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Abstract: Septicemia is a systematic inflammatory response and can be a consequence of abdominal,
urinary tract and lung infections. Keeping in view the importance of Gram-negative bacteria as
one of the leading causes of septicemia, the current study was designed with the aim to determine
the antibiotic susceptibility pattern, the molecular basis for antibiotic resistance and the mutations
in selected genes of bacterial isolates. In this study, clinical samples (n = 3389) were collected
from potentially infected male (n = 1898) and female (n = 1491) patients. A total of 443 (13.07%)
patients were found to be positive for bacterial growth, of whom 181 (40.8%) were Gram-positive
and 262 (59.1%) were Gram-negative. The infected patients included 238 males, who made up 12.5%
of the total number tested, and 205 females, who made up 13.7%. The identification of bacterial
isolates revealed that 184 patients (41.5%) were infected with Escherichia coli and 78 (17.6%) with
Pseudomonas aeruginosa. The clinical isolates were identified using Gram staining biochemical tests
and were confirmed using polymerase chain reaction (PCR), with specific primers for E. coli (USP)
and P. aeruginosa (oprL). Most of the isolates were resistant to aztreonam (ATM), cefotaxime (CTX),
ampicillin (AMP) and trimethoprim/sulfamethoxazole (SXT), and were sensitive to tigecycline (TGC),
meropenem (MEM) and imipenem (IPM), as revealed by high minimum inhibitory concentration
(MIC) values. Among the antibiotic-resistant bacteria, 126 (28.4%) samples were positive for ESBL,
105 (23.7%) for AmpC β-lactamases and 45 (10.1%) for MBL. The sequencing and mutational analysis
of antibiotic resistance genes revealed mutations in TEM, SHV and AAC genes. We conclude that
antibiotic resistance is increasing; this requires the attention of health authorities and clinicians for
proper management of the disease burden.

Keywords: septicemia; Escherichia coli; Pseudomonas aeruginosa; antibiotic resistance; antibiotic resis-
tance genes; mutational analysis

1. Introduction

Blood is a connective tissue which forms about 8% of total body weight; 5–7 L of blood
is present in an average human body. The main components of blood are plasma (liquid
portions 55%) and cells (45%): white blood cells, platelets and leucocytes [1,2]. Blood
functions as the transportation medium for nutrients and aids in the excretion of waste
materials by specialized organs. In vertebrates, blood is important for the maintenance of
the body’s temperature [3].

Blood is a sterile medium, but its contamination with pathogens or toxins leads to
blood stream infections (BSIs), which are some of the leading causes of mortality and
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morbidity around the globe. BSIs are associated with fatal health conditions, which require
admission to intensive care units [4]. In the United States, BSIs have been correlated with
various risk factors, including exposure to microorganisms and the use of central venous
catheters [5]. Causative agents for septicemia vary from region to region; it can be caused
by both Gram-positive and Gram-negative bacteria, the most common of these being E. coli,
P. aeruginosa, Staphylococcus aureus, Klebsiella pneumonia and Salmonella typhi [6]. Among
these, the Gram-negative bacteria most associated with septicemia is E. coli [7–9].

The most common classes of antibiotics used to treat BSIs are penicillin, cephalosporins,
aminoglycosides, glycopeptides, lincosamides, tetracyclines, fluoroquinolones and car-
bapenems. Due to overuse and misuse of antibiotics, bacteria have developed resistance
to them, resulting in global health hazards [10,11]. Drug resistance in E. coli and other
Gram-negative bacteria continues to rise, resulting in the emergence of multidrug-resistant
strains. Treating the infections caused by these pathogens is a challenging issue [12]. An
estimated 700,000 patients die globally each year due to high antibiotic resistance, and
this number continues to rise [13]. A study in 2017 reported a total of 48.9 million cases of
morbidity and 11 million of mortality worldwide, which constitutes a total of 20% mortality.
Of the total, 85% of the cases of sepsis, including those of sepsis associated with death,
were reported in low-middle income countries, and in Pakistan 60% of sepsis cases were
fatal because of the infection being caused by multidrug-resistant strains and the misuse of
antibiotics [14,15]. A study on neonatal sepsis in Sub-Saharan Africa revealed that E. coli
accounted for 10% of the reported cases and was mostly resistant to aminoglycosides and
β-lactams [16].

