



Antibiotics 2023, 12, 628 12 of 62

4. Antibiotic Use and Resistance in Agriculture Sector

β-lactams, aminoglycosides, tetracyclines, macrolides, and other antibiotics with
comparable modes of action to those used by humans are causing a lot of concern due
to their possible side effects and risk management strategies [45]. Because medicines
are available over the counter, their overuse, abuse, and misuse are linked to antibiotic
resistance [46]. Antibiotic resistance is caused by the use of antibiotics in animals raised
for food. Food safety and public health may suffer if antibiotic residues are found in
products obtained from animals that are intended for human consumption [47–49]. Use
of unnecessary antibiotics in animals for the purpose of promoting development, as well
as waste products from veterinary care and livestock farming, human waste streams, and
soil fertilization, can result in the release of antibiotics pollution into the environment. As a
result, it is possible to think of the environment as a reservoir for antibiotics and bacteria
that are resistant to antibiotics, and their resistance genes [45,50–52]. Reports that some
bacterial infections in humans are brought on by animal pathogens (zoonotic pathogens)
such as Salmonella spp., Staphylococcus spp., Yersinia enterocolitica, Enterococcus spp., Listeria
monocytogenes, Campylobacter jejuni and Escherichia coli [53–55] have demonstrated that
antibiotic resistance can be transmitted directly or indirectly from animal to human. To
prevent antibiotic resistance and maintain the potency of the available antibiotics, a number
of practices should be regulated for the prudent use of antibiotics in the clinical and
agricultural sectors [56,57]. The demand for antibiotics to cure illnesses can be decreased
by improving animal feed, waste management, and animals’ natural immunity. Moreover,
using antibiotic alternatives including prebiotics, probiotic vaccines, and bacteriophages
can help reduce the need for antibiotics [58–60].

5. Novel Therapeutic Agents

Here, we discuss the most recent methods and tools (Figure 8) used to resurrect
antimicrobial drugs as a result of rising antibiotic resistance.

5.1. Nanotechnology in Combating Bacterial Resistance

The drug resistance dilemma can potentially be resolved with the use of nanotechnol-
ogy. Nanomaterials can be metallic, semiconducting, polymer, or carbon-based and have
been widely employed in studies and have been shown to be effective against infections
on the WHO priority list. Antibacterial activity of nanomaterials arises from interactions
between nanoparticles and bacteria, which includes cellular uptake and nanoparticle ag-
gregation, which leads to membrane damage and toxicity. In an effort to reduce resistance,
nanoparticles can serve as both antibiotics and delivery systems [61–63]. Metal-based
NPs (such as silver, copper and gold) have drawn attention due to their different proper-
ties such as being optically active, having a large surface area, being chemically reactive,
as well as mechanically strong. Favorable physicochemical characteristics of metallic
nanomaterials led them to be widely used in biomedical applications [64,65]. In order
to circumvent vancomycin resistance, a short half-life, and the necessity for a greater
dose, Yadav et al. [66] used a nanosized vehicle system for delayed and sustained release
of the antibiotic. Vancomycin was captured using arginine-α,β-dehydrophenylalanine
nanospheres in the procedure. When compared to vancomycin alone, which only mod-
erately inhibited S. aureus growth in in vitro and in vivo tests, nanoparticles effectively
inhibited S. aureus growth. The antibacterial therapy holds out a lot of promise thanks to
the delivery mechanism. A sliver nanoparticle conjugated with chitosan was created by
Mohammadinejat et al. [67] and tested for antibacterial and antibiofilm properties against
carbapenem-resistant Acinetobacter baumannii (CRAB) and methicillin-resistant S. aureus
(MRSA). The results showed that, compared to chitosan (64, 16 µg/mL) and Ag Np alone
(32, 16 µg/mL), the nanoparticle conjugate had a MIC90 of 8 µg/mL against CRAB isolates
and 4 µg/mL against MRSA. Ag Np–chitosan conjugation is a successful alternative with
antibacterial and anti-biofilm effects against CRAB and MRSA isolates, as demonstrated by
the conjugate’s ability to reduce biofilm formation of CRAB and MRSA isolates by 1/4 MIC
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concentration (2 µg/mL) and 1/2 MIC concentration (2 µg/mL), respectively. Polydopamine
(4-(2-aminoethyl)benzene-1,2-diol, PDA) has strong hydrophilicity and biocompatibility,
and Na Xu et al. [68] designed ferrous sulfide-polydopamine nanoparticles (PDA@FeS
NPs) in which ferrous and sulfur ions preserve normal body physiology. The photothermal
antibacterial activities of PDA@FeS NPs were very effective against both E. coli and S. au-
reus. When hydrogen peroxide is present, the near-infrared (NIR) light-mediated release of
ferrous ions under weakly acidic conditions (approximately 26.5%) caused the generation
of harmful hydroxyl radicals (.OH), which caused bacterial cell membrane damage and
content leakage. PDA@FeS NPs’ germicidal properties offer a fresh approach for creating
new antibacterial platforms. Moreover, Li et al. [69] created a positively charged porphyrin
iron-based porous organic polymer called FePPOPHydantoin that generates a significant
quantity of hydroxyl radicals. FePPOPHydantoin provided strong near-infrared (NIR) ab-
sorption, superior stability, high density of surface catalytic centers, and reproducibility.
In addition, it gave a multi-amplified antibacterial efficacy by combining photo-Fenton
and peroxidase mimetic catalytic treatment. The efficiency of the nanozymes against bac-
terial infection was demonstrated in an in vivo study using infected mice with S. aureus.
Furthermore, at the nanoscale range, diamagnetic silver nanoparticles (Ag) are renowned
for their antiviral, anticancer, and antibacterial effects. El-Bassuony [70] investigated the
results of combining ferromagnetic (cobalt) and paramagnetic (copper) components with
silver-magnetite nanoparticles. The results demonstrated that, compared to copper nanofer-
rite (CuAF), cobalt nanoferrite/silver-magnetite (CoAF) nanocomposites produced a more
dramatic effect in the magnetic experiments. This is due to the higher coercivity Hc and
saturation magnetization Ms of CoAF. Both nanocomposites shown robust antimicrobial
activities when tested against Gram-positive and Gram-negative bacteria, indicating the
potential application of nanomaterials as antibacterial agents. Human alpha-defensin 5
(HD5) antimicrobial peptide (AMP) was coupled with myristic acid (tetradecanoic acid) to
produce Myristoylated HD5 nanobiotics in a method utilized by Lei et al. [71] to induce
self-assembly. Cationicity and hydrophobicity are both critical for killing Gram-positive
and Gram-negative bacteria. Human alpha-defensins clustered in nanoassemblies com-
bine these two characteristics for efficiently killing bacteria. Furthermore, the nanobiotic
showed resistance to proteolytic degradation in vivo, and minimization of renal excretion
due to increased molecular size which led to the improvement of the bioavailability of the
HD5-myr nanobiotic. The self-assembled nanobiotic shown improved broad-spectrum
bactericidal action specifically against E. coli and MRSA by disrupting the cell wall and
possibly other membrane structures, according to in vitro data. Excellent tolerability was
also demonstrated in in vivo testing, where it was discovered that the nanobiotic could
protect mice from MRSA skin infections and save them from E. coli-induced sepsis [72].
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Implementation of Quality by Design (QbD) Approach in Nano-Delivery

The phrase “quality by design” (QbD) refers to products that are free of contamina-
tion and provide the consumer with the therapeutic benefit stated on the label. The FDA
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promotes the application of QbD concepts in the creation, production, and oversight of
pharmaceutical products. The QbD technique strengthens development capability, speed,
formulation design, and the manufacturer’s capacity to pinpoint the underlying reasons of
manufacturing failures, which increases the effectiveness of product development and pro-
duction. It also infuses quality into the product itself [73,74]. By employing a methodical
QbD technique, Joshi et al. [75] created rifampicin-loaded bovine serum albumin nanopar-
ticles (RIF-BSA-NPs) with optimal particle size and entrapment effectiveness for useful
intravenous use. The 72 h sustained release of rifampicin from the BSA NPs matrix indicates
that the formulated NP is appropriate for intravenous administration with the potential to
enhance rifampicin’s therapeutic effects. The sulfonamide antibiotic Silver Sulphadiazine
(Silver [(4-aminophenyl)sulfonyl](pyrimidin-2-yl)azanide, SSD), which is an efficient an-
tibacterial drug used for treating burn wounds, was examined by Thakur et al. [76] using
the QbD paradigm. The penetration and retention efficacy of the medicine was increased
by SSD in an organo-gel foundation based on egg oil, according to the results. Furthermore,
the prolonged release of the medication from the body decreased the need for frequent
application and the creation of scars, which improved patient compliance. Because of
this, SSD egg oil organogel holds promise as a delivery strategy for the treatment of burn
wounds and associated infections. Systematic QbD was utilized by Ghodake et al. [77]
to create a dry powder inhaler of sodium cefoperazone (1, Figure 9) based on liposomes.
The effectiveness of liposomes as an anti-biofilm agent against P. aeruginosa was exam-
ined. The first crucial step in quality-based development is defining the target product
profile (TPP), which is a summary of a drug product’s quality attributes including the
route of administration, dosage form, pharmacokinetic parameters, and others. The final
dosage form was a dry powder which was filled into capsules to be administered via
pulmonary inhalation. Particle size and % entrapment efficiency were also selected as
important quality attributes (CQAs) to guarantee the quality of the finished product. When
compared to the free drug, the cefoperazone liposomal formulation demonstrated stability,
nanometer-sized particle size, high drug entrapment, and enhanced in vitro antibacterial,
antibiofilm, and eradication at almost 1 g/mL. For the formulation to be employed for
the treatment of P. aeruginosa-related lung infections after cystic fibrosis, more testing is
required. For the development of drugs and reliable quality control, a thorough under-
standing of QbD-based processes and design spaces is crucial. These spaces correspond
to the critical process parameters (CPPs). A complex liposomal amphotericin B (AmB)
product was created by Liu et al. [78] and improved utilizing the QbD technique. Research
has demonstrated that the manufacturing technique, formulation ingredients, and curing
temperature applied during the production process—and more specifically, the hydration
and microfluidization—have a significant impact on the drug’s efficacy. Moreover, the
design space was investigated for the reliable creation of a therapeutic product with un-
desirable qualities. The broad design space was observed at higher curing temperatures,
lower di-stearoyl-phosphatidylglycerol (DSPG)-to-phospholipid ratios, and greater active
pharmaceutical ingredient (API) to phospholipid ratios. Although AMPs offer a viable
alternative to antibiotics, problems with toxicity and low bioavailability still need to be
resolved. To get beyond these obstacles, Qbd-based antimicrobial peptide modification
and formulation design are presented by Manteghi et al. [79] in order to create a more
stable, affordable, and effective delivery to the target location. In addition to the immune
system’s manufacture of antibodies, it was discovered that PEGylation of AMPs causes
a decrease in biological activity due to the loss of its positive charges. The possible dan-
gers associated with the AMP PEGylation process were examined using the AMP model
PGLa (GMASKAGAIAGKIAKVALKAL-NH2). The parameters used to prioritize rankings
included final size, conjugate activity, and specificity. The development of an optimum
formulation of PGLa for a possible drug delivery system results from taking into account all
the important criteria and choosing the best procedures and materials. As a result, the early
pharmaceutical developments integrated by QbD technique aids researchers in risk-based
product optimization. Understanding the cause-and-effect relationships during the initial
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Risk Assessment (RA) process provides the foundation for the experimental design and
development support to obtain the final product within the desired quality range.
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(aminomethyl)phenyl]-5-chloro-3- methylbenzothiophene-2-sulfonamide (10), piperidinylpyrim-
idine derivatives (11), thiolactomycin (TLM) (12), pantetheine analog (PK940) (13), BDM31369 (14),
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1-yl)acetamide (21).
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5.2. Computational Methods in the Development of New Antibacterial Agents
5.2.1. In Silico Modelling

