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Abstract: Life-threatening Candida infections have increased with the COVID-19 pandemic, and the
already limited arsenal of antifungal drugs has become even more restricted due to its side effects
associated with complications after SARS-CoV-2 infection. Drug combination strategies have the
potential to reduce the risk of side effects without loss of therapeutic efficacy. The aim of this study
was to evaluate the combination of ent-hardwickiic acid with low concentrations of amphotericin
B against Candida strains. The minimum inhibitory concentration (MIC) values were determined
for amphotericin B and ent-hardwickiic acid as isolated compounds and for 77 combinations of
amphotericin B and ent-hardwickiic acid concentrations that were assessed by using the checkerboard
microdilution method. Time–kill assays were performed in order to assess the fungistatic or fungicidal
nature of the different combinations. The strategy of combining both compounds markedly reduced
the MIC values from 16 µg/mL to 1 µg/mL of amphotericin B and from 12.5 µg/mL to 6.25 µg/mL
of ent-hardwickiic acid, from isolated to combined, against C. albicans resistant to azoles. The
combination of 1 µg/mL of amphotericin B with 6.25 µg/mL of ent-hardwickiic acid killed all the
cells of the same strain within four hours of incubation.

Keywords: ent-hardwickiic acid; amphotericin B; antifungal combination; Candida albicans; Candida
krusei; checkerboard; time–kill curves; resistant strain

1. Introduction

Invasive candidiasis is the cause of unacceptable high mortality rates ranging from 30
to 70% in different parts of the world [1–3], and the treatment of life-threatening Candida
infections has been limited to just three drug classes [2,4].

The emergence of Candida resistance to the available antifungal drugs has compro-
mised the clinical management of this disease [1,4,5], and failure of antifungal treatment is
due to multifactorial events involving molecular modifications related to drug mechanism
of action and over-expression of efflux pumps, among other factors [6,7].

One mechanism of resistance of Candida species to azoles, for example, is the occur-
rence of point mutations in the ERG11 gene [7,8]. Azoles interfere with the ergosterol
biosynthesis pathway in fungal membranes by inhibiting the cytochrome P450-dependent
enzyme 14α-demethylase, which is synthesized by the ERG11 gene [7]. Mutations that
resulted in amino acid substitutions decreased azoles susceptibility [7,8].

Therapeutic failures with echinocandins are also reported for Candida infections [6,9].
Candida strains with reduced susceptibility to echinocandins showed mutations in the FKS
genes that correlated with amino acid substitutions in the 1,3-β-D-glucan synthase, the
target of echinocandins [6,9].

Resistance of Candida species to polyenes is still uncommon compared to resistance
to other antifungal drugs [6,10]. However, Candida species resistant to amphotericin B
have been reported for clinical isolates [6,10]. A different ergosterol structure that prevents
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binding to the polyenes caused by several mutations has been associated with resistance to
amphotericin B [6,10]. C. albicans resistance, for example, is associated with a substitution
in ERG11 and loss of function of ERG5 genes (C-22 sterol desaturase) [10,11]. Isolates of
other Candida species were reported as resistant to amphotericin B due to the inactivation
of ERG6 (C-24 sterol methyl-transferase) and ERG2 (C-8 sterol isomerase) genes [10,12].

Although Candida albicans has been reported as a predominant species involved in
invasive candidiasis around the world [3,4], the proportion of this infection caused by
non-albicans species has grown in recent decades [1,3].

Candida krusei is among the non-albicans species whose occurrence increased during
the COVID-19 pandemic when compared to pre-pandemic years [13]. This species has
been reported as resistant to fluconazole [14,15] and quickly developed resistance to other
antifungal drugs [14,16].

With the SARS-CoV-2 pandemic, there was an increase in the mortality rate due to
invasive candidiasis [17,18], which oscillated between 11 and 100% according to a literature
search performed in PubMed, Embase, Cochrane Library and LILACS without language
restrictions, between January 2020 to February 2021 [19].

Data published by other authors confirmed that candidemia associated with COVID-
19 also increased all-cause mortality twofold compared to patients with candidemia without
COVID-19 [20].