Determining the common pathogens and the antimicrobial susceptibility pattern
causing septicemia is essential in order to select appropriate antibiotic therapies to decrease
mortality and morbidity [17]. Keeping in view the importance of Gram-negative bacteria
as one of the leading causes of septicemia, the current study was designed with the
aim to determine the antibiotic susceptibility pattern, the molecular basis for antibiotic
resistance and the mutations in selected genes of the bacterial isolates in Peshawar, Khyber-
Pakhtunkhwa, Pakistan.

2. Results

Out of the total blood samples (n = 3389) from males and females of various age
groups, 443 (13.07%) were found to be positive for bacterial growth. A total of 238 (12.5%)
positive samples were from male patients and 205 (13.7%) were from female patients. Of
the 443 bacterial isolates, 59.1% (n = 262) were identified as Gram-negative. The highest
number of bacterial isolates were of E. coli, 184 (41.5%), followed by P. aeruginosa, 78 (17.6%).
The highest ratio of E. coli (n = 184) was observed in the age group 41–60 years, at 50 (27.1%),
followed by 21–40 years, at 48 (26.01%). Similarly, the highest ratio of P. aeruginosa (n = 78)
was observed in patients older than 60 years, 16 (50%), followed by 41–60 years, 7 (21.8%),
as mentioned in Table 1.

Table 1. Frequency and percentage (in parenthesis) distribution of various bacterial isolates from
blood samples.

Parameters
E. coli (n = 184) P. aeruginosa (n = 78)

Frequency (%) Frequency (%)

Gender
Male 65 (35.3) 60 (76.9)

Female 119 (64.7) 18 (23.1)

Age Groups

00 to 10 37 (20.10) 02 (2.56)

11 to 20 26 (14.13) 04 (5.12)

21 to 40 48 (26.01) 18 (23.07)

41 to 60 50 (27.1) 28 (35.8)

Above 60 23 (12.5) 26 (33.3)

Total 184 (100) 78 (100)
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2.1. Identification of Bacterial Isolates

All the isolates were identified by being cultured on MacConkey and blood agar
media, followed by Gram staining (pink color colonies under microscope), API strips (as
per API codes and reading scales) and on the molecular level by USP for E. coli and oprL
for P. aeruginosa (Figure 1).
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Figure 1. Products of PCR for the detection of USP (884 bp) gene (A) and oprL (504 bp) (B) on 1.5%
EB-stained agarose gel amplified from E. coli and P. aeruginosa, where L1 and 1 are 100 bp DNA
ladders.

2.2. Antibiotic Susceptibility Pattern of Clinical Isolates

The resulting antibiotic sensitivity patterns of identified E. coli and P. aeruginosa re-
vealed resistance to AMP, SXT and CIP, and sensitivity to MEM, IPM and TOB (Table 2).

Table 2. Antibiotic susceptibility patterns of E. coli and P. aeruginosa against selected antibiotics.

Antibiotics
E. coli (n = 184) P. aeruginosa (n = 78)

Sensitive (%) Resistant (%) Sensitive (%) Resistant (%)

AMP (ampicillin) 13 (7.06) 171 (92.9) 08 (10.5) 70 (89.7)
FOX (cefoxitin) 91 (49.4) 93 (50.5) 08 (10.2) 70 (89.7)

AMC (amoxicillin) 76 (41.3) 108 (58.6) 08 (10.2) 70 (89.7)
SCF (cefoperazone-sulbactam) 134 (72.8) 50 (27.1) 27 (34.6) 51 (65.3)
TZP (piperacillin-tazobactam) 117 (63.5) 67 (36.4) 62 (79.4) 16 (20.5)

FEP (cefepime) 70 (38) 114 (62) 35 (44.8) 43 (55.1)
CTX (cefotaxime) 70 (38) 114 (62) 29 (37.1) 49 (62.8)

CAZ (ceftazidime) 70 (38) 114 (62) 42 (53.8) 36 (46.1)
ATM (aztreonam) 78 (42.3) 106 (57.6) 23 (29.48) 55 (70.5)