In silico modeling is a term used to describe computer-assisted experimentation that
combines the benefits of both in vivo and in vitro research. Almost limitless parameters
can be used in in silico models to provide knowledge that is not ethically or practically
possible to gather via conventional methods. In medicine and therapies, computational
models or simulations enable predictions and lead to discoveries [80,81]. Wet-lab and
in silico approaches are useful in the quick identification of new lead AMPs candidates,
according to Oyama et al. [82] The rumen metagenomic dataset was used to perform
prediction and similarity analysis of AMPs. Among 829 sequences, six AMPs were found
and demonstrated to have potential action. Two of these six possibilities, designated as
HG2 (MKKLLLILFCLALALAGCKKAP) and HG4 (VLGLALIVGGALLIKKKQAKS) for
additional characterization, were found. With negligible toxicity to human primary cell
lines, experimental evaluation and characterization of HG2 and HG4 indicated antibacterial
efficacy against Gram-positive bacteria. The suppression of other cellular processes and
contact with the cytoplasmic membrane of target cells are examples of possible mechanisms
of action. These peptides may be used safely as alternative treatments with antibiofilm
action for the treatment of bacterial infections because of their non-toxic effect and in vivo
efficacy against MRSA USA300 infection in the Galleria mellonella infection model. With the
purpose of discovering less expensive antibacterial therapeutic medications, a study by
Masalha et al. [83] combined a set of 628 antibacterial pharmaceuticals with active domains
and 2892 natural products with inactive domains. A highly discriminative model was built
using the iterative stochastic elimination (ISE) technique to index natural materials for their
antibacterial bioactivity. Ten natural compounds scored highly as potential antibacterial
medication candidates, allowing virtual screening to identify 72% of the antibacterial
medicines. Caffeine and ricinine (2 and 3, respectively, in Figure 9) were the two molecules
among ten natural products that were found and tested for their antibacterial action. To
speed up the process of finding new drugs, the precisely designed prediction model can be
used for virtual screening of enormous chemical databases. In the AfroDb database, there
are more than 16,000 African plant structures that have well-calculated ADMET attributes.
Alhadrami et al. [84] investigated the possible antibacterial action of medicinal plants from
North Africa, particularly against the D-alanine-D-alanine ligase (Ddl-B) or DNA gyrase
B subunits (Gyr-B) or both of the E. coli enzymes. The crystal structures of E. coli Ddl-B
and Gyr-B served as the basis for the beginning of structural-based virtual screening. The
top-scoring hits were anthraquinones (4, Figure 9), and their efficacy against Ddl-B, Gyr-B,
multidrug-resistant (MDR) E. coli, MRSA, and VRSA was examined in vitro. Some of the
tested derivatives, including emodin and chrysophanol (5 and 6, respectively, in Figure 9),
demonstrated strong micromolar enzyme inhibition as well as antibacterial activity against
the bacteria in question with MIC values ranging from 2–64 µg/mL and low to moderate
cellular cytotoxicity. These discoveries represent an important step in the creation of new
antibacterial drugs to combat MDR strains. In silico molecular docking was employed in
Ali’s study [85] to examine ten naturally occurring marine fungus derived chemicals against
a mutant enzyme from Neisseria gonorrhoeae. The SWISS-ADME database investigated the
chemicals to determine their non-toxicity. Elipyrone A (7, Figure 9) with six hydrogen
bonds was the best compound when the compounds’ binding affinity, chemical interactions,
and toxicity were examined. Speck-Planche et al. [86] constructed a multitasking model for
quantitative-structure biological effect relationships to study anti-Pseudomonas activities
and ADMET features of organic compounds (mtk-QSBER). To evaluate the created model,
delafloxacin (8, Figure 9) was employed as a case study. The drug’s outstanding similarity to
experimental testing was revealed by the results, confirming the model’s value for virtually
screening anti-Pseudomonas medicines. Thymoquinone (TQ), a phytoconstituent of Nigella
sativa essential oil with possible antibacterial activity, was investigated by Qureshi et al. [87].
TQ was molecularly docked in silico against a number of antibacterial target proteins. S.
epidermidis ATCC 12228 and Candida albicans ATCC 10231 were the bacterial and fungal
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strains that were most vulnerable to TQ. N-myristoyltransferase from Candida albicans,
NADPH-dependent D-xylose reductase from Candida tenuis, D-alanyl-D-alanine synthetase
(Ddl) from Thermus thermophilus, and transcriptional regulator qacR from S. aureus are the
four preferred target proteins for TQ as determined by in silico molecular docking. The
most effective binding, according to molecular dynamics (MD) simulations, was between
TQ and Ddl or NADPH-dependent D-xylose reductase. The study emphasizes TQ’s
promising effectiveness against multidrug-resistant (MDR) infections, particularly Candida
albicans and Gram-positive bacteria. A total of 45 strains of the zoonotic and foodborne
pathogen Aliarcobacter butzleri (A. butzleri) were examined by Müller et al. [88] utilizing the
gradient strip diffusion method and whole-genome sequencing for antibiotic susceptibility
testing. Erythromycin, doxycycline, tetracycline, ciprofloxacin, and streptomycin resistance
were found in German strains. Possible resistance mechanisms were identified using in
silico resistance profile prediction which utilized a specially created database (ARCO IBIZ
AMR). GyrA point mutation and ciprofloxacin resistance have a strong link, and ampicillin
resistance and bla3 gene have a weaker correlation. Moreover, in silico virulence profiling
revealed a whole lipid A cluster presents in all examined A. butzleri genomes as well as a
broad spectrum of putative virulence markers.

5.2.2. Fragment-Based Drug Design (FBDD)

Fragment-based drug design (FBDD), whose library contains thousands of fragments,
is a potent method for creating lead compounds. Novel and potent inhibitors of Mycobac-
terium tuberculosis (Mtb) enzyme 2-trans-enoyl-acyl carrier protein reductase (InhA) was
designed using FBDD by Sabbah et al. [89] Using Differential Scanning Fluorimetry (DSF),
nuclear magnetic resonance (NMR), and X-ray, 18 hits were found after screening a library
of 800 pieces. NMR and X-ray techniques were used to confirm the found hits. Although the
fragment hits had no discernible inhibitory activity, molecular docking and the fragment-
growing technique allowed for the development of effective and new InhA nanomolar
inhibitors. With submicromolar IC50 values, the insertion of a benzothiophenene resulted
in the synthesis of powerful inhibitors of InhA, such as the N- [3-(aminomethyl)phenyl]-5-
chloro-3-methylbenzothio-phene-2-sulfonamide (10, Figure 9). Notwithstanding the actual
minimal inhibitory/bactericidal concentrations, it is important to investigate additional fac-
tors including resistance, stability, and ADME characteristics. According to the study, FBDD
is a useful method for creating novel inhibitors [89,90]. Several Mtb enzymes are also being
explored as potential targets for developing new drugs, such as Decaprenylphosphoryl-β-
D-ribose 2′-epimerase (DprE1), which is involved in the metabolic pathway responsible
for cell wall structure [91,92]; β-ketoacyl-AcpM synthase (KasA), which is crucial for fatty
acid biosynthesis; a transcriptional repressor (EthR), Antigen 85 (Ag85), which is involved
in the mycolic acid synthetic pathway; and 7,8- diaminopelargonic acid synthase (BioA),
which play a vital role in the biosynthesis of the biotin pathway and arginine biosynthesis
pathway [91]. DprE1 inhibitors have been identified as piperidinylpyrimidine derivatives
(11, Figure 9) by Borthwick et al. [93] during initial screening utilizing SAR with MIC90
values of 30.6 µM and 15.6 µM. The newly found substance has shown positive in vivo
results against acute Mtb. FBDD was utilized by several scientists to identify hit com-
pounds for these targets. Thiolactomycin (TLM) (12, Figure 9) and pantetheine analog
(PK940) (13, Figure 9) were created as KasA enzyme inhibitors by Kapilashrami et al. [94].
BDM31369, BDM31827, and 4-Iodo-N-prop-2-ynylbenzenesulfonamide (BDM43266); (14,
15, and 16, respectively in Figure 9), were identified by Villemagne et al. [95] as several hit
compounds for EthR by library screening to treat MDR-TB. Tetrahydro-1-benzothiophene
(THBTP) Analogues (17, Figure 9) against Ag85 were discovered by Scheich and Mendes
et al. [96,97]. Through fragment screening, Dai et al. [98] discovered a powerful aryl hy-
drazine inhibitor of BioA 2-(aminomethyl)benzothiazole (18, Figure 9). The role of ArgB,
ArgC, ArgD, and ArgF enzymes in the L-arginine production pathway in Mtb is high-
lighted by Gupta et al. [99], who also confirmed a hit compound against ArgB. The findings
demonstrated that compounds NMR446 and L-canavanine (19 and 20, respectively, in
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Figure 9) significantly suppressed the growth of M. tuberculosis. The new compound N-(5-
(azepan-1-ylsulfonyl)-2-methoxyphenyl)-2-(4-oxo-3,4-dihydrophthalazin-1-yl) acetamide
(21, Figure 9), which was re-covered from a previous lead compound with a unique binding
mode (non-conserved allosteric site), was identified by Whitehouse et al. [100] using high
throughput screening (HTS) and fragment-based methods (e.g., DSF) against fumarate
hydratase and Mtb H37Rv bacteria [101].

5.3. Antibiotic Alternatives
5.3.1. Antimicrobial Peptides (AMPs)

Antimicrobial peptides (AMPs) are organic substances found in all kingdoms of life,
including bacteria, fungi, plants, and animals. In addition to negatively charged microbial
membranes, AMPs may also target intracellular components such as ribosomes, spe-
cific proteins, and negatively charged nucleic acids [102–105]. Protonectin (22, Figure 10)
and polybia-CP (ILGTILGLLKSL-NH2), two antimicrobial peptides, were isolated nat-
urally from the venom of the social wasps Agelaia pallipes and Polybia paulista, respec-
tively. Polybia-CP and protonectin were created by Wang et al. [106,107] and demon-
strated to exhibit substantial antibacterial activity against both Gram-positive and Gram-
negative bacteria, including multidrug-resistant strains, by concentrating on the bacte-
rial membrane. Campoccia et al. [108] evaluated the cytotoxicity of AMPs Dadapin-1
(GLLRASSKWGRKYYVDLAG-CAKA) on human osteoblast cells and employed it against
particular bacterial species isolated from orthopedic illnesses. According to the results,
Dadapin-1 significantly inhibited both Gram-positive and Gram-negative bacteria. Novel
β2,2- and β3,3-bis-homo-ornithine/arginine peptides were created by Boullet et al. [109].
The supertryptophan residue (2,5,7-tri-tertbutyltryptophane) and cationic peptides were
coupled to create AMPs with MIC values ranging from 2 to 16 µg/mL against both Gram-
positive and Gram-negative bacteria. The best candidate that demonstrated a significant
increase in the survival rate in vivo in septic mice was the Tbt-β2,2 h bis-Arg-OMe com-
pound (23, Figure 10) [110]. Shrimp antilipopolysaccharide factors (ALFs) were employed
by Matos et al. [111] to create a cysteine-free α-helix secondary structure peptide that
closely follows the amino acid sequence of the central β-hairpin of Litopenaeus vannamei
ALFs (Litvan ALF-E33-52 (YVNRSPYLKKFEVHYRADVK), Litvan ALF-F31-50 (TYFVTP-
KVKSFELYFKGRMT), Litvan ALF-G35-54 (SYSTRPYFLRWRLKFKSKVW)). The synthetic
peptides’ in vitro results showed a wide range of activity against both Gram-positive
and Gram-negative bacteria and fungus, as well as their capacity to operate synergisti-
cally, which highlights the possibility for discovering new drugs. Because of the toxicity
concerns and pharmacokinetics restrictions associated with AMPs, Zharkova et al. [112]
studied the synergistic effect of a number of AMPs (protegrin 1 (PG-1) (RGGRLCYCR-
RRFCVCVGR), bactenecin ChBac3.4 (RFRLPFRRPPIRIHPPPFYPPFRRFL-NH2), and RFR-
ChBac3.4 (RFRRFRLPFRRPPIRIH-NH2)) with antiseptic agents (sodium hypochlorite,
etidronic acid, dioxydin, poviargolum, prontosan) and some surfactants (amphoteric co-
camidopropyl betaine and anionic sodium lauroyl sarcosinate) against resistant bacteria
and biofilms and whether the toxic side effects can be reduced toward the host. The
combination of AMP, antiseptic, and surfactant showed promise, with improved effec-
tiveness against the formation of biofilm and lower toxicity for topical formulations. For
the careful and effective development and preservation of AMPs-based products, fur-
ther research needs to be conducted. AMPs from predatory myxobacteria were stud-
ied in silico by Arakal et al. [113]. Myxo_mac104 (VNRVTRVIATRRNEAERIGVPLYF),
Stig_213 (VVKTVVSRAYTRAGLAQRLGWHDLRHSTRT), Coral_AMP411 (MMGAPTR-
RFKHHAWHETTVARRATARYVGGLSSRFVTR), and So_ce_56_913 (VEKSEKAISGARRG-
SPIVNRHVVHLEHVRLKGPYRLSDRLSSAPRTSTRV) were used to create the four AMPs.
The in vitro results of So_ce_56_913 and Coral_AMP411 revealed significant MIC values
and revealed that, in addition to their anti-inflammatory and antifungal activities, most pu-
tative AMPs are active against more than two bacterial pathogens, with negligible activity
against viruses. Myxobacteria-derived AMPs could be a viable source of new antibacte-
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rial compounds. Sp-LECin (GCVFLLPAKPHNYKKVFLSKGV), a C-type lectin homolog
containing 22-amino acids from Scylla paramamosain, was created by Chen et al. [114]. In
addition to disrupting microbial membrane integrity and causing a leakage of cellular
contents, Sp-LECin was discovered to have antibacterial and anti-biofilm activity against
Pseudomonas aeruginosa. This is because Sp-LECin binds with lipopolysaccharide to increase
membrane permeability, which causes the production of reactive oxygen species (ROS),
which kills P. aeruginosa.
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1,8-cineole (25) alpha-pinene (26), trans-chrysanthenyl acetate (27), thymol (28), aromaden-
drene (29), and β-caryophyllene (30), carvacrol (31), limonene (32), cinnamaldehyde (33),
Hamamelitannin (34), (N-(((2R,3R,4S)-4-(benzamidomethyl)-3,4-dihydroxytetrahydrofuran-2-
yl)methyl)-2-chlorobenzamide) (35), (ethyl 4-((3,5-diamino-1H-pyrazol-4-yl)diazenyl)benzoate (36),
ethyl 4-((5-amino-3-((4-(dimethylamino)benzylidene)amino)-1H-pyrazol-4-yl)diazenyl)benzoate (37),
ethyl-4-((2-amino-5,7-dimethylpyrazolo [1,5-a]pyrimidin-3-yl)diazenyl)benzoate (38), ethyl-4-((2,7-
diamino-6-cyano-5-(4-(dimethylamino)phenyl)pyrazolo [1,5-a]pyrimidin-3-yl)diazenyl)benzoate (39),
and ethyl-4-((2-amino-6-cyano-5-(4-(dimethylamino)phenyl)-7-hydroxypyrazolo [1,5-a]pyrimidin-
3-yl)diazenyl)benzoate) (40), ML364 (41), silybins AB (42, 43), silychristin A (44), and halogenated
flavonolignans derivatives (45).