Patients hospitalized with COVID-19 receive immunosuppressive medication that
potentially increases the susceptibility of these patients to co-infections, including polymi-
crobial Candida infections [21,22]. However, according to the literature, this is not the only
reason for the increase in invasive fungal infections [23]. Defective antifungal immunity
in patients of COVID-19 due to a dysregulation of the immune system has been observed
through the expression of exhaustion markers of natural killer cells and T cells [23]. In
addition, patients with COVID-19 also have reduced fungicidal activity of neutrophils [23].

Amphotericin B has been recommended for the treatment of pulmonary candidiasis
associated with COVID-19 infection [24], but its side effects associated with several compli-
cations after SARS-CoV-2 infection, such as kidney injury, dyspnea and hypoxia, make its
use unfeasible [25,26].

The other classes of therapeutically available antifungal drugs are not effective alone
to treat fungal co-infections in COVID-19 patients managed in the intensive care unit
with prolonged immunomodulatory treatments [27,28] and have caused important side ef-
fects [29,30]. Triazoles cause hepatotoxicity, drug–drug interactions, QTc prolongation (the
heart muscle takes a comparatively longer time to contract and relax than usual), skeletal
fluorosis, pseudohyperaldosteronism, adrenal insufficiency, hyponatremia and hypogo-
nadism [29,30]. The most common complications of echinocandins are thrombophlebitis,
hepatotoxicity, derangement of serum transaminases, hypotension and fever, but anemia,
leukopenia and thrombocytopenia have also been reported [31–34]. It should be high-
lighted that dexamethasone, an important drug in the treatment of COVID-19 infections,
is among other drugs that interact with caspofungin [33]. Moreover, echinocandins show
embryotoxicity and may not be used during pregnancy [31,34].

Knowing that the current antifungal drugs have numerous limitations, there is an
urgent need for the discovery of antifungal agents to improve the clinical outcome of fungal
infections [35,36].

Natural products provide innovative structural patterns with novel mechanisms of
action [37,38] that can be optimized to improve efficacy and reduce toxicity.

Among natural products, diterpenes have been recognized for their remarkable bio-
logical activities, including antifungal properties [39–41].

The clerodane-type diterpene ent-hardwickiic acid (Figure 1) is the major constituent
of Copaifera pubiflora oleoresin [42] extracted from tree trunks. This tree is one of the species
of the Copaifera genus found in Brazil, Colombia, Guyana and Venezuela [43].
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Figure 1. Chemical structure of ent-hardwickiic acid.

Copaifera oleoresins are traditionally used by people from the Brazilian Amazonian
region as an anti-inflammatory [43], antimicrobial [44] and antiparasitic [45], and literature
data support the ethnopharmacological uses of this crude material [43].

The diterpene ent-hardwickiic acid has been highlighted as a lead compound in the search
for bioactive compounds [46,47] and has been reported due to its anti-inflammatory [43],
antibacterial [44], antifungal [47] and schistosomicidal activities [48].

Despite having several biological activities, it should be pointed out that this diterpene
did not show cytotoxic activity against normal and cancer human cell lines [49].

This study reports for the first time the in vitro interaction between ent-hardwickiic
acid and amphotericin B by using the checkerboard microdilution method against C. albicans
and C. krusei strains, including a C. albicans strain resistant to azoles isolated from blood-
stream infections in a tertiary care hospital in Brazil [50]. In addition, time–kill assays
were performed to assess the fungistatic or fungicidal nature of different combinations of
ent-hardwickiic acid and amphotericin B concentrations.

Considering that only one new azole and two new formulations of posaconazole have
been launched in the market in the last decade [51] and that the need for new antifun-
gal drugs is urgent, the strategy of combining ent-hardwickiic acid with amphotericin B
was shown to be potentially effective at a low concentration of amphotericin B against
Candida strains.

2. Results

The minimum inhibitory concentrations (MICs) of amphotericin B and ent-hardwickiic
acid were first determined using the broth microdilution method. Amphotericin B showed
MIC values of 8 µg/mL against C. albicans ATCC 10231 and C. krusei ATCC 6258 and
16 µg/mL against a C. albicans strain resistant to azoles. The MIC values of ent-hardwickiic
acid were smaller than those found for amphotericin B (6.25 µg/mL against C. albicans
ATCC 10231, 3.12 µg/mL against C. krusei ATCC 6258 and 12.5 µg/mL against a C. albicans
strain resistant to azoles).