MEM (meropenem) 157 (85.3) 27 (14.6) 74 (94.8) 04 (5.12)
IPM (imipenem) 157 (85.3) 27 (14.6) 74 (94.8) 04 (5.12)
CN (gentamicin) 104 (56.5) 80 (43.4) 28 (35.8) 50 (64.1)
AK (Amikacin) 137 (74.4) 47 (25.5) 20 (25.6) 58 (74.3)

TOB (tobramycin) 93 (50.5) 91 (49.4) 31 (39.7) 47 (60.2)
DO (doxycycline) 70 (38.0) 114 (62) 33 (42.3) 45 (57.6)

CIP (ciprofloxacin) 45 (24.4) 139 (75.5) 40 (51.2) 38 (48.7)
SXT (trimethoprim/sulfamethoxazole) 21 (11.4) 163 (88.5) 33 (42.3) 45 (57.6)

2.3. Determination of Minimum Inhibitory Concentration

The potency of the antibiotics depends on their minimum inhibitory concentration
(MIC) values. The higher the MIC value, the less potent the antibiotic, and vice versa. The
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ESBLs, MBLs and AmpC β-lactamases producing E. coli and P. aeruginosa isolates were
highly resistant to CTX and CAZ with high MIC values as well as non-β-lactam drugs. SXT,
CIP, DO, CN and AK were susceptible to MEM and to TGC with low MIC values (Tables 3
and 4).

Table 3. MICs of selected antibiotic disks against ESBLs, MBLs and AmpC β-lactamases producing
E. coli.

Antibiotics
ESBLs MBLs AmpC

MIC90/MIC50
(µg/mL)

MIC Range
(µg/mL)

MIC90/MIC50
(µg/mL)

MIC Range
(µg/mL)

MIC90/MIC50
(µg/mL)

MIC Range
(µg/mL)

CTX 256/128 4–256 128/256 4–256 128/256 4–256
CAZ 256/64 16–256 64/256 16–256 64/256 16–256
MEM 0.75/0.125 0.023–1 4/32 3–256 0.19/0.75 0.023–1
IPM 0.75/0.19 0.023–1 4/32 3–96 0.19/1.0 0.023–1
CN 16/4 0.064–140 16/16 4–16 4/16 0.064–140
AK 256/8 0.19–256 16/256 1–256 8/256 0.19–256
DO 192/16 0.125–256 16/192 1–256 16/128 0.125–256
CIP 256/24 0.25–256 32/256 0.094–256 24/256 0.25–256
SXT 256/24 0.19–256 32/32 0.064–32 24/256 0.19–256
TGC 1.5/0.25 0.023–2 0.5/1.5 0.023–8 0.50/1.5 0.023–2

Table 4. MICs of selected antibiotic disks against ESBLs, MBLs and AmpC β-lactamases producing
P. aeruginosa.

Antibiotics
ESBLs MBLs AmpC

MIC90/MIC50
(µg/mL)

MIC Range
(µg/mL)

MIC90/MIC50
(µg/mL)

MIC Range
(µg/mL)

MIC90/MIC50
(µg/mL)

MIC Range
(µg/mL)

CTX 16/256 0.16–256 12/256 0.023–256 12/256 0.023–256
CAZ 128/256 2–256 64/256 1.5–256 64/256 1.5–256
MEM 0.38/1 0.016–1 2/16 0.023–26 0.75/1 0.023–1
IPM 0.50/1 0.012–1 2/16 0.016–16 0.50/1 0.012–1
CN 4/16 0.064–140 8/16 0.064–64 8/16 0.064–64
AK 12/256 0.25–256 8/128 0.094–128 8/128 0.094–128
DO 32/192 0.125–256 32/192 0.125–192 32/192 0.125–192
CIP 24/256 0.19–256 24/192 0.19–256 24/92 0.19–256
SXT 24/256 1.0–256 8/64 1.5–64 8/64 1.5–64
TGC 0.50/2 0.032–2 0.75/2.0 0.047–2 0.75/2 0.047–2

2.4. Phenotypic and Genotypic Identification of β-Lactamase Producers

All the positive isolates (n = 443) were screened phenotypically and genotypically for
β-lactamase production. Out of 443 positive samples, 126 (28.4%) were ESBL positive, 105
(23.7%) were AmpC β-lactamase producers and 45 (10.1%) were MBL producers (Table 5).