5.3.2. Essential Oils

Although there is a lack of clinical proof, plant essential oils (EOs) are harmless, fra-
grant, oil-like volatile components that are utilized as a natural therapy for the treatment
of different chronic conditions. Although EOs also exhibit strong antibacterial activity,
their precise mode of action is unclear, which has restricted their use [115]. Using gas
chromatography-mass spectrometry (GC-MS), Tofah et al. [116] investigated the biochemi-
cal and antimicrobial activity of lavender, Lavandula multifida L. They also identified the
essential oils extracted from L. multifida and discovered that the main component is cam-
phor (24, Figure 10) in addition to other extracts like 1,8-cineole and alpha-pinene (25
and 26, respectively, Figure 10). E. coli and S. aureus were resistant to the antibacterial
effects of L. multifida essential oil. Su et al. [117] investigated the chemical make-up, an-
tibacterial, and antioxidant properties of the essential oil from Centipeda minima (EOCM)
(trans-chrysanthenyl acetate, thymol, aromadendrene, and β-caryophyllene), (27, 28, 29
and 30, respectively, Figure 10) as well as the two monomers thymol and carvacrol (31,
Figure 10). The three chemicals (EOCM, thymol, and carvacrol) were found to have strong
antibacterial activity because of their effects on bacterial cell membranes, which result
in material loss, as well as their suppression of protein and biofilm development, all of
which hinder bacterial normal growth. Psidium guajava (guava) leaf essential oil (PGLEO)
(limonene (32) and β-caryophyllene (30)) (Figure 10) was studied by Alam et al. [118] for
its potential to treat oral infections and oral cancer. PGLEO was found to exhibit potential
antibacterial action against Streptococcus mutans (S. mutants) and Candida albicans (C. albi-
cans) in vitro and in silico studies. These findings make PGLEO a valuable source for the
development of novel therapeutic agents to treat oral infections. Cinnamon essential oil
(CEO), which is a secondary metabolite derived from dried cinnamon, was examined for
its antibacterial properties by Zhang et al. [119] To determine their mode of action, CEO
with cinnamaldehyde as the main component (33, Figure 10) was evaluated on Salmonella
Enteritidis (S. enteritidis). According to the results, CEO decreased bacterial metabolism by
inhibiting ATP, ATPase, and the tricarboxylic acid cycle (TCA), which had an impact on S.
enteritidis’s ability to breathe.

5.3.3. Anti-Quorum Sensing (QS)

One of the primary mechanisms used by bacteria to resist antibiotics is the cre-
ation of biofilms. Biofilm development is regulated by bacterial chemical communica-
tion (quorum sensing) using auto-inducers (AIs) from the N-acyl homoserine lactones
(AHLs) group [120,121]. A potential treatment strategy to reduce bacterial virulence fac-
tors and combat antibiotic resistance is to target QS. A naturally occurring substance
derived from Hamamelis virginiana called hamamelitannin (2′,5-di-O-galloyl-d-hamamelose,
HAM) (34, Figure 10) interferes with S. aureus’s QS by altering the biofilm’s susceptibility
to vancomycin via the trapP receptor [122,123]. The 5-ortho-chlorobenzamide deriva-
tive (N-(((2R,3R,4S)-4-(benzamidomethyl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl)-2-
chlorobenzamide) (35, Figure 10) demonstrated greater effectiveness in enhancing the
impact of antibiotic in vivo compared to HAM [124]. A number of pyrazole and pyrazolo
[1,5-a]pyrimidine derivatives were created by Ragab et al. [125] and tested for antibacterial
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efficacy against Gram-positive and Gram-negative bacteria that were multidrug resistant.
Five substances (ethyl 4-((3,5-diamino-1H-pyrazol-4-yl)diazenyl)benzoate (36), ethyl 4-((5-
amino-3-((4-(dimethylamino)benzylidene)amino)-1H-pyrazol-4-yl)diazenyl)benzoate (37),
ethyl-4-((2-amino-5,7-dimethylpyrazolo [1,5-a]pyrimidin-3-yl)diazenyl)benzoate (38), ethyl-
4-((2,7-diamino-6-cyano-5-(4-(dimethylamino)phenyl)pyrazolo [1,5-a]pyrimidin-3-yl)diazenyl)
benzoate (39), and ethyl-4-((2-amino-6-cyano-5-(4-(dimethylamino)phenyl)-7-hydroxypyrazolo
[1,5-a]pyrimidin-3-yl)diazenyl)benzoate) (40) (Figure 10) were discovered to exhibit sig-
nificant antibacterial activity through biofilm inhibition especially against S. aureus and P.
aeruginosa, making these compounds promising anti-QS candidates and lead molecules
in drug discovery. A brand-new small molecule called ML364 (41, Figure 10) was found
by Zhang et al. [126] which acts on the synthesis of staphyloxanthin and pyocyanin in P.
aeruginosa and S. aureus, respectively. Results obtained in vitro and in vivo demonstrated
that ML364 interfered with pathogens’ QS systems by preventing the detection of AI-2 or
its nonborated form (S)-4,5-dihydroxypentane-2,3-dione (DPD) signaling, which highlights
the development of novel antibacterials for the treatment of resistant bacteria. Moreover,
Hurtová et al. [127] synthesized a number of halogenated compounds that target the bacte-
rial QS protein AI-2 and examined their biological effects on S. aureus and P. aeruginosa. In
particular, the brominated derivatives of flavonoids highlight the promising action of these
compounds as antibacterial agents, but further toxicological and pharmacological tests
should be conducted. Flavonolignans (silybins AB (42, 43), silychristin A (44)) (Figure 10)
was used to prepare the halogenated derivatives (45, Figure 10), which showed to exhibit
an inhibitory action on the adhesion of bacteria to the service in addition to preventing
biofilm formation.

5.3.4. Vitamin B6

Vitamin B6 plays a crucial function as a possible antibacterial agent against Acineto-
bacter baumannii, according to Nimma et al. [128]. Enzymes of the vitamin B6 biosynthesis
pathway are only present in bacterial pathogens and are not present in human hosts, mak-
ing them potential therapeutic targets. The first step in the biosynthesis process for vitamin
B6 is the conversion of D-erythrose-4-phosphate (E4P) to 4-phosphoerythronate, which is
carried out by the enzyme erythrose-4-phosphate dehydrogenase (E4PDH). The enzyme
additionally facilitates the transformation of glyceraldehyde-3-phosphate (G3P) into 1,3
bisphosphoglycerate (1,3BPG) [128,129]. The research demonstrated that E4PDH operate as
cell surface receptors for the human iron transport proteins lactoferrin (Lf) and transferrin
(Tf). Given its two essential functions in metabolism and iron acquisition, the E4PDH
enzyme from A. baumannii may be critical in bacterial pathophysiology [128]. In addition to
vitamin B6 derivatives, metals such as gold [130], nickel, copper [131] and gallium [132] are
employed. Metal complexes were investigated for their potential antibiotic efficacy against
various bacterial strains, and the results against resistant bacteria were encouraging. This
provided a basis for further research into new antibiotic classes.

5.3.5. Bacteriophages (Phages)

Bacteriophage viruses can be utilized specifically to fight bacteria as a result of the
rise in multidrug resistance microorganisms. Several infection cycles exist for phages. In
order to integrate their genome into the bacterial chromosome, temperate phages work to
lysogenize their bacterial hosts [133]. Contrarily, obligately lytic phages inject their genome
into the host cell, then command the host cell to divide, assemble into new virus particles,
and burst from the host cell, resulting in its lysis [134]. Six lytic phages were utilized by
Alexyuk et al. [135] against E. coli isolated from sewage. All E. coli strains’ growth was fully
suppressed within 6 h by the phage cocktail. Using Sytox green, a membrane-impermeant
nucleic acid dye that colors the DNA of lysed bacteria and produces a fluorescence signal as
phage infection develops, Egido et al. [136] devised a technique to monitor phages infection
in real time. P. aeruginosa and K. pneumoniae, two ESKAPE infections for which an increase
in fluorescence indicates phage-mediated death, were subjected to the technique. The study
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demonstrated the value of this strategy in choosing phages for use against Gram-negative
bacteria and for therapeutic purposes.

5.3.6. Odilorhabdins (ODLs)

Xenrhabdus is capable of producing a diverse array of secondary metabolites through
the use of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs)
genes in both Gram-positive and Gram-negative Actinomycetes genera, as stated in [137].
By binding to a specific location on the ribosome (30S subunit), ODLs, which are cationic
peptides made by NRPSs gene cluster enzymes of Xenorhabdus nematophila, disrupt the
ability of bacteria to interpret and translate genetic code. As a result, it causes miscoding
when producing new proteins, which causes bacterial cell death [138,139]. To tackle Gram-
negative, Gram-positive, and multidrug-resistant bacteria, NOSO-502 (46, Figure 11) is
a new class of bacterial ribosomal inhibitors ODLs that is safe and highly selective [140].
The effectiveness of NOSO-502 against Enterobacter cloacae complex (ECC), one of the main
causes of nosocomial infections globally, was assessed by Pantel et al. [141] Except for two
specific clusters (XI and XII) that are infrequently detected in clinical cases, in vitro results
of NOSO-502 against ECC strains validated its robust antibacterial action.
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5.3.7. 18β-glycyrrhetinic Acid

The Glycyrrhiza glabra Linn. Plant, which includes many phytocompounds, as gly-
cyrrhizin, 18β-glycyrrhetinic acid, isoflavones, and glabrin A and B, is increasingly re-
ceiving attention as an alternative to the usage of antibiotics [142]. The inert triterpenoid
saponin glycyrrhizin (GA) is hydrolyzed in the body to produce the active metabolite
18β-glycyrrhetinic acid (GRA) (47, Figure 11), which has anti-inflammatory, antiviral, and
antioxidant properties. The effectiveness of GRA against Neisseria gonorrhoeae was examined
in vitro by Zhao et al. [143]. The results demonstrated that GRA has a strong antibacterial
action with a dose-dependent reduction in viable N. gonorrhoeae and MICs ranging from
3.9 to 62.5 µg/mL. The way that GRA works is by preventing the development of new
biofilms and reducing existing ones, which suggests that it could be an effective treatment
for gonorrhea.

5.3.8. Darobactins

Darobactins (DAR), a recently created small heptapeptide antibiotic, specifically kills
Gram-negative bacteria by acting on the essential outer membrane protein (BamA) [144].
Darobactins are remarkable for their ability to attach exclusively to BamA without dam-
aging the Bacteriodes in the human gut microflora. They are produced by the ento-
mopathogenic bacterium Photorhabdus khanii [145]. The promising lead chemical DAR
A (48, Figure 11) is produced by the biosynthetic gene cluster (BGC) that codes for the
DarA precursor, the radical S-adenosylmethionine (SAM) (RaS) enzyme DarE, and the
three transport-related proteins (Dar B, C, and D) [145–147]. Seyfert et al. [148] described
biosynthetic engineering of new darobactins with increased antibacterial activity in a het-
erologous host. They showed that the newly developed darobactin has greater activity
against carbapenem-resistant A. baumannii without hazardous side effects. It also binds
to BamA more firmly. The effects of DAR, Polyphor peptide 7 (polymyxin B1 coupled
to a cyclic peptide), [149] and a minor chemical (MRL-494) (49, Figure 11) [150] were all
examined in vivo in E. coli by Peterson et al. [151]. DAR completely prevents signal bind-
ing to BamA as a result, but it has no effect on assembly during the post-binding stage.
Moreover, Polyphor peptide 7 and MRL-494 may be able to block at least two steps of
BamA function or inhibit OMP assembly directly, which opens the door to pairing the
medications as antibacterial agents to increase the potency of the inhibition at different
stages of OMP assembly.

5.3.9. Cannabinoids

Cannabis sativa L. (C. sativa) has a high concentration of phytochemicals, which are what
give it its therapeutic properties. The phytocannabinoids trans-∆-9-tetrahydrocannabinol
(THC) (50), cannabidiol (CBD) (51), cannabinol (52), cannabigerol (CBG) (53), and
cannabichromene (54) are the most often characterized phytocannabinoids (Figure 11) [152].
Although the exact method by which cannabinoids damage bacterial membranes is still
unknown, certain investigations have shown that this is how CBD works [153,154]. The
antibacterial effects of CBD and CBG were studied by Luz-Veiga et al. [155]. In addi-
tion to inhibiting Staphylococci adherence to keratinocytes, the compounds also showed
efficacy against P. aeruginosa and E. coli, with lethal MIC values ranging from 400 to
3180 µM. In light of this, the study recommends using phytocannabinoids as topical anti-
microbial medicines for dermatological usage. The antibacterial and antioxidant properties
of CBD and its homologue, 8,9-dihydrocannabidiol (H2CBD), were also examined by
Wu et al. [156]. The outcome showed that the CBD analogue’s phenolic hydroxyl moiety is
a crucial group to perform antioxidant and antibacterial activities. Consequently, because
of their identical performance and time-kill kinetics curves, H2CBD can be utilized as a sub-
stitute for CBD. The interaction of CBD with broad-spectrum antibiotics such as ampicillin,
kanamycin, and polymyxin B was studied by Gildea et al. [157]. By disrupting membrane
integrity at extremely low dosages, CBD-antibiotic co-therapy showed an effective activ-
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ity against Salmonella typhimurium (S. typhimurium), offering an intriguing alternative to
treat S. typhimurium.