MIC values of fluconazole were also determined for C. albicans ATCC 10231 (12.5 µg/mL)
and the quality control strain Candida parapsilosis ATCC 22019 (4 µg/mL) to assure that
the antifungal microdilution test was performed appropriately [52,53]. Our results were
reproducible, and the MIC values are within the proposed range for these strains.

It should be pointed out that C. krusei is considered intrinsically resistant to flucona-
zole [53], and the clinical isolate of C. albicans used in this study also showed resistance to
fluconazole [50]. In this study, the MIC values of fluconazole against C. krusei ATCC 6258
and C. albicans resistant strain were 25 ug/mL and greater than 100 ug/mL, respectively.

The combination of amphotericin B (1) and ent-hardwickiic acid (2) was then assessed
by using the checkerboard microdilution method and synergistic (ΣFIC ≤ 0.5) and additive
(ΣFIC > 0.5) interactions of compounds 1 and 2 were found for tested strains (Table 1).
Antagonism was not detected.
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Table 1. Main interactions of amphotericin B (1) with ent-hardwickiic acid (2) in vitro against Candida strains using checkerboard microdilution method.

Strains

C. albicans Resistant Strain C. albicans ATCC 10231 C. krusei ATCC 6258

MIC 1 Alone
(µg/mL): 16

MIC 2 Alone
(µg/mL): 12.5

MIC 1 Alone
(µg/mL): 8

MIC 2 Alone
(µg/mL): 6.25

MIC 1 Alone
(µg/mL): 8

MIC 2 Alone
(µg/mL): 3.12

MIC
Combinated 1

(µg/mL)

MIC
Combinated 2

(µg/mL)

Σ

FIC
Interaction

Type *

MIC
Combinated 2

(µg/mL)

Σ

FIC
Interaction

Type *

MIC
Combinated 2

(µg/mL)

Σ

FIC
Interaction

Type *

16 1.56 1.12 Indifferent 0.39 2.06 Indifferent 0.195 2.06 Indifferent

8 1.56 0.62 Additive 0.39 1.06 Indifferent 0.195 1.06 Indifferent

4 3.12 0.50 Synergism 0.39 0.56 Additive 0.195 0.56 Additive

2 6.25 0.62 Additive 0.39 0.31 Synergism 0.195 0.31 Synergism

1 6.25 0.56 Additive 0.78 0.24 Synergism 0.39 0.25 Synergism

0.5 12.5 1.03 Indifferent 0.78 0.18 Synergism 0.39 0.18 Synergism

0.25 12.5 1.01 Indifferent 1.56 0.28 Synergism 0.39 0.15 Synergism

0.125 12.5 1.00 Additive 3.12 0.50 Synergism 0.39 0.14 Synergism

0.062 25 2.00 Indifferent 3.12 0.50 Synergism 0.78 0.25 Synergism

0.031 25 2.00 Indifferent 3.12 0.50 Synergism 0.78 0.24 Synergism

0.0156 25 2.00 Indifferent 6.25 1.00 Additive 0.78 0.25 Synergism

* Interpretations of interactions type: ΣFIC ≤ 0.5: synergistic, ΣFIC > 0.5 to ≤ 1: additive, ΣFIC > 1 to ≤ 4: indifferent and ΣFIC > 4: antagonistic.
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The combination of both compounds at determined concentrations markedly reduced
the MIC values, and a synergistic effect was detected when 4 µg/mL of amphotericin B
was combined with 3.12 µg/mL of ent-hardwickiic acid against a C. albicans strain resistant
to azoles. Additive effects were detected with 1 and 2 µg/mL of amphotericin B combined
with 6.25 µg/mL of ent-hardwickiic acid, with 0.125 µg/mL of amphotericin B combined
with 1.00 µg/mL of ent-hardwickiic acid and with 8 µg/mL of amphotericin B combined
with 1.56 µg/mL of ent-hardwickiic acid against the same resistant strain.

Synergistic effects were detected against the reference strains of C. albicans and C.
krusei in the range of amphotericin B concentrations from 0.031 µg/mL to 2 µg/mL and
from 0.0156 µg/mL to 2 µg/mL, respectively. The ent-hardwickiic acid concentrations
varied in the same assay from 0.39 µg/mL to 3.12 µg/mL and from 0.195 µg/mL to
0.78 µg/mL, respectively.