Table 5. Distribution of antibiotic-resistant genes in bacterial isolates.

Organisms ESBL (%) AmpC β-Lactamase (%) MBL (%)

P. aeruginosa 46 (58.9) 38 (48.7) 15 (19.2)
E. coli 80 (43.4) 67 (36.4) 30 (16.3)
Total 126 (28.4) 105 (23.7) 45 (10.1)

2.5. Characterization of ESBLs Gene(s), MBLs and AmpC β-Lactamase Resistance Genes

Of the total 80 phenotypically detected E. coli isolates for ESBL production, 74 (92.5%)
were positive for one or more ESBL genes. The most common gene detected was CTX-M,
56 (70%), followed by TEM, 51 (63.7%) and SHV, 28 (35%). However, in P. aeruginosa, the
most prevalent gene was TEM (73.9%), followed by SHV (63.0%) and CTX-M (34.7%).
Among the 30 phenotypically identified MBL producers, E. coli, 11 (36.6%) showed the
presence of targeted MBLs genes, with NDM1 being the most common, 9 (30%) isolates.
Similarly, the NDM1 gene were observed in 3 (20%) clinically isolated P. aeruginosa. Among
the AmpC β-lactamases in E. coli isolates, the highest prevalence was of AmpC gene,
57 (85%), followed by CIT gene, 11 (16.4%) and the Bla-DHA gene, 8 (11.9%). Similarly in
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P. aeruginosa, AmpC was detected in 35 (92.1%) isolates, followed by 31 (81.5%) for CIT,
17 (44.7%) for DHA and 5 (13.1%) for the ACC gene (Table 6 and Figure 2).

Table 6. Distribution of ESBLs, MBL and AmpC β-lactamase resistance genes.

Genes
Escherichia coli Pseudomonas aeruginosa

Negative (%) Positive (%) Negative (%) Positive (%)

ESBL genes

Bla-CTX—M 24 (30) 56 (70) 30 (65.2) 16 (73.9)

Bla-TEM 29 (36.2) 51 (63.7) 12 (26) 34 (73.9)

Bla-SHV 52 (65) 28 (35) 17 (36.9) 29 (34.7)

Bla-OXA1 05 (6.25) 75 (93.75) 3 (6.52) 43 (93.47)

MBL genes

Bla-NDM-1 21(70) 09 (30) 12 (80) 03 (20)

AmpC β-Lactamases genes

Bla-AmpC 10 (14.9) 57 (85) 03 (7.89) 35 (92.1)

Bla-CIT 56 (83.5) 11 (16.4) 07 (31) 31 (81.5)

Bla-DHA 59 (88) 08 (11.9) 21 (55.2) 17 (44.7)

Bla-ACC 67 (100) 00 33 (86.3) 05 (13.1)
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Figure 2. (A): Gel image of CTX-M gene (545 bp); L2-9: positive isolates, L1/L10: 100 bp DNA ladder,
(B): gel image of TEM gene (247 bp); L2-9: positive isolates, L1/L10: 100 bp DNA ladder (C): gel
image of SHV gene (768 bp); L2-L9: positive isolates, L1/L13: 100 bp DNA ladder, (D): gel image of
NDM-1 gene (475 bp); L1/L10: 100-bpDNA ladder, L2-9: positive isolates, (E): gel image of AmpC
gene (634 bp); L1/L10: 100-bp DNA ladder, L2-09: positive isolates (F): gel image of CIT gene (462 bp);
L1/L10: 100-bp DNA ladder, L2-09: positive isolates, (G): gel image of DHA gene (405 bp); L1/L10:
100-bp DNA ladder, L2-09: positive isolates, (H): gel image of AAC gene (346 bp); L1/L10: 100-bp
DNA ladder, L2-09: positive isolates. (I): gel image of OXA-1 gene (814 bp); L1/L10: 100-bp DNA
ladder, L2-09: positive isolates.