5.4. Drug Repurposing

Drug repurposing or repositioning is an approach term describing the use of approved
drugs besides their original indications. This approach can bring failed drug back to life
and highlight new targets and indications for existing drugs. The advantages of drug
repurposing are increasing efficiency, minimizing investment and safety risks, reducing
time to FDA approval, and reducing costs for pharmaceutical companies [158–162]. Here,
we mention some of repurposed drug for antibacterial use (Figure 12).
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5.4.1. Ticagrelor

Ticagrelor (55, Figure 12) is a blood-thinning medication used to treat atherosclerotic
cardiovascular disease. It works by blocking the platelet adenosine diphosphate P2Y12 re-
ceptor to prevent platelet aggregation [163,164]. According to a study by Sexton et al. [165],
ticagrelor improves lung function in patients with pneumonia. This finding motivated
P. Lancellotti et al. [166] to test ticagrelor and some of its metabolites (M5 AR-C133913,
M7, and M8 AR-C124910) (56, 57, and 58, respectively, Figure 12) for their antibacterial
activity in mouse models in vitro and in vivo [167]. The results demonstrated that against
particular antibiotic-resistant Gram-positive bacteria with MBC range of 20–40 µg/mL, tica-
grelor and one metabolite (AR-C124910) (58, Figure 12) have superior bactericidal activity
to that of vancomycin. Moreover, Pant et al. [168] investigated Ticagrelor’s antibacterial
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and anti-biofilm activity in vivo to treat mice models with prosthetic joint infection (PJI)
brought on by S. aureus as well as in vitro against S. aureus biofilm genes (icaA, icaD, ebps,
fib, eno, and agr). The results revealed that ticagrelor had antibacterial and antibiofilm
activity against S. aureus in vitro, either alone or in combination with certain antibiotics,
and that it produced downregulation of biofilm-related genes, icaD, ebps, fib, and eno.
Similar outcomes against S. aureus PJI were observed in vivo, where ticagrelor alone or in
combination with cefazolin dramatically reduced bacterial concentrations on the implants
by reducing bacterial dispersion to periprosthetic tissue. Hence, ticagrelor may function as
an effective adjuvant therapy for S. aureus PJI, but additional research is required to fully
understand how it works. Ticagrelor was also utilized to stop the growth of C. difficile by
Phanchana et al. [169] using whole-cell growth inhibition assays. Data show that ticagrelor,
which has a MIC range of 20–40 µg/mL against C. difficile, inhibits the growth of biofilms
and the germination of spores.

5.4.2. Mitomycin C (MMC)

Mitomycin C (MMC) (59, Figure 12) is a potent DNA crosslinker used for the treatment
of bladder, gastric, and pancreatic cancers [170]. The drug was found to have antibacterial
properties against bacterial pathogens including E. coli, S. aureus, and P. aeruginosa [171].
Cruz-Muñiz et al. [172] evaluated the effect of MMC on the growth of A. baumannii ATTC
BAA-747. Results showed the ability of MMC to kill stationary-phase, biofilms and persister
cells, in addition to the protection of Galleria mellonella larvae against lethal A. baumannii
infection. Pacios et al. [173] combined MMC and the conventional antibiotic imipenem
with the lytic phage vB_KpnM-VAC13 and tested their activity against imipenem-resistant
and persister strains of K. pneumoniae. Phage-MMC showed synergistic effects on resistant
and persister isolates, both in vitro and in vivo, whereas the phage-imipenem combination
only killed the persisters, but not the imipenem-resistant isolate, which concludes that
the lytic phage-MMC combination is effective against imipenem-resistant K. pneumoniae
isolates harboring OXA-245 β-lactamase.

5.4.3. Auranofin

A gold compound called auranofin (60, Figure 12) is used to treat rheumatoid arthritis
and has been shown to have anti-bacterial and anti-biofilm activity in addition to other
anti-disease activities against cancer, viral, and parasite infections [174,175]. The potential
effectiveness of auranofin as an antibiotic adjuvant against carbapenem-resistant A. bauman-
nii with the blaOXA-23 gene was investigated by Kim et al. [176]. Auranofin and doripenem
had a synergistic effect on A. baumannii, which produces carbapenemase, according to
the study. Along with inhibiting motility, auranofin has been shown to have anti-biofilm
activity. It also altered the expression of genes related to carbapenemase biofilm and efflux
pump. Auranofin and phenethyl isothiocyanate (PEITC) (61, Figure 12) were used to
treat skin infections and have a synergistic antibacterial effect on S. aureus, according to
Chen et al. [177]. Auranofin and PEITC treatment may operate as a promising therapy for
S. aureus infection since the antibacterial impact of the medication combination increased
with rising reactive oxygen species (ROS) and caused prevention of biofilm formation
and destruction of bacterial cell structure. According to research by Hutton et al. [178],
auranofin is a significant contender to treat C. difficile infections since it can limit the prolif-
eration of C. difficile cells, as well as the formation of spores and the toxins A and B in both
a mouse model and in vitro.

5.4.4. Pentamidine

The bisbenzamidine pentamidine, 4,4′- [1,5-pentanediylbis(oxy)]dibenzenecarboximidamide
(62, Figure 12) exhibits a high affinity for the DNA minor groove [179]. The antiproto-
zoal medication can disrupt the lipopolysaccharide-associated outer membrane of Gram-
negative bacteria without interfering with their internal structure. The ability of diamidine
to function as a strong adjuvant to increase the sensitivity of polymyxin-resistant bacteria
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to Gram-positive antibiotics in vitro is highlighted by Stokes et al. [180] Pentamidine and
novobiocin together have shown a promising dose-sparing effect in vivo when treating
mice with systemic A. baumannii infections [181]. Auranofin and pentamidine work to-
gether to combat germs that are multi-drug resistant (MDR), according to research by
Yu et al. [182] (E. coli, A. baumannii and K. pneumoniae). The combination of non-antibiotic
medications demonstrated a potent synergistic antibacterial action with increased bacterial
absorption of auranofin and decreased resistance development in isolated MDR bacteria
(K. pneumoniae).

5.4.5. Zidovudine (AZT)

Zidovudine (AZT) (63, Figure 12) is a nucleoside analog used for the treatment of
human immunodeficiency virus (HIV) infection. In infected cells the drug undergoes
phosphorylation by cellular kinases and arrest viral DNA production by acting as an HIV
reverse transcriptase inhibitor [183–186]. Zidovudine showed to have bactericidal activity
against Enterobacteriaceae (E. coli and K. pneumoniae), with reported MICs of 0.01 to 3.7 µM
and 0.1 to 11.6 µM, respectively. The mechanism of Zidovudine’s antibacterial activity
may refer to its ability to act as DNA chain terminator after being phosphorylated by
bacterial kinases [187,188]. A study by Ng et al. [189] suggested that Zidovudine can be
repurposed as an oral antibacterial agent, in addition, to reduce the chances of resistance
development it can be administered in combination with Tigecycline to treat carbapenem-
resistant Enterobacterales (CRE) infections.

6. Synthesis of Novel Antibacterial Agents
6.1. Lactones

Lactones are highly bioactive substances with a broad range of biological activity. As
the most prevalent secondary metabolites in plants, such as γ- and δ -lactones, they have
key roles in communication, signaling, chemical defense, and controlling plant growth [190].
Using β-cyclocitral as a starting material, Mazur et al. [191] synthesized bicyclic lactones
having a cyclohexane ring (64, Scheme 1). Sodium borohydride (NaBH4) was used to react
β-cyclocitral (64) to produce β-Cyclocitrol (65). The allylic alcohol (65) was modified by
orthoacetate (Claisen rearrangement) to form the, γ, δ-unsaturated ester (66), and was
then treated with an ethanolic solution of KOH to obtain the appropriate acid (67). Three
halolactonization processes were performed on the acid (67), resulting in the production
of δ-iodo-γ -lactone (68), δ-bromo-γ -lactone (69), and δ-chloro-γ -lactone (70). The com-
pounds were compared to the dehalogenated tetramethyl substituted cyclohexane ring
(71) and tested for their antibacterial and antifeedant activities against insect pests. The
results demonstrated that, while dehalogenated lactones exhibited antibacterial action,
halogen atoms were critical in demonstrating antifeedant activity. Purified enantiomerically
hydroxyhalolactones (73, Scheme 1), a multipurpose substance that can be employed as
chiral building blocks, were produced by the hydroxylation of halolactones (72, Scheme 1)
obtained from β-cyclocitral [192]. Additional studies compared the antibacterial and an-
tifeedant properties of halogenated and halogen-free γ-lactones (Scheme 1). Tributyltin
hydride was used to react iodolactones (74) and (76) to produce γ-ethyl-γ-lactones (75)
and (77), respectively. Moreover, 1,8-Diazabicyclo [5.4.0]undec-7-ene (DBU) was used to
dehydrohalogenate iodolactone (74), resulting in a combination of unsaturated lactones (78)
and (79). The results demonstrated that only the γ-ethyl-γ-lactone exhibits antibacterial
activity on particular strains, whereas reductive dehalogenation and dehydrohalogenation
of δ-iodo-γ-lactones considerably boosted the antifeedant activity. Further research is
required to assess the antibacterial activity of lactones modified with aromatic rings [193].
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The antibacterial properties of γ-oxa-ε-lactones produced from flavanone were inves-
tigated by Gadkowski et al. [194]. The compounds were created through the cyclization
of 2′-hydroxychalcones (80, Scheme 2)) in the presence of sodium acetate to produce fla-
vanones (81) from the reaction of 2′-hydroxyacetophenones (78) with benzaldehydes (79).
Oxa-lactones (82) are produced when m-CPBA (meta-Chloroperoxybenzoic acid) is used to
oxidize flavanones. The results demonstrated that the compound 4-phenyl-3,4-dihydro-
2H-1,5-benzodioxepin-2-one and its methoxy group-containing derivatives (Scheme 2) had
an inhibitory effect on the growth of particular filamentous fungi, yeast, and pathogenic
bacteria such as Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. As a result, when
lactone function was added to flavonoids, their activity increased in comparison to their
parent precursor molecules.
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(a) KOH/MeOH, reflux, 24–48 h, then HCl (2–3 min), 69–94%; (b) CH3COONa/EtOH, reflux, 48 h,
61–79%; and (c) m-CPBA/CH2Cl2, rt., 48 h, 67–90%.

Nafithromycin (WCK 4873) is another example of a lactone-containing substance
(83, Figure 13). An oral lactone ketolide antibiotic called nafithromycin is used to treat
respiratory tract infections such community-acquired bacterial pneumonia. Because it
prevents RNA-dependent protein biosynthesis, the substance shows strong antimacrolide
efficacy against macrolide-resistant S. pneumoniae [195,196].
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6.2. Piperidinol

A piperidinol-containing molecule (PIPD1) (88, Scheme 3) has been discovered to be a
powerful lead agent against M. tuberculosis using high-throughput whole-cell screening
of a large compound library [197]. Non-tuberculous pathogen Mycobacterium abscessus
is resistant to the majority of antibiotics and disinfectants. De Ruyck et al. study’s [198]
concentrated on the creation and synthesis of piperidinol derivatives (PIPD1) that specifi-
cally target the flippase activity of the mycolic acid transporter MmpL3. By first treating
4-piperidinone monohydrate hydrochloride (84) with α-Bromo-O-xylene (85) to produce a
bromine derivative (86), which was then treated with n-butyl lithium solution to produce
PIPD1 analogues, the PIPD1 analogues were created (87). The results demonstrated that
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MmpL3 inhibition can result in the pathogen’s immediate death. Moreover, it can have
synergistic effects by making it easier for other chemicals such as β-lactams to get through
the mycobacterium’s wall. The two steps of N-benzylation and the bromine-lithium ex-
change reaction were used to make PIPD1 (Scheme 3). The two aromatic moieties A and
B (Scheme 3) and the steric hindrance of the substituent on ring B are essential for the
inhibitory activity against M. abscessus, according to structural-activity relationship (SAR)
investigations of PIPD1 analogues.
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6.3. Sugar-Based Bactericides

All organisms use chemicals with a carbohydrate foundation for energy, and some mi-
crobial organisms can be inhibited by these substances. Gram-negative and Gram-positive
microorganisms have been shown to be resistant to the broad-spectrum antimicrobial
action of monosaccharide analogs [199,200]. Methyl β-D-galactopyranoside (β-MGP) (89,
Scheme 4) was reacted with 4-bromobenzoyl chloride to produce 6-O-(4/3-bromobenzoyl)
(90, 91), as well as its 2,3,4-tri-O-acyl derivatives (92, 93), by Ahmmed et al. [201]. The
antibacterial activity of the compounds was investigated in vitro and in silico. The results
showed that the biological activities of the compounds were enhanced by the β-MGP struc-
ture with various aliphatic and aromatic substituents. This was supported by molecular
docking, which revealed promising interactions and binding energies with bacterial and
fungal proteins, making them potential antibacterial/antifungal candidates.