In order to assess the fungistatic or fungicidal nature of different combinations of
ent-hardwickiic acid and amphotericin B concentrations, time–kill assays were performed
using four combinations of amphotericin B and ent-hardwickiic acid concentrations for
each strain that resulted in growth inhibition at amphotericin B concentrations lower than
the MIC value of this antifungal agent alone. The four selected combinations for each strain
are presented in Table 2.

Table 2. Selected concentrations of amphotericin B (1) and ent-hardwickiic acid (2) (µg/mL) based on
the checkerboard assay for time–kill assays of Candida strains.

Strains

C. Albicans Resistant Strain C. albicans ATCC 10231 C. krusei ATCC 6258

Amphotericin B (1) and
Ent-Hardwickiic Acid (2) (µg/mL)

Selected
Combinations 1 2 1 2 1 2

1◦ 0.25 12.5 0.031 3.12 0.0156 0.78

2◦ 0.5 12.5 0.125 3.12 0.031 0.78

3◦ 1 6.25 0.25 1.56 0.062 0.78

4◦ 4 3.12 0.5 0.78 0.25 0.39

The fourth combination containing 4 µg/mL of amphotericin B and 3.12 µg/mL
of ent-hardwickiic acid killed all C. albicans resistant strain cells within 2 h (Figure 2a).
The combination of 1 µg/mL of amphotericin B with 6.25 µg/mL of ent-hardwickiic
acid killed all the cells of the same strain within 4 h of incubation. The other antifungal
combinations did not show fungicidal activity within the 24 h incubation period, but
exhibited a significant reduction in the growth of this strain.

Among the tested combinations of ent-hardwickiic acid and amphotericin B concen-
trations against the reference strain of the C. albicans, the combination of 0.5 µg/mL of
amphotericin B and 0.78 µg/mL of ent-hardwickiic acid was the one that showed the high-
est growth reduction within 24 h (Figure 2b). During this period of 24 h, ent-hardwickiic
acid and amphotericin B combinations exhibited a significant reduction in the growth
of C. albicans reference strain, but the fungicidal point was not detected.
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The same behavior was observed for the time–kill curves of ent-hardwickiic acid
and amphotericin B combinations against the C. krusei reference strain. All the curves
showed a significant reduction in growth during 24 h without achieving the fungicidal
point in this period. The combination of 0.25 µg/mL of amphotericin B and 0.39 µg/mL of
ent-hardwickiic acid showed the highest growth reduction within 24 h (Figure 2c).

Considering the results obtained from time–kill assays, it should be highlighted that
the fungicidal activity of two combinations of ent-hardwickiic acid and amphotericin B
concentrations against C. albicans resistant strain was very fast (2 to 4 h), which can be
clinically relevant.

3. Discussion

The aim of this study was to evaluate for the first time the potential of ent-hardwickiic
acid combined with amphotericin B against Candida strains.

Amphotericin B was licensed in 1959 and after more than sixty years is still the main an-
tifungal agent used to treat invasive fungal infections [54,55]. However, its principal chronic
adverse effect is nephrotoxicity, whose clinical manifestations range from hypokalemia to
kidney insufficiency [56].
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Among several complications that might arise after SARS-CoV-2 infection is the acute
kidney injury that affects over a quarter of patients hospitalized with COVID-19 disease [57].
The clinical management of these patients includes hemodynamic support and avoidance
of nephrotoxic drugs [58].

Drug combination strategies have the potential to reduce the risk of side effects due to
a reduction of effective dose of each compound without loss of therapeutic efficacy [59].

In this study, the combination of ent-hardwickiic acid and amphotericin B markedly
reduced the MIC values when compared with those of drugs alone. The combination was
effective in using lower concentrations of each compound than those needed to achieve the
same effect of each isolated compound. In addition, two combinations of ent-hardwickiic
acid and amphotericin B concentrations exhibited fungicidal activity against C. albicans
resistant strain after 2–4 h of incubation.