2.6. Mutational Analysis ESBLs Gene(s), MBLs and AmpC β-Lactamase Resistance Genes

The sequencing data were analyzed using various bioinformatics tools; mutations
were detected in Bla-TEM, Bla-SHV, Bla-ACC, Bla-NDM1, Bla-OXA1 and Bla-AAD genes
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but not in CTXM, AMP, CIT and DHA (Table 7). The effects of these mutations, as predicted
by I-mutant software 3.0, are presented in Table 8.

Table 7. Mutations detected in the selected antibiotic-resistant genes.

Antibiotic Resistance Genes Position Mutation

Bla-TEM 31 Deletion of G

Bla-SHV
34 Deletion of T

101 Insertion of G

Bla-ACC

13 and 14 Deletion of T and G

24 T to A

30 and 31 Deletion of G and T

73 C to A

163 C to A

Bla-NDM1

40–43 Deletion of C, C, G, G

46 Deletion of G

219 C to G

322 C to G

362 G to C

576 and 577 Deletion of C and A

579 Deletion of C

Bla-OXA1

49 Deletion of C

51 Deletion of A

327 C to T

Bla-AAD 67 Deletion of T

Table 8. The I-Mutant software prediction result for selected antibiotic-resistant genes.

Wild Type New Type I-Mutant Prediction Effect Reliability Index (RI) pH Temperature

Bla TEM-1 gene

A G Decrease 2 7 25

Bla SHV gene

G T Decrease 3 7 25

G V Increase 2 7 25

Bla ACC

N V Increase 4 7 25

N L Increase 4 7 25

N A Increase 1 7 25

C V Increase 0 7 25

N I Increase 1 7 25

T A Decrease 6 7 25

C A Decrease 3 7 25

Bla NDM1

T V Increase 2 7 25

G V Increase 1 7 25

A V Increase 3 7 25

T L Increase 1 7 25

T V Increase 3 7 25

A G Decrease 0 7 25

T G Increase 0 7 25

T C Increase 1 7 25

Bla AAD1

G V Increase 2 7 25
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3. Discussion

Antibiotic resistance is a major health threat and is responsible for high morbidity and
mortality around the globe. Gram-negative bacteria have developed ways to combat the
available antibiotics, making bacterial infections hard to treat. In the current study, the
results confirmed this phenomenon, which is affecting community health and the economy.
In the current study, 41.5% prevalence of E. coli was reported, which is similar to other
findings [14]. The positivity ratios of infection of E coli were 64.7% in female patients
and 35.3% in male patients. In our study, 27.1% of E. coli isolates were reported in the
age group of 41–60 years; this may be due to weakened immune systems or to frequent
exposure. This was followed by 26.01% in 21–40 years, which is in contrast to the reported
literature [15]. The E. coli isolates of this study showed resistance to AMP, CTX, CAZ, CIP
and LEV and sensitivity towards SCF, CO, MEM, TGC, AK, FOS and TZP, in agreement
with the literature [16]. The prevalence rate of P. aeruginosa in the current study is 17.6%,
23.1% of this was in female patients and 76.9% in male patients, as supported by the
reported study [17]. A 2016 study conducted in Pakistan found P. aeruginosa in 13% of
septicemia patients, 55.8% males and 44.2% females. The prevalence of P. aeruginosa in our
study at 17.6% implies that it has increased in the last few years. This directly indicates an
increase in antibiotic resistance in Pakistan [18]. In the current study, ESBL genes in E. coli
isolates were screened, in which CTX-M was detected in 70%, TEM in 63.7% and SHV in
35%. Another reported study had lower prevalence of CTX-M (57.7%), TEM (20.3%) and
SHV (15.4%) [19]. Similar to that study, in the current study, 36.6% of the MBL targeted
genes were detected, in which NDM1 gene prevalence was almost 30%. An Indian study
reported the same results of MBL Ec with 28% prevalence of NDM-1 [20]. In this study,
AmpC β-lactamase was found in 85.0%, CIT gene in 16.4% and DHA gene in 11.9% of
the total clinical isolates, which supported earlier reported studies [21,22]. The mutations
in the selected gene may offer a molecular explanation for the antibiotic resistance in the
isolates of the current study.