To evaluate their effectiveness against Gram-positive and Gram-negative bacteria
in vitro, Dias et al. [202] synthesized a number of carbohydrate-based compounds derived
from iso-quinoline-5,8-dione and naphthoquinone (94, 95 Figure 14), as well as their halo-
genated derivatives (96, 97 Figure 14). With MIC and MBC ranges of 4–64 µg/mL against
Gram-negative bacteria, the compounds showed promising bactericidal activity. Only
non-glycoconjugate naphthoquinones showed activity against particular Gram-positive
bacteria. In a different study, Dias et al. [203] investigated deoxy glycosides as effective
and selective bactericides that target PE and examined their efficacy against the indicated
bacteria. Their study focused on Bacillus anthracis and B. cereus membranes that are rich in
phosphatidyl-ethanolamine (PE). The results demonstrated that the deoxygenation pattern
is a critical modulator for efficacy and selectivity and that the bactericidal activity was due to
membrane disruption and highly permeable activity across the phosphatidylethanolamine
membranes of B. anthracis and B. cereus.
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6.4. Isoxazole Derivatives

The enteric bacterial infections, which are primarily brought on by S. aureus and E.
coli, are one of the main causes of morbidity in poor nations. Amoxicillin, norfloxacin,
and ciprofloxacin are the main antibiotics used to treat E. coli; however, they also have
some adverse effects in addition to toxicity and drug resistance [204]. An important
physicochemical factor that influences membrane permeability and medication absorption
is lipophilicity. Isoxazoles and isoxazolines, which are heterocyclic compounds with
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nitrogen and oxygen, exhibit a variety of biological and pharmacological effects, including
antitubulin, anti-inflammatory, antinociceptive, and anxiolytic activity. Sulfisoxazole and
sulfamethoxazole, two β-lactam antibiotics, contain the five-membered heterocyclic ring
known as isoxazole. Ahmad et al. [205] created isoxazole derivatives of fatty acids to
prevent the growth of most pathogenic fungi, Gram-positive, and Gram-negative bacteria.
Through 1,3-dipolar cycloaddition of nitrile oxide to lengthy chains of an alkene and an
alkyne, the compounds were created (Scheme 5). Long-chain alkynoic acids (98) and
long-chain alkenoates (100) were employed as the starting materials for the synthesis of
3,5-disubstituted isoxazole (99) and 3,4,5-trisubstituted-4,5-di-hydroisoxazole (101). Using
PASS software, biological activity of these chemicals was predicted, supporting their
historical use as antibacterial agents. Furthermore, physicochemical data demonstrated
that the majority of the compounds had drug-like characteristics, with MIC decreasing
with increasing lipophilicity, a finding that suggested the compounds had antibacterial
capabilities. In addition to their antibacterial properties, the compounds were also tested
against yeast, and the results revealed antifungal efficacy against the tested clinical species
of Candida. Docking studies with the 30s ribosomal subunit revealed agreement with
in vitro measurements of microbial activity as well as a near proximity to the ciprofloxacin
binding site. All chemicals share a similar fundamental structure; however, variable
levels of interaction and binding patterns were discovered. These results could aid in the
development of new antifungal medications that target microbial protein production.
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3,4,5-trisubstituted-4,5- dihyroisoxazoles (101). Reagents and conditions: (a) Et3N, dry THF, reflux,
6–8 h, 80%; and (b) Et3N, dry C6H6, reflux, 8 h, 75–85%.

The polycyclic aromatic compound acridone, which has anticancer and antibacterial
properties, was used by Aarjane et al. [206] to create isoxazole derivatives. By combining
two possible pharmacophores, acridone and isoxazole; nitrile oxides and N-propargyl
acridone underwent a 1,3-dipolar cycloaddition process (Scheme 6). Before being cyclized
with polyphosphoric acid to create compounds (103), o-bromobenzoic acid was first reacted
with p-toluidine or aniline to create 2-arylamino benzoic acids (102). Acridone derivatives
were refluxed with propargyl bromide to produce 2-methyl-10-(prop-2-yn-1-yl)- acridone
(104). Reacting with various nitrile oxides produced 3,5-disubstituted isoxazoles (105).
Four harmful bacterial strains were used to test the compounds’ antibacterial efficacy
(Pseudomonas putida, K. pneumoniae, E. coli, and S. aureus). These germs were resistant to
the compounds’ moderate-to-good antibacterial activity. The isoxazole-acridone skeleton’s
paranitrophenyl groups had the strongest antibacterial action against E. coli strains. To
investigate the occupancy mode at the receptor pocket responsible for antibacterial activity,
molecular docking of the drugs was carried out. The explanation for a compound’s
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antibacterial activity may be due to hydrogen bonds and hydrophobic interactions in the
DNA topoisomerase E. coli receptor active site.
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Scheme 6. Synthesis of isoxazole-acridone derivatives (105). Reagents and conditions: (a) [Cu],
K2CO3; (b) polyphosphoric acid (PPA), 120 ◦C; (c) propargyl bromide, K2CO3, tetra-n- butylammo-
nium bromide (TBAB) as catalyst (PTC), DMF, rt. 6 h, 75%; and (d) Method 1: Et3N, chloroform,
50 ◦C, 6 h; Method 2: Et3N, chloroform, microwave irradiation (200 W), 40–70 ◦C, 20–25 min, 45–85%.

The parasitic infections known as leishmaniases are mostly spread by Leishmania dono-
vani. For the creation of novel antileishmanial chemotherapeutics with enhanced efficacy
and less toxicity, Tipparaju et al. [207] synthesized 2- [3-Hydroxy-2- [(3-hydroxypyridine-2-
carbonyl)-amino]-phenyl]-benzoxazole-4-carboxylic acid (A–33853) antibiotic (113, Scheme 7)
and a number of its derivatives and were tested for biological activity. Compound (113), a
benzoxazole natural product with strong antibacterial action, was discovered a few decades
ago in a culture broth of Streptomyces sp. NRRL 12068. Early testing revealed that the
A-33853 (113) substance is three times as active as miltefosine, a medicine used to treat leish-
maniasis, in inhibiting the growth of L. donoVani, T. b. rhodesiense, T. cruzi, and P. falciparum
cultures. With substantially lower cytotoxicity, certain analogs selectively inhibited L. dono-
Vani at nanomolar concentrations. The oxidative cyclization of the base (106) or through
the cyclization-dehydration reaction of amide (107) were the two methods used to create
the benzoxazole intermediate (108, Scheme 7). The amine (109) produced by the reduction
in the nitro group in the intermediate (108) was linked with the 3-benzoyloxypicolinic acid
(111) which was created from (110) to produce the intermediate (112). Antibiotic (113) was
produced after BBr3 treatment in an excellent overall yield.
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Scheme 7. Synthesis of A–33853 antibiotic (113). Reagents and conditions: (a) CDI, THF, reflux, 18 
h, 60%; (b) POCl3, xylene, 140 °C, 3 h, 58%; (c) MeOH, 40 °C, 12 h; (d) DDQ, CH2Cl2, r.t, 12 h, 37%; 
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Scheme 7. Synthesis of A–33853 antibiotic (113). Reagents and conditions: (a) CDI, THF, reflux, 18 h,
60%; (b) POCl3, xylene, 140 ◦C, 3 h, 58%; (c) MeOH, 40 ◦C, 12 h; (d) DDQ, CH2Cl2, r.t, 12 h, 37%;
(e) Pd/C, H2, MeOH, r.t, 12 h, 80%; (f) BnBr, Ag2O, CH2Cl2/DMSO (1:1), r.t, 12 h, 70%; (g) LiOH,
THF/ H2O/MeOH (3:1:1), r.t, 12 h, 94%; (h) (COCl)2, r.t, 3 h; (i) pyridine, DMAP (cat.), CH2Cl2, r.t,
12 h, 34%; and (j) excess BBr3, CH2Cl2, −78 ◦C to r.t, 16 h, 81%.

6.5. Carbazole

Other substances include carbazoles, which have generated a lot of attention for re-
search into their potential as antibacterial agents. Carbazole is an aromatic heterocycle that
contains nitrogen and occurs naturally and synthetically. Its ring is present in a number
of drugs that have medical use, including carbazomycins and murrayafoline A [208–210].
Carbazoles may also be able to interact electrostatically or by intercalation to attach to
DNA non-covalently [211]. 5-membered azoles can be introduced into the N-position of
carbazole to suppress the growth of bacteria and fungi. Their effectiveness has been demon-
strated to be superior to that of the reference medications Norfloxacin and Chloromycin.
Making novel antibacterial agents has been a big topic for modification of the carbazole
ring at the 3- and 6-positions [212]. The easiest way to create novel antimicrobial agents
is to introduce 2-aminothiazole into the 3- and 6-positions of the carbazole backbone, as
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this other agent known as aminothiazole is found in many clinical antimicrobial medica-
tions, such as Cephalosporins, Aztreonam, Sulfathiazole, and others [210]. By reacting
carbazole (114, Scheme 8) with various N-alkyl bromides to produce N-alkylcarbazole
intermediates (115), Addla et al. [210] created novel carbazole aminothiazoles (Scheme 7).
Halogenated carbazoles (116) were then produced by reacting chloroacetyl chloride with
the intermediates, which were then fluxed with thiourea to create the aminothiazoles
(117). The compounds’ antibacterial efficacy against Gram positive, Gram negative, and
fungal organisms was assessed in vitro. Structure–activity relationships (SAR) revealed
that the aminothiazole component was crucial for exerting biological activities, whereas
the length of the alkyl chain affected the antibacterial efficacies. A carbazole aminothiazole
molecule with a minimal inhibitory concentration (MIC) of 4 µg/mL, which outperformed
the reference medications chloromycin and norfloxacin, showed negligible cytotoxicity to
Hep-2 cells and good antibacterial activity against MRSA. Moreso, it was discovered that
the substance interacts with DNA via hydrogen bonds and electrostatic interactions, which
may prevent DNA replication and, as a result, have antimicrobial effects.
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Scheme 8. Synthetic route of N-alkylcarbazole aminothiazoles (117). Reagents and conditions:
(a) alkyl bromide, NaH, dry DMF, rt., 6 h, 96–98%; (b) ClCH2COCL, AlCl, dry DCM, rt., 24 h, 30–36%;
(c) thiourea, ethanol, reflux, 1 h, 94–96%.

An innovative series of carbazole compounds was created by Xue et al. [213] (Scheme 8).
The chemicals were first made by N-alkylating or arylating carbazole (114), which produced
intermediates (118). Compounds (118) and (119) were then put through a formylation re-
action (Vilsmeier–Haack) to produce 9-substituted carbazole-3-carbaldehyde analogues
(120) that were then reacted with four other substances—metformin hydrochloride (121),
aminoguanidine hydro-chloride/or thiosemicarbazide (123), and isonicotinic moiety (125)—
to create carbazole (122, 124, and 126, Scheme 9). The substances had strong inhibitory
effects against a variety of bacterial strains, including an isolate that was multidrug resistant.
Dihydrotriazine group boosted antibacterial potency and decreased the toxicity of the car-
bazole compounds, according to SAR and docking tests. Moreover, in vitro enzyme activity
studies demonstrated that the antibacterial effect of compounds binding to dihydrofolate
reductase may be the cause of the effect
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Scheme 9. Synthesis of novel series of carbazole derivatives (122, 124 and 126). Reagents and
conditions: (a) DMC, DABCO, 95 ◦C, 24 h, or KOH, 25 ◦C, 2 h, or NaH, DMF, 25 ◦C, 16 h; (b) POCl3,
DMF, 90 ◦C, 8–18 h; (c) AcOH, 120 ◦C, 4–8 h, 35.1–61.6%; (d) CH2CH3OH, HCl, 40 ◦C, 6 h, or CH3OH,
AcOH, 68 ◦C, 4 h, 38.7–64.6%; and (e) CH2CH3OH, AcOH, 70 ◦C, 5 h, 64.2–80%.