The combination of 1 µg/mL of amphotericin B with 6.25 µg/mL of ent-hardwickiic
acid killed all the cells of C. albicans resistant strain within four hours of incubation. This
concentration of amphotericin B in plasma has not been associated with toxic effects and
drug discontinuation [60]. According to the literature, the pharmacodynamic characteristics
of amphotericin B indicate that after the administration of doses of 0.6 to 3.0 mg/kg of body
weight/day of amphotericin B deoxycholate (Bristol-Myers Squibb), the mean maximum
concentrations (Cmaxs) achieved in serum are 1.1 to 3.6 µg/mL [60,61]. In the presence
of serum, amphotericin B loses its fungicidal activity, but remains with its fungistatic
activity [62].

There are no studies yet about the stability of ent-hardwickiic acid in human serum,
but this compound has been highlighted as a lead compound in the search for bioactive
compounds [46,47]. In previous studies, this diterpene showed fungistatic and fungicidal
effects against C. glabrata at lower concentrations than fluconazole and its derivatives
obtained by biotransformation reactions exhibited potent antifungal activity [47].

Regarding the toxicity of ent-hardwickiic acid, a study carried out in normal and
tumor human cell lines showed that this diterpene was not cytotoxic to the tested cell
lines [43,49,63], as well as to the RAW 264.7 cells, which are monocyte/macrophage-like
cells reported as an appropriate model of macrophages [45]. In addition, this compound
did not affect the animal’s locomotor capacity in open-field and rotarod tests [43].

Many marketed drugs have a natural product origin, and the majority of these suc-
cessful natural products were formulated to interact with biological systems to achieve
their therapeutic potential [64,65].

Natural products may also provide different mechanisms of action, since these com-
pounds are optimized by evolution to be useful in the defense of organisms [66]. As an
example to be cited, macrocyclic diterpenes were able to overcome multidrug resistance in
C. albicans as potent inhibitors of drug efflux pumps [67].

With regard to ent-hardwickiic acid, there is only one study reporting the mechanism
of action of this diterpene against Streptococcus mutans (ATCC 25175) and Porphyromonas
gingivalis (ATCC 33277) [68]. The authors performed assays to determine cell membrane in-
tegrity by leakage through the bacterial membrane of nucleic acids and protein. The results
indicated that the diterpene ent-hardwickiic acid damaged the S. mutans and P. gingivalis
cell membranes, causing cellular component release followed by the release of cytoplasmic
material [68]. Further studies are necessary to elucidate the mechanism of the antifungal
action of this compound.

The interest in natural products to provide drug leads has been revitalized mainly
with the aim of overcoming the resistance of microorganisms to antimicrobial agents [66].

In conclusion, the results of the present study indicate that the combination of am-
photericin B and the natural product ent-hardwickiic acid has the potential to inspire the
development of treatment options for life-threatening Candida infections.
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4. Materials and Methods
4.1. Candida Strains

Candida albicans ATCC 10231, C. krusei ATCC 6258 and C. parapsilosis ATCC 22019
were acquired from American Type Culture Collection (ATCC, Rockville, MD, USA). The
C. albicans strain resistant to azoles was isolated from bloodstream infections in a tertiary
care hospital in Brazil using the Bactec™ 9240 system (Becton & Dickinson, Franklin Lanes,
NJ, USA) and provided for this study by Prof. Dr. Márcia E. da Silva Ferreira. This strain
was identified with the VITEK® 2 system (BioMérieux, Marcy l’Étoile, France) and by using
molecular techniques [50].

4.2. Antifungal Agents

Amphotericin B and fluconazole were acquired from Sigma-Aldrich, and ent-hardwickiic
acid was isolated from Copaifera pubiflora oleoresin according to Teixeira and co-workers [47].

The authorizations to undertake scientific studies with C. pubiflora oleoresin were
issued under the numbers 35143-1 and 010225/2014-5 from the Brazilian Council for Au-
thorization and Information on Biodiversity (SIBIO/ICMBio/MMA/BRASIL) and Genetic
Heritage Management (CGEN/MMA/BRASIL), respectively.