4. Conclusions

The findings of this study have several key implications for health policymakers,
clinicians and researchers. These findings highlight the need to update infection-prevention
measures to be better able to manage the diseases caused by E. coli and P. aeruginosa. The
increase in antibiotic resistance is an alarming situation, and necessitates a rationalization of
the treatment strategy to control BSIs. The unavailability of newer drugs, and the constant
increase in antibiotic resistance have led to the use of limited drugs such as colistin by
physicians. This has resulted in a condition called pan-drug resistance, necessitating the
discovery of new antimicrobial drugs.

5. Materials and Methods

The study was conducted in the Khyber Teaching Hospital Peshawar, Hayatabad
Medical Complex Peshawar and the Center of Biotechnology and Microbiology, University
of Peshawar, using standard microbiological procedures. A total of 3389 blood samples
were collected from suspected septicemic patients in EDTA tubes aseptically, from both
sexes and from various age groups, and were processed by automated blood culture
systems. An overview of the whole methodology is represented in Scheme 1. Informed
consent was obtained from all patients on a prescribed proforma before taking blood
samples.

5.1. Isolation and Identification

The samples were cultured on MacConkey (Merck, Rahway, NJ, USA) and blood agar
(Merck, Rahway, NJ, USA) media followed by incubation at 37 ◦C for 24 h [23]. The isolates
were identified using Gram staining (Merck, Rahway, NJ, USA) and biochemically by API
kits (Biomerieux, Marcy-Etoile France) [24,25].
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5.2. Molecular-Level Identification

For molecular-level identification of the bacterial isolates (USP for E. coli and oprL
for P. aeruginosa) and detection of antibiotic-resistant genes (Table 9), DNA of the bacterial
isolates was extracted using Thermo Scientific GeneJET Genomic DNA purification kits as
per the manufacturer’s protocol. The extracted DNA was confirmed by gel electrophoresis
(1% agarose gel in 1X triacetate EDTA buffer) and visualized by a gel documentation system.

Table 9. Sequences of primers along with optimized conditions used in the current study.

Gene Primer Sequence Gene Size (bp) Optimized Condition Annealing (◦C/s): Cycle

Marker genes of E. coli and P. aeruginosa

USP F: ATCACCGTGGTGACCGCATGTCGC
R: CACCACGATGCCATGTTCATCTGC 884 54/30 35

oprL F: ATGGAAATGCTGAAATTCGGC
R: CTTCTTCAGCTCGACGCGCG 504 55/30 35

ESBL genes

Bla-TEM F: TTAACTGGCGAACTACTTAC
R: GTCTATTTCGTTCATCCATA 247 54/30 35

Bla-SHV F: TCGCCTGTGTATTATCTCCC
R: CGCAGATAAATCACCACAATG 768 52/30 35

Bla-CTX-M F: ATGTGCAGCACCAGTAAAGT
R: ACCGCGATATCGTTGGTGG 545 54/30 35

Bla-OXA-1 F: ACACAATACATATCAACTTCGC
R: AGTGTGTTTAGAATGGTGATC 814 57/30 35

MBLs genes

Bla-NDM1 F: GGGCAGTCGCTTCCAACGGT
R: GTAGTGCTCAGTGTCGGCAT 475 54/30 35

AmpC β-lactamase genes

Bla-AmpC F: CCCCGCCTTATAGAGCAACAA
R: TCAATGGTCGACTTCACACC 634 54/30 35

Bla-ACC F: AACAGCCTCAGCAGCCGGTTA
R: TTCGCCGCAATCATCCCTAGC 346 54/30 35

Bla-CIT F: TGGCCAGAACTGACAGGCAAA
R: TTTCTCCTGAACGTGGCTGGC 462 54/30 35

Bla-DHA F: AACTTTCACAGGTGTGCTGGGT
R: CCGTACGCATACTGGCTTTGC 405 54/30 35
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5.3. Antimicrobial Susceptibility Testing

The Kirby–Bauer disk diffusion method [21] was used to determine the antibiotic sen-
sitivity pattern of the identified bacterial isolates against selected antibiotic disks (Table 10)
as per Clinical Laboratory and Standard Institute (CLSI) guidelines. The pure cultures of
the bacterial isolates (0.5 McFarland standard) were inoculated on sterile Muller–Hinton
agar (MHA) media, and the antibiotic disks were applied, followed by 24 h of incuba-
tion at 37 ◦C. The zones of inhibition were measured and were evaluated as resistant (R),
intermediate (I) and sensitive (S), as per CLSI guidelines [19].