6.6. Pyrimidine Derivatives

Pyrimidine amine derivatives with two nitrogen atoms in the aromatic ring and a sub-
stituted amino outside have shown antibacterial and antiviral activities. Zhang et al. [214]
synthesis and characterized pyrimidine amine derivatives containing bicyclic monoter-
pene moiety and evaluated their antimicrobial activity. Results showed that most of the
compounds have antibacterial and antifungal activities against K. pneumoniae, Streptococcus
pneumoniae, P. aeruginosa, S. aureus, E. coli, MRSA, Bacillus cereus, and C. albicans. Starting
from aldehyde-ketone condensation reaction and in the presence of sodium methoxide or
potassium tert-butoxide, a pinanyl ketene intermediates (127, Scheme 10) were synthesized.
Cyclization of (127) with guanidine hydrochloride produced Pinanyl pyrimidines (128).
Further substitution with haloalkanes generated Pinanyl pyrimidine amines (129). As for
camphor, condensation with p-methoxybenzaldehyde generated the intermediate (130,
Scheme 10), which was followed by cyclization with guanidine hydrochloride to afford the
camphorylpyrimidine intermediate (131). Camphoryl pyrimidineamine compounds were
finally obtained by substitution of (132) with alkyl.
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Irrational use of pesticides leads to the emergence of drug resistance. The need for 
the development of a new broad-spectrum pesticide to control plant pests and disease 
infestations led Li et al. [215] to combine pyrimidine with sulfonate ester for the 
development of interesting bioactive compounds. A novel series of pyrimidine derivatives 
containing sulfonate esters were designed. Result showed that the synthesized 
compounds exhibited good antibacterial activity with certain insecticidal activity against 
Xanthomonas axonopodis pv. Citri (Xac), Xanthomonas oryzae pv. Oryzae (Xoo), Ralstonia 
solanacearum (Rs), and Pseudomonas syringae pv. actinidiae (Psa), which provided insight for 
the designing of new broad-spectrum pesticides. Synthesis of the compounds started from 
cyclization reaction using ethyl glycolate which produced the intermediate (6-methyl-2-

Scheme 10. Synthesis of pyrimidine amines derivatives with bicyclic monoterpene units: (a) pinanyl
pyrimidine amines derivatives. Reagents and conditions: (a) NaOCH3, or t-BuOK, t-BuOH, reflux
6–24 h, 60.5–85.5%; (b) NaOH, t-BuOH or THF, reflux, 10–30 h, 35.5–82.5%; (c) DIPEA or NaH, THF,
65 ◦C, 3 h, 40–79.8%; and (b) camphoryl pyrimidine amine derivatives. Reagents and conditions:
(2a) t-BuOK, t-BuOH, reflux, 6 h, 56.8%; (2b) NaOH, t-BuOH, reflux, 10 h, 30.8%; and (2c) DIPEA,
THF, 65 ◦C, 3 h, 39.1–73%.

Irrational use of pesticides leads to the emergence of drug resistance. The need for
the development of a new broad-spectrum pesticide to control plant pests and disease
infestations led Li et al. [215] to combine pyrimidine with sulfonate ester for the devel-
opment of interesting bioactive compounds. A novel series of pyrimidine derivatives
containing sulfonate esters were designed. Result showed that the synthesized compounds
exhibited good antibacterial activity with certain insecticidal activity against Xanthomonas
axonopodis pv. Citri (Xac), Xanthomonas oryzae pv. Oryzae (Xoo), Ralstonia solanacearum (Rs),
and Pseudomonas syringae pv. actinidiae (Psa), which provided insight for the designing
of new broad-spectrum pesticides. Synthesis of the compounds started from cyclization
reaction using ethyl glycolate which produced the intermediate (6-methyl-2-thioxo-2,3-
dihydropyrimidin4(1H)-one) methanol (133, Scheme 11) that was converted into thioether
derivatives (134, 135, and 136) by thioetherification with CH3I, C2H5I, and Benzyl chloride.
The final compounds (137, 138, and 139) were obtained by esterification with RSOOCl.



Antibiotics 2023, 12, 628 38 of 62

Antibiotics 2023, 12, x 40 of 67 
 

thioxo-2,3-dihydropyrimidin4(1H)-one) methanol (133, Scheme 11) that was converted 
into thioether derivatives (134, 135, and 136) by thioetherification with CH3I, C2H5I, and 
Benzyl chloride. The final compounds (137, 138, and 139) were obtained by esterification 
with RSOOCl. 

O

O O HN

N
H

S

O

HN

NS

O

HN

NS

O HN

NS

O
Cl

HN

NS

O

HN

NS

O

HN

NS

O
S

RO

O

SS

O

O

RO

O

R

a

b c

d

e f

g

(133)

(134)
(135)

(136)

(137) (138)

(139)

 
Scheme 11. Synthesis of a series of novel pyrimidine derivatives containing sulfonate esters. 
Reagents and conditions: (a) NH2SNH2, KOH, EtOH 70 °C, 0.5 h, 85–90%; (b) C2H5I, K2CO3, DMF, 
rt.; (c) MeI, K2CO3, DMF, rt.; (d) benzyl chloride, K2CO3, DMF, rt.; (e) RSO2Cl, Et3N, DCM, rt., 12 h, 
40–82%; (f) RSO2Cl, Et3N, DCM, rt., 12 h, 65%, 69%; (g) RSO2Cl, Et3N, DCM, rt., 12 h, 70%, 75%. 

6.7. Pyrazole Derivatives 
Pyrazole is a nitrogen heterocyclic-containing molecule which plays an important 

role in the coordination chemistry with metal ions. Pyrazole-based ligands have proven 
to be effective for the construction of coordination complexes to be used in several fields, 
such as catalysis, antimicrobial activity, and in pharmaceutical and medical research [216–
218]. Pyrazole-based coordination complexes with copper, cobalt, iron, cadmium, 
mercury, and nickel revealed remarkable electronic properties or catalytic selectivity and 
serve as efficient antimicrobial agents [219–221]. Therefore, new pyrazole derivatives were 
produced by Draoui et al. [222]. Pyrazole ligand N,N-bis(2(1′,5,5′-trimethyl-1H,1′H- [3,3′-
bipyrazol]-1-yl)ethyl)propan-1-amine (L) (140, Scheme 12) and four new coordination 
complexes called [Cu2LCl4] (141), [ML(CH3OH)(H2O)] (M = Ni (142), Co (143), and 
[FeL(NCS)2] (144) (Scheme 12) were prepared, characterized, and their antibacterial 
properties were investigated against Gram-positive specimens (S. aureus and Streptococcus 
spp.), Gram-negative specimens (E. coli and Klebsiella spp.), and fungal spp. (Fusarium 
oxysporum f. sp. albedinis fungi). The ligand (L) (140, Scheme 12) was synthesized by 
reacting p-toluenesulfonyl chloride with 2-(1’,5,5’-trimethyl-1H,1’H-[3,3’-bipyrazol]-1-
yl)ethan-1-ol in the presence of sodium hydroxide to produce a tosyl-based derivative. 

Scheme 11. Synthesis of a series of novel pyrimidine derivatives containing sulfonate esters. Reagents
and conditions: (a) NH2SNH2, KOH, EtOH 70 ◦C, 0.5 h, 85–90%; (b) C2H5I, K2CO3, DMF, rt.; (c) MeI,
K2CO3, DMF, rt.; (d) benzyl chloride, K2CO3, DMF, rt.; (e) RSO2Cl, Et3N, DCM, rt., 12 h, 40–82%;
(f) RSO2Cl, Et3N, DCM, rt., 12 h, 65%, 69%; (g) RSO2Cl, Et3N, DCM, rt., 12 h, 70%, 75%.

6.7. Pyrazole Derivatives

Pyrazole is a nitrogen heterocyclic-containing molecule which plays an important role
in the coordination chemistry with metal ions. Pyrazole-based ligands have proven to be
effective for the construction of coordination complexes to be used in several fields, such
as catalysis, antimicrobial activity, and in pharmaceutical and medical research [216–218].
Pyrazole-based coordination complexes with copper, cobalt, iron, cadmium, mercury, and
nickel revealed remarkable electronic properties or catalytic selectivity and serve as efficient
antimicrobial agents [219–221]. Therefore, new pyrazole derivatives were produced by
Draoui et al. [222]. Pyrazole ligand N,N-bis(2(1′,5,5′-trimethyl-1H,1′H- [3,3′-bipyrazol]-
1-yl)ethyl)propan-1-amine (L) (140, Scheme 12) and four new coordination complexes
called [Cu2LCl4] (141), [ML(CH3OH)(H2O)] (M = Ni (142), Co (143), and [FeL(NCS)2] (144)
(Scheme 12) were prepared, characterized, and their antibacterial properties were investi-
gated against Gram-positive specimens (S. aureus and Streptococcus spp.), Gram-negative
specimens (E. coli and Klebsiella spp.), and fungal spp. (Fusarium oxysporum f. sp. albedinis
fungi). The ligand (L) (140, Scheme 12) was synthesized by reacting p-toluenesulfonyl
chloride with 2-(1′,5,5′-trimethyl-1H,1′H-[3,3′-bipyrazol]-1-yl)ethan-1-ol in the presence of
sodium hydroxide to produce a tosyl-based derivative. Alkylation of tosylated product in
acetonitrile gave a propylamine and in the presence of a base the desired product L was
obtained. Furthermore, binuclear Cu(ii) mononuclear Ni(ii) and Co(ii) complexes were pre-
pared by reacting ligand (L) with CuCl2·2H2O (1:2 molar ratio4)2·6H2O or Co(ClO4)2·6H2O
salts (1:1 molar ratio), respectively. For the fourth complex, FeCl2 was first added then
potassium thiocyanate (KNCS) (1:2 molar ratio) to prevent oxidation of the metal center
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and the prepare2 reacted with the L ligand (1:1 molar ratio) to yield Fe(ii) complex. The
compounds showed moderate-to-decent antibacterial activity, especially complexes (141)
and (143), with significant enhancement against S. aureus and E. coli., in addition to a
distinguished anti-Fusarium activities for complexes (141) and (144).
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derivatives were prepared by reacting the aldehyde-containing pyrazole (147) with 
substituted hydrazines. The N,N-disubstituted compounds (148) showed potent activity 
in eradicating S. aureus and Enterococcus faecalis biofilms but failed to inhibit the growth of 
A. baumannii, whereas halogen-substituted hydrazones exhibited potent activity against 
A. baumannii. Antibacterial activity was found due to cell membrane-disrupting ability, 
but further studies are needed to analyze the mode of action and molecular targets of these 
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Scheme 12. Synthesis of Pyrazole ligand N,N-bis(2(1′,5,5′-trimethyl-1H,1′H- [3,3′-bipyrazol]-1-
yl)ethyl)propan-1-amine (L) (140) and bis-pyrazole coordination complexes (141–144). Reagents
and conditions: (a) TsCl2/CH2Cl2, 0 ◦C 5 h, 60%; (b) Propylamine/K2CO3/CH3CN, reflux, 15 days,
30%; (c) CuCl2.2H2O, MeOH, diethyl ether, 25 ◦C, 6 days, 44%; (d) Ni(ClO4)2.6H2O, MeOH, diethyl
ether, 25 ◦C, 8 days, 29%; (e) No(ClO4)2.6H2O, MeOH, diethyl ether, 25 ◦C, 9 days, 35%; and (f) FeCl2
then KnCS, EtOH, 25 ◦C, 6 days, 37%.

Recently, the trifluoromethyl group (-CF3) has attracted the attention for its ability
to work as a bioisostere in which it increases the lipophilicity, metabolic stability, and can
alter receptor binding [223]. Alkhaibari et al. [224] designed potent antimicrobial agents
by using 4-trifluoromethylphenyl-substituted pyrazole derivatives and evaluated their
potency against planktonic bacteria, S. aureus and Enterococcus faecalis. The starting material
(147, Scheme 13) was synthesized by reacting 4-(trifluoromethyl)phenylhydrazine (145)
and 4-acetylbenzoic acid (146). The hydrazine derivatives were prepared by reacting the
aldehyde-containing pyrazole (147) with substituted hydrazines. The N,N-disubstituted
compounds (148) showed potent activity in eradicating S. aureus and Enterococcus faecalis
biofilms but failed to inhibit the growth of A. baumannii, whereas halogen-substituted
hydrazones exhibited potent activity against A. baumannii. Antibacterial activity was found
due to cell membrane-disrupting ability, but further studies are needed to analyze the mode
of action and molecular targets of these compounds.
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7. Prodrugs

Prodrugs are chemically inert compounds that the body metabolizes into active med-
ications. They are utilized to circumvent a drug’s unstable pharmacokinetic qualities,
toxicity, site specificity, and formulation issues [225]. They also help with solubility, absorp-
tion, and distribution issues. The prodrug method is utilized to change various molecular
and cellular components, as well as physicochemical characteristics. It was used, for in-
stance, to increase the oral bioavailability of a number of lactam antibiotics, including
ivampicillin, talampicol, bacampicillin, and hetacillin. The effectiveness of other prodrugs,
such as pyrazinamide, which is used to treat Mycobacterium tuberculosis, was intended to
be enhanced by existing antibiotics such as ethionamide, isoniazid, and ethionamide. Pro-
drugs can therefore be used as a weapon to combat antibiotic resistance by either enhancing
the pharmacokinetics of antibiotics that have activity against resistant pathogens, or by
acting as a targeted drug to reduce host toxicity and remove resistance barriers [226]. The
most current prodrugs made to combat resistance are included in the table below.