4.3. Minimum Inhibitory Concentration of Antifungal Compounds

The minimum inhibitory concentration values of amphotericin B and ent-hardwickiic
acid against Candida strains were first determined in triplicate by using the broth microdi-
lution method in 96-well microplates according to the recommendations of the Clinical
and Laboratory Standards Institute (document M27-A4) [69]. Amphotericin B and ent-
hardwickiic acid were dissolved in dimethyl sulfoxide (Merck, Saint Louis, USA) and
diluted in RPMI 1640 medium to achieve concentrations ranging from 16 µg/mL to
0.0156 µg/mL and from 100 µg/mL to 0.19 µg/mL, respectively. The final content of
DMSO was 5% (v/v), and this solution was used as negative control. The fungal inoculum
was adjusted to yield a cell concentration of 2.5 × 103 CFU/mL. The following controls
were included: one inoculated and one non-inoculated well to verify the adequacy of the
broth for organism growth and the medium sterility, respectively. Fluconazole was used
as positive control and its MIC value was also determined for the quality control strain
C. parapsilosis ATCC 22019 to assure that the antifungal microdilution test was performed
appropriately [52,53]. The 96-well microplates were incubated at 35 ◦C for 24 h. After
the incubation period, the microorganism viability was also measured by adding 30 µL
of resazurin solution (0.02%) to the microplates to confirm the MIC values determined
visually [70].

4.4. Checkerboard Microdilution Method

The in vitro interactions between amphotericin B and ent-hardwickiic acid were in-
vestigated by using the checkerboard microdilution method in 96-well microplates as
previously described with adaptations [71]. Amphotericin B and ent-hardwickiic acid were
dissolved in dimethyl sulfoxide, and stock solutions of both compounds were prepared
in RPMI 1640 medium in the range of concentrations from 4- to 8-fold more concentrated
than the highest concentration of each compound to be tested.

In each well of the microplate, 100 µL of growth medium was added, and serial
twofold dilutions of amphotericin B and ent-hardwickiic acid stock solutions were mixed
in each well, resulting in 77 combinations (Figure S1).

The MIC values of the isolated compounds were again determined by inoculating only
amphotericin B and ent-hardwickiic acid in row H (12-2) and column 1 (A–G), respectively.
One well without the antifungals was added as growth control.

The final inoculum was adjusted to yield a cell concentration of 2.5 × 103 CFU/mL. A
mirror plate without microorganisms and with the same concentrations of compounds was
prepared to be used as optical density background in a microplate reader. Both microplates
were incubated at 35 ◦C for 24 h.
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The growth in each well was quantified spectrophotometrically at 530 nm in a mi-
croplate reader, and the MIC values for each combination of compounds were defined as
the concentration of compounds combination or the concentration of isolated compound
that reduces microbial growth by more than 80% [71].

The interactions between amphotericin B (1) and ent-hardwickiic acid (2) in different
combinations of concentrations were determined based on the calculated coefficient of the
sum of fractional inhibitory concentration (ΣFIC) [72]. The ΣFIC is calculated according to
the formula:

ΣFIC = FIC1 + FIC2, (1)

where
FIC1 = MIC1 in combination/MIC1, (2)

and
FIC2 = MIC2 in combination/MIC2 (3)

The results can be interpreted as follow: ΣFIC ≤ 0.5: synergistic, ΣFIC > 0.5 to ≤ 1:
additive, ΣFIC > 1 to ≤ 4: indifferent and ΣFIC > 4: antagonistic.

4.5. Time–Kill Assays

Time–kill assays were performed in triplicate for four combinations of amphotericin B
and ent-hardwickiic acid concentrations following the procedures proposed for the time–
kill evaluation of antibacterial agents [73] with adaptations. The assays were also carried
out with microorganisms without antifungal agents.

The final inoculum was adjusted to yield a cell concentration of 2.5 × 103 CFU/mL.
Microplates containing the combinations of compounds and the microorganisms were

incubated at 35 ◦C for 24 h. During this period, aliquots (20 µL) of each well were removed,
diluted when necessary and spread onto Sabouraud dextrose agar for counting of viable
colonies at predetermined time points (0, 2, 4, 6, 12 and 24 h). The lower limit of accurate
and reproducible detectable colony counts was 100 CFU/mL.

Time–kill curves were built by plotting log10 CFU/mL versus time with the aid of the
Prism software (version 5.0; GraphPad Software, Inc., Boston, MA, USA).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics12030509/s1. Figure S1: Combinations of amphotericin B
(1) and ent-hardwickiic acid (2) concentrations against Candida strains in the 96-well microplates used
in the checkerboard microdilution method.
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