Table 10. Antibiotic disks along with the concentration used in the study.

S. No Name of
Antibiotic

Concentration
(µg/mL)

Inhibition Value (mm)

Sensitive Resistant

1 AMC 20/10 ≥18 ≤13
2 AMP 10 ≥17 ≤13
3 SCF 75/30 ≥21 ≤15
4 TZP 100/10 ≥21 ≤17
5 FEP 30 ≥25 ≤18
6 CTX 30 ≥26 ≤22
7 FOX 30 ≥18 ≤24
8 CAZ 30 ≥21 ≤27
9 ATM 30 ≥21 ≤27

10 MEM 10 ≥23 ≤29
11 IPM 10 ≥23 ≤29
12 GEN 10 ≥15 ≤23
13 TOB 10 ≥15 ≤23
14 AMK 30 ≥17 ≤14
15 DO 30 ≥14 ≤10
16 CIP 5 ≥26 ≤21
17 SXT 1.25/23.75 ≥16 ≤10

5.4. Minimum Inhibitory Concentration

The minimum inhibitory concentrations (MICs) of the selected antibiotics were deter-
mined using MIC strips (Table 11). The strips were placed along with inoculation of the
pure isolates on sterilized MHA media, followed by overnight incubation at 37 ◦C [24].

Table 11. E-strips used in the current study for determination of MIC.

E-Strips Symbols Resistant Sensitive

E-CT (Cefotaxime) CTX ≥4 ≤1
E-TZ (Ceftazidime) CAZ ≥16 ≤4
E-MP (Meropenem) MEM ≥4 ≤1

E-IP (Imipenem) IPM ≥4 ≤1
E-GM (Gentamicin) CN ≥16 ≤4

E-AK (Amikacin) AK ≤4 ≤16
E-DC (Doxycycline) DO ≥16 ≤4
E-CL (Ciprofloxacin) CIP ≥1 ≤0.25

E-TS (Co-Trimoxazole) SXT ≥4 ≤2.38
E-TGC (Tigecycline) TGC - ≤2

5.5. Detection of Antibiotic-Resistant Genes by Polymerase Chain Reaction

The selected antibiotic resistance genes, as per antibiotic resistance pattern, were
amplified by polymerase chain reaction (PCR) using specific primers (Table 9). The PCR
contained 12.5 µL of Taq Master Mix (Thermo Fisher ScientificTM,, Waltham, MA, USA),
11.5 µL nuclease-free water, 0.5 µL of forward and reverse primers (oligo nucleotide
Microgen, Seoul, Korea) each and 2 µL of DNA sample. Under optimized conditions
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(Table 9), the selected genes were amplified, run on gel electrophoresis and visualized using
a gel documentation system.

5.6. DNA Sequencing and Mutational Analysis

The amplified PCR products of antibiotic-resistant genes were purified using a purifi-
cation kit (Thermo Scientific™ GeneJET PCR Purification Kit, Waltham, MA, USA) and
sequenced at Rehman Medical Institute (RMI), Peshawar, Pakistan. The FASTA sequences
of the selected genes were retrieved from the GenBank–National Center for Biotechnology
Information (NCBI) database after sequencing. Basic Local Alignment Search Tool (BLAST)
and BioEdit 7.2 software were used to compare the FASTA sequences of the selected genes
to confirm their presence in bacterial isolates and their mutational analysis [24]. The data
were further analyzed for non-synonymous mutations, and I-Mutant software was used to
predict the pathogenic effects of the identified mutations [25].

5.7. Statistical Analysis

A chi-square analysis was conducted using SPSS version 20 to find the association
between the expected value of E. coli and the observed p ≤ 0.05. The number of samples
(n) was set at 150 and the degree of freedom was taken at n-1. For comparative analysis,
one-way analysis of variance (ANOVA) was performed among the continuous values of
antibiotics with E. coli, and p ≤ 0.05 values were considered statistically significant.
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