7.1. Siderophores

Using the bacteria’s nutrition absorption pathway to carry medications into the cells is
one method for enhancing the effectiveness of antibiotics. A very promising tactic is to inject
antibiotics into the bacteria through the iron absorption pathway. By using siderophores,
which are low-molecular weight organic chelators (150 to 2000 Da) that are rich in the het-
eroatoms oxygen and nitrogen, microorganisms have evolved a highly effective mechanism
for the uptake of iron. Bacteria produce siderophores, which are then released into the
environment to chelate iron with an extremely high affinity [227]. In order to treat Enter-
obacteriaceae that are multidrug resistant (MDR) and carbapenem resistant (CR), including
K. pneumoniae, cefiderocol (CFDC) (149, Figure 15) binds to penicillin-binding proteins, in-
hibiting the formation of peptidoglycan and ultimately killing the bacteria [228,229]. Using
the Gram-negative bacteria’s outer membrane-located iron transport mechanism or passive
diffusion, CFDC binds to ferric iron (Fe3+) and passes into the periplasmic region, where it
detaches iron and enables the presentation of CFDC in large concentrations [230,231]. In
their study of the susceptibility of Klebsiella pneumoniae to CFDC under iron-depleted and
iron-enriched environments, Daoud et al. [229] discovered that CFDC had a susceptibility
of 96.1%, which was higher than that of any other antibiotic. The findings also demon-
strated that CFDC MICs increased in iron-enriched media where iron uptake receptors
(fecA and/or kfu) are expressed, resulting in a loss of drug activity. In contrast, the presence
of enterobactin receptors (fepA) is essential for capturing the drug and allowing its entry
into the periplasm. As a result, with different iron acquisition mechanisms, bacteria may
not be as dependent on the development of siderophores, which would reduce the uptake
of catechol-CFDC. A siderophore-antibiotic compound (150, Figure 15) was created by
Zheng and Nolan [232] by joining antibiotics with enterobactin, a tricatecholatesiderophore.
Amoxicillin and amoxicillin, two β-lactam medicines, were joined to enterobactin via a
polyethylene glycol linker. The combination increased β-lactam activity against E. coli,
allowing enterobactin to carry antibiotics through Gram-negative membranes more ef-
fectively. An Enterobactin-ciprofloxacin compound (151, Figure 15) with an alkyl linker
was created by Neumann et al. [233]. The cytoplasmic esteraseIroD enzyme, which is
exclusively expressed in E. coli, activates the prodrug intracellularly. By employing a Gram-
positive medication with three components—oxazolidinone antibiotic, cephalosporin, and
bis-catechol-based siderophore conjugates—Liu et al. [234] created an elegant method to kill
Gram-negative bacteria (152, Figure 15). The conjugates take advantage of the periplasmic
β-lactamases that cleave the β-lactam ring of the cephalosporin to release the oxazolidinone,
which then crosses the bacterial inner membrane and reaches its intracellular ribosomal tar-
get and kills the Gram-negative bacteria. The conjugates also take advantage of the bacterial
ferri-siderophore uptake transporters for efficient passage through the outer membrane. To
tackle P. aeruginosa species, Loupias et al. [235] created two piperazine-based siderophore
mimics with catechol or hydroxypyridone chelating groups (153, 154, Figure 15). Unfortu-
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nately, the complexes exhibited no antibacterial action, although they could be employed
as antibiotic transporters against Pseudomonas species. The two compounds demonstrated
a strong affinity for Fe(III) and were used to internalize gallium as a hazardous metal. A
Siderophore-linked ruthenium catalyst (155, Figure 15) for the activation of an antibacterial
prodrug inside cells was created and examined by Southwell et al. [236]. Due to its tiny
size and hydrophilic nature, the fluoroquinolone antibiotic moxifloxacin (156, Figure 15)
is mostly absorbed by bacteria through porins. The drug was derivatized at the N or C
termini to provide allyl carbamate (N-moxi) (157, Figure 15) or allyl ester prodrugs (C-moxi)
(158, Figure 15) to boost bacterial uptake through passive membrane diffusion in response
to an increase in porin deficiency-associated resistance. Only C-moxi was used in bacterial
experiments to explore its activation in the presence of a variety of siderophore-linked
ruthenium catalysts against E. coli K12 (BW25113) due to N-poor moxi’s solubility. The
results demonstrated that the combination of catalysts and prodrugs had an antibacterial
impact, with the azotochelin- and dihydroxybenzoic acid-linked catalysts demonstrating
the most promising cellular uptake and intracellular prodrug activation. An anticancer
cisplatin prodrug (cis, cis, trans- [Pt(NH3)2Cl2(OOCCH3)(OH)] and L/D enterobactin enan-
tiomer) was produced in a recent work by Guo and Nolan [237] (159, Figure 15). The
enterobactin-mediated delivery of the platinum(IV) prodrug into the cytoplasm increased
its accumulation more than ten times compared to cisplatin treatment, and the conjugate
demonstrated antibacterial activity against specific strains of E. coli where it causes bacterial
growth inhibition and filamentation. This paper reveals a siderophore attachment method
for medication repurposing.

7.2. Carbapenem-Oxazolidinones

By combining numerous pharmacophores in one molecule, it is possible to find novel
medications without having to look for new targets and may even be possible to overcome
resistance. In this study, oxazolidinones, a synthetic antibacterial drug that inhibits protein
synthesis by binding to the 23S RNA region, were conjugated to carbapenem, a powerful
β-lactam antibiotic, via a thioether link to create a series of carbapenem-oxazolidinone
hybrids (163, Scheme 14). The intermediate (162) was first produced by coupling pre-
pared oxazolidinonemethyl-thiols (160, Scheme 10) with carbapenem diphenylphosphate
(161) in the presence of diisopropylethylamine, and the hybrids were then produced by
deprotecting intermediate (162) through catalytic hydrogenation [238].
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Figure 15. Chemical structure of, Cefiderocol (CFDC) (149), siderophore-antibiotic conjugates
(150), enterobactin-ciprofloxacin conjugate (151), oxazolidinone-cephalosporin-bis-catechol-based
siderophore conjugates (152), piperazine-based siderophore mimetics (153), (154), siderophore-linked
ruthenium catalysts (155), moxifloxacin (156), N-moxi (157), C-moxi (158), and cisplatin prodrug-
enterobactin (159).
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7.3. Oral GyrB/ParE Dual Binding Inhibitor

Finding novel target sites is necessary due to the growing antibiotic resistance brought
on by binding site mutations. For the development of dual-targeting antibacterial drugs,
the ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) are ideal
candidates [239,240]. A. baumannii, P. aeruginosa, and K. pneumoniae resistant strains are just
a few examples of the Gram-positive and Gram-negative bacterial pathogens that can be
effectively treated with a dual-targeting tricyclic class pyrimidoindole inhibitor (TriBE in-
hibitor) against GyrB and ParE enzymes [241]. The tricyclic pyrimidoindole small molecule
compound JSF-2414 (8-(6-fluoro-8-(methylamino)-2-((2-methylpyrimidin-5-yl)oxy) -9H-
pyrimido [4,5-b]indol-4-yl)-2-oxa-8-azaspiro [4.5]decan-3-yl)methanol and JSF-2659, the
phosphate prodrug’s in vitro and in vivo properties, were described by Park et al. [242]
(164, 165, Figure 16). The prodrug JSF-2659 swiftly and completely converts to its active
form JSF-2414 by host phosphatases to demonstrate significant efficacy against N. gon-
orrhoeae and its resistant strains. JSF-2659 prodrug exhibited high efficacy in decreasing
microbial burdens and resistance.
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7.4. Antimicrobial Peptides (AMPs) Prodrugs

A possible approach to reduce AMP toxicity issues and improve bacterial selectiv-
ity is to use AMP prodrugs. An anionic promoiety can be conjugated to temporarily
diminish the cationic characteristic of AMPs, which can then be activated by particu-
lar bacterial enzymes. AMP prodrugs, P18, WMR, and Cephalothin-Bac8c, were cre-
ated. WMR (Ac-EEEEAAAGwglrrllkygkrs-NH2) is an analog of myxinidin, P18 (Ac-
EEEEAAAGkwklfkklpkflhlakkf-NH2) is a hybrid of cecropin and magainin, and Cephalothin-
Bac8c is a β-lactam-AMP conjugates (166, Figure 16). Although Cephalothin-Bac8c is
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conjugated via a carbamate-1,4-triazole linker, P18 and WMR prodrugs were synthesized
via amidation at C-termini and the elongation of the N-termini with amino acid AAG
motif. The pro-peptides have a membrane-disrupting, broad-spectrum antibacterial ef-
fect [243,244]. The broad-spectrum antibiotic florfenicol (167, Figure 16) is utilized in the
livestock and poultry breeding business but suffers from resistance and poor water sol-
ubility [245–247]. Cell-penetrating peptides (CPPs), such as polyarginine, permeate the
membranes of microbial cells to suppress bacteria. A brand-new family of florfenicol-
polyarginine conjugates was created by Li et al. [248]. The peptide-florfenicol conjugates
were created by esterifying the hydroxyl group of florfenicol with succinic, glutaric, and
hexanedioic anhydrides, followed by amidation with Argi-nine polypeptide. The sub-
stances significantly reduced the resistance of the E. coli strains (2017XJ30, 2019XJ20) to
florfenicol and demonstrated strong action against E. coli, S. aureus, and MRSA.

Other prodrugs were recently reported to fight resistance are listed in Table 2 below.

Table 2. Prodrugs and their mechanism of actions.

Prodrugs Mechanism of Action and Examples

Diazabicyclooctanones (DBOs)

The active drug is produced from DBOs, which are sulfate-containing
prodrugs that are in vivo activated by esterase cleavage that
intramolecularly assaults the electrophilic neopentyl methylene
group [249]. DBOs function as strong inhibitors of class A and class C
β-lactamases. The serine active site of the β-lactamase is targeted by an
amide group on the five-membered ring of DBOs, forming a carbamoyl
adduct. The effectiveness of the antibiotic can be restored by using the
prodrug in conjunction with the proper oral β-lactam
antibiotics [139,250–252]. Examples of DBOs are WCK 5153 (168),
ANT3310 (169), and the following: avibactam (170), relebactam (171),
nacubactam (172), zidebactam (173) (Figure 17).

β-Lactamase-Activated Ciprofloxacin Prodrug

A prodrug of cephalosporin and fluoroquinolone ((6R,7R)
-7-Acetamido-3-(((1-cyclopropyl-6-fluoro-4-oxo-7- (piperazin-1-yl)
(piperazin-1-yl) -1,4-dihydroquinoline-3-carbonyl)oxy)-
methyl)-8-oxo-5-thia-1-azabicyclo [4.2.0]oct-2-ene-2-carboxylic Acid)
created by Evans et al. [253] (174, Figure 17) to deliver ciprofloxacin only
to bacteria that express β-lactamase. When cephalosporin is cleaved by
β-lactamase, the prodrug’s 3′-cephem ester, which was created by
attaching ciprofloxacin via a carboxylic acid, releases ciprofloxacin.

Azithromycin Prodrug CSY5669

Both an antibiotic and an immunomodulator, azithromycin.
Azithromycin prodrug (CSY5669) (175, Figure 17) was created by
Saris et al. [254] to enhance the immunomodulatory properties of
azithromycin by combining it with nitric oxide and acetate as immune
activators. It is possible to use CSY5669 as an adjuvant drug in the
treatment of pneumonia brought on by MRSA by assisting in the
eradication of bacteria and limiting inflammation-associated pathology.
The prodrug showed an enhancement of intracellular killing of MARSA
in monocyte-derived macrophages and peripheral blood leukocytes as
well as reduced inflammatory responses in mice airways in vivo.

Tedizolid phosphate (TR701)

Prodrug of the antibiotic oxazolidinone tedizolid (TR701) (176, Figure 17),
which is used to treat bacterial skin infections. Plasma phosphatasese
converts it to its active parent drug tidezolide, which is highly active
in vitro against Gram-positive bacteria, including MRSA [255–257].

Pretomanid

A prodrug of an antibiotic (177, Figure 17) that, after being converted to a
desnitro derivative by Mycobacterium tuberculosis deazaflavin-dependent
nitroreductase (Ddn) [258], acts by raising nitric oxide levels. To treat
tuberculosis with drug resistance, it is used with bedaquiline
and linezolid [259].
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Table 2. Cont.

Prodrugs Mechanism of Action and Examples

Ceftaroline fosamil
A prodrug (178, Figure 17) that is activated by plasma phosphatase to
produce ceftaroline, which is used to treat community-acquired bacterial
pneumonia (CABP) and acute bacterial skin infections [260,261].

Cephalosporin-3′-diazeniumdiolates (C3Ds) prodrugs

After reacting with β-lactamases and being broken down by
transpeptidases, a nitric oxide (NO) donor prodrug with a β-lactam ring
in its structure selectively releases NO. The diazeniumdiolate NO
donor-containing PYRRO-C3D (179, Figure 17) is one of two C3Ds that
are currently being developed. The second prodrug is DEA-C3D (180,
Figure 17) which contains the phenacetyl side chain of cefaloram and the
diazeniumdiolate NO donor. The prodrugs are a good possibility for
lowering antibiotic tolerance linked to biofilms [262–264].

Triclosan glycoside prodrugs

The identification of the bacterial enzyme glycosidase resulted in the
identification of glycoside derivatives as bacterium-targeting prodrugs
(181, Figure 17). Gram-positive and Gram-negative bacteria are inhibited
by triclosan glycoside derivatives (α-D-glycopyranosides and
β-D-glycopyranosides), which has the potential to be utilized orally for
the treatment of systemic infections [265–267]

5-Modified 2′-Deoxyuridines prodrugs

The precise mechanism by which pyrimidine nucleoside derivatives
work is unknown; however, some of the compounds inhibited the
microbial enzyme flavin-dependent thymidylate synthase (ThyX), which
is not present in humans, and others operated on mycobacterial cell wall
destruction [268]. Negrya et al. [269] created carrier-linked prodrugs of
5-modified 2′-deoxyuridines (182, Figure 17) since the parent drugs,
5-dodecyloxymethyl 2′-deoxyuridine and 5- [4-decyl-(1,2,3-triazol-1-yl)
methyl]-2′-deoxyuridine, were poorly soluble in water. To increase
solubility, a triethylene and tetraethylene glycol moiety was linked to the
3′ and 5′ hydroxyl groups of the parent molecules using a
carbonate group.

Tebipenem pivoxil Prodrug

Tebipenem pivoxil HBr salt (183, Figure 17) is a tebipenem ester prodrug
that can be taken orally and has improved bioavailability. It is now being
developed to treat difficult urinary tract infections in adults. It is
approved for use in Japan to treat ear, nose, throat, and respiratory
infections in children [270].

FtsZ-Targeting Benzamide Prodrugs

A prokaryote-specific protein called Fts-Z (Filamenting
temperature-sensitive mutant Z) is involved in bacterial cell division. In
order to combat methicillin-sensitive and resistant Staphylococcus aureus
(MSSA and MRSA), PC190723 is a FtsZ-Targeting Benzamide the
N-Mannich base prodrug TXY436 (184, Figure 17) was developed as a
result of poor solubility; it has improved pharmacological characteristics
but requires high effective doses. Because of this, a novel prodrug called
TXA709 (185, Figure 17) was developed based on TXY436 with a CF3
group in place of the Cl on the pyridyl ring, giving it a longer half-life
and higher oral bioavailability than TXY436 [271,272].

Carvacrol Prodrugs

A naturally occurring monoterpene called carvacrol can damage bacterial
membranes and prevent Gram-positive bacteria from forming
biofilms [273]. Carvacrol prodrugs (WSCP18-19) (186, Figure 17) were
created by prenylating the hydroxyl group of carvacrol due to its low
water solubility and chemical stability. The prodrugs exhibit good plasma
stability, minimal toxicity, and a potential antibacterial action against S.
aureus and S. epidermidis [274].
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Prodrugs Mechanism of Action and Examples

ADC111, ADC112 and ADC113

Fleck et al. [275] examined thousands of chimicals in order to find
non-specific molecules that prevent alamarBlue, a viability dye, from
being reduced. Three prodrugs— ADC111, an analog of the nitrofuran
prodrug (187), ADC112, an analog of the tilbroquinol antimicrobial (188),
and ADC113, a molecule with a di-ketone functionality that is not a
member of any class of recognized antimicrobials (189)—are available
(Figure 17). The prodrugs have demonstrated that they are effective in
killing E. coli cells [276,277].

Contezolid acefosamil (CZA) prodrug

A brand-new oral oxazolidinone antibacterial medication called
Contezolid (CZD) is effective against the majority of aerobic
Gram-positive bacteria, including MRSA and vancomycin-resistant
Enterococcus. The medication prevents the synthesis of 70S initiation
complex, which is essential for bacterial reproduction [278]. As a result of
its low solubility, the drug’s intravenous (IV) administration is restricted.
Giving patients with diabetic foot infections more therapeutic options in
hospitals and outpatient settings is therapy with IV administration
followed by oral CZD [279]. Liu et al. [280] created the contezolid
acefosamil (CZA) prodrug (190, Figure 17), an isoxazol-3-yl
phosphoramidate derivative with excellent water solubility and good
stability in pH conditions suited for IV delivery.
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Figure 17. Chemical structure of WCK 5153 (168), ANT3310 (169), avibactam (170),
relebactam (171), nacubactam (172), zidebactam (173), β-Lactamase-Activated Ciprofloxacin Prodrug
(174), azithromycin prodrug (CSY5669) (175), tedizolid phosphate (TR701) (176), pretomanid (177),
ceftaroline fosamil (178), C3D (179), DEA-C3D (180), triclosan glycoside prodrugs (181), prodrugs
of 5-modified 2′-deoxyuridines (182), tebipenem pivoxil HBr salt (183), TXY436 (184), TXA709 (185),
carvacrol prodrugs (WSCP18-19) (186), ADC111 (187), ADC112 (188), ADC113 (189), and contezolid
acefosamil (CZA) prodrug (190).

8. Awareness and Knowledge of Antibiotic Prescribing

Antibiotic resistance is seen as a severe concern and a global public health issue since
it has increased morbidity, death, and healthcare expenditures. Antibiotic resistance was
brought about by the irrational use of antibiotics in agriculture, the livestock industry, and
healthcare. In addition to prescribing an inappropriate antibiotic, using antibiotics without
a necessity, skipping doses, self-medicating, and sharing medications are key contributors
to antibiotic resistance. This is owing to pharmacists’ lack of understanding, fear of losing
clients, and lax legal protections [281,282]. Many institutions have found that implementing
Antimicrobial Stewardship Plans (ASPs) can enhance therapeutic results, lower treatment-
related costs, and hence slow or stop the evolution of antibiotic resistance [283]. Health
professionals can also avoid hospital-acquired infections and the nosocomial transmission
of MDR bacteria by following the recommendations for proper hospital disinfection and
personal hygiene [284,285]. Nonetheless, both wealthy and developing nations suffer from
the widespread use of antibiotics in the aquaculture and agricultural sectors to promote
growth. Humans will consume antibiotics used on livestock, and resistant bacteria may
spread from animals to humans, perhaps having a negative impact on human health.
Moreover, antibiotics given to animals are expelled in urine and feces, which are then
used as fertilizer and have an impact on the microbiome of the environment [286,287]. As
a result, we must promote awareness about antibiotic resistance, enact legislation, and
create global policies. In order to promote patient care and national security, the fight
against antibiotic resistance requires strategies, persistent efforts, and the participation
of national and international governments, healthcare professionals, industry, and the
general public [288].

9. Conclusions

A total of 4.95 million fatalities globally are a result of the significant global public
health problem known as antibiotic resistance. Through naturally occurring or acquired
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resistance that is created by horizontal gene transfer or DNA mutation, bacteria can rapidly
reduce their susceptibility to antibiotics. In order to combat bacterial infections, new an-
tibacterial agents must be discovered. The development of antimicrobial therapies can be
facilitated by new methods for rational design and screening-based approaches, such as,
nanotechnology, computational techniques (in silico and FBDD), antibiotic alternatives
(antimicrobial peptides, essential oils, anti-Quorum sensing, darobactins, vitamin B6, bacte-
riophages, odilorhabdins, 18β-glycyrrhetinic acid, and cannabinoids), drug repurposing
(ticagrelor, mi-tomycin C, auranofin, pentamidine and zidovudine), and synthesis of novel
antibacterial agents (lactones, piperidinol, sugar-based bactericide, isoxazole, carbazole,
pyrimidines, and pyrazoles derivatives) and prodrugs. In order to address the crisis caused
by antibiotic resistance, it is necessary to coordinate efforts to revitalize research and
implement new policies.
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Abbreviations

.OH Hydroxyl Radicals
1,3BPG 1,3 bisphosphoglycerate
Acetic acid AcOH
ADMET Absorption, distribution, metabolism, excretion, toxicity
Ag85 Antigen 85
AHLs N-acyl homoserine lactones
AIs Auto-inducers
ALFs Shrimp antilipopolysaccharide factors
Aluminium chloride AlCl
AmB Amphotericin B
AMP Antimicrobial peptides
AMR antimicrobial resistance
API Active pharmaceutical ingredient
ASPs Antimicrobial Stewardship Plans
ATP-ABC Adenosine triphosphate-Binding Cassette
AZT Zidovudine
BBr3 Boron tribromide
BGC Biosynthetic gene cluster
BioA 7,8- diaminopelargonic acid synthase
BnBr Benzyl bromide
C2H5I Ethyl iodide
C3Ds Cephalosporin-3′-diazeniumdiolates
C6H6 Benzene
CABP Community-acquired bacterial pneumonia
CBD Cannabidiol
CBG Cannabigerol
CDI Carbonyldiimidazole
CEO Cinnamon essential oil
CFDC Cefiderocol
CH2Cl2 Dichloromethane
CH3CN Acetonitrile
CoAF Cobalt nanoferrite
CPPs Cell-penetrating peptides
CPPs Critical process parameters
CQAs Critical quality attributes
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CR Carbapenem resistant
CRAB Carbapenem-resistant Acinetobacter baumannii
CRE Carbapenem-resistant Enterobacterales
Cu Copper
CuAF copper nanoferrite
CZA Contezolid acefosamil
CZD Contezolid
DABCO Triethylenediamine
DAR Darobactins
DBOs Diazabicyclooctanones
DBU 1,8-Diazabicyclo [5.4.0]undec-7-ene
DBU 1,8-Diazabicyclo(5.4.0)undec-7-ene
DCM Dichloromethane
Ddl D-alanyl-D-alanine synthetase
Ddl-B D-alanine-D-alanine ligase
Ddn Deazaflavin-dependent nitroreductase
DDQ 2,3-Dichloro-5,6-dicyano-1,4-bezoquinone
DIPEA N,N-Diisopropylethylamine
DMAP 4-Dimethylaminopyridine
DMC Dimethyl carbonate
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
DPD (S)-4,5-dihydroxypentane-2,3-dione
DprE1 Decaprenylphosphoryl-β-D-ribose 2′-epimerase
DS Design space
DSF Differential Scanning Fluorimetry
DSPG Di-stearoyl-phosphatidylglycerol
E4P D-erythrose-4-phosphate
E4PDH Erythrose-4-phosphate dehydrogenase
ECC Enterobacter cloacae complex
EOCM Essential oil from Centipeda minima
EOOG Egg oil-organogel
EOs Plant essential oils

ESKAPE
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
species pathogens

Et3N Triethylamine
EthR Transcriptional repressor
EtOH Ethanol
FBDD Fragment-based drug design
FECL2 Iron(II) chloride
FePPOPHydantoin Porphyrin iron-based porous organic polymer
Fts-Z Filamenting temperature-sensitive mutant Z
G3P Glyceraldehyde-3-phosphate
GA Glycyrrhizin
GC-MS Gas chromatography-mass spectrometry
GRA 18β-glycyrrhetinic acid
Gyr-B DNA gyrase B subunits
H2CBD 8,9-dihydrocannabidiol
HAM Hamamelitannin
HCl Hydrochloric acid
HGT Horizontal gene transfer
HTS High throughput screening
I2 Iodine
InhA 2-trans-enoyl-acyl carrier protein reductase
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i-Pr2Net N,N-Diisopropylethylamine
K2CO3 Potassium carbonate
KI Potassium iodide
KNCS Potassium thiocyanate
KOH Potassium hydroxide
Lf Lactoferrin
LiOH Lithium hydroxide
MATE Multidrug and Toxic Compound Extrusion
MBC Minimum bactericidal concentration
m-CPBA meta-Chloroperoxybenzoic acid
MD Molecular dynamics
MDR Multidrug resistance
MEI Iodomethane
MeOH, Methanol
MIC Minimum inhibitory concentration
MMC Mitomycin C
MRSA Methicillin-resistant S. aureus
Ms Saturation magnetization
MSSA Methicillin-sensitive Staphylococcus aureus
mtk-QSBER multitasking model for quantitative-structure biological effect relationships
NaBH4 Sodium borohydride
NaBH4 Sodium borohydride
NaH Sodium hydride
NaHCO3 Sodium bicarbonate
NAOCH3 Sodium methoxide
NAOH Sodium hydroxide
NBS N-Bromosuccinimide
n-Bu3SnH. Tributyltin hydride
n-BuLi n-Butllithium
NCS N-Chlorosuccinimide
NIR Near-infrared
NMR Nuclear magnetic resonance
NO Nitric oxide
NPET Nascent peptide exit tunnel
NPs Nanoparticles
NRPSs non-ribosomal peptide synthetases
ODLs Odilorhabdins
PABA p-aminobenzoic acid
PACE Proteobacterial Antimicrobial Compound Efflux
PBPs Penicillin-binding proteins
PDA@FeS NPs ferrous sulfide-polydopamine nanoparticles
Pd-C Palladium on carbon
PE Phosphatidyl-ethanolamine
PEITC Phenethyl isothiocyanate
PGLEO Psidium guajava (guava) leaf essential oil
PIPD1 Piperidinol-containing molecule
PJI Prosthetic joint infection
PKSs Polyketide synthases
POCl3 Phosphoryl chloride
PPA Polyphosphoric acid
PTC Peptidyl transferase center
QbD Quality by design
QS Quorum Sensing
RA Risk Assessment
RIF-BSA-NPs Rifampicin-loaded bovine serum albumin nanoparticles
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RNAP RNA polymerase
RND Resistance Nodulation Division
ROS Reactive oxygen species
ROS Reactive oxygen species ()
rt. Room temperature
SAM (RaS) Radical S-adenosylmethionine
SAR Structure-activity relationships
Silver oxide Ag2O
SMR Small Multidrug Resistance
SSD Silver Sulphadiazine
TB Tuberculosis
TBAB Tetra-n- butylammonium bromide
T-BUOH Tert-Butyl alcohol
T-BUOK Potassium tert-butoxide
TCA Tricarboxylic acid cycle
Tf Transferrin
THBTP Tetrahydro-1-benzothiophene
THC Trans-∆-9-tetrahydrocannabinol
THF Tetrahydrofuran
ThyX Thymidylate synthase
TLM Thiolactomycin
TPP Target product profile
TQ Thymoquinone
TriBE inhibitor Pyrimidoindole inhibitor
TRPPs Tetracycline ribosomal protection proteins
WHO World Health Organization
XDR extensively drug resistant
β-MGP β-D-galactopyranoside
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