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Abstract: The increasing incidence of erythromycin and erythromycin-induced resistance to clin-
damycin among Staphylococcus aureus (S. aureus) is a serious problem. Patients infected with inducible
resistance phenotypes may fail to respond to clindamycin. This study aimed to identify the prevalence
of erythromycin and erythromycin-induced resistance and assess for potential inhibitors. A total of
99 isolates were purified from various clinical sources. Phenotypic detection of macrolide-lincosamide-
streptogramin B (MLSB)-resistance phenotypes was performed by D-test. MLSB-resistance genes
were identified using PCR. Different compounds were tested for their effects on erythromycin and
inducible clindamycin resistance by broth microdilution and checkerboard microdilution methods.
The obtained data were evaluated using docking analysis. Ninety-one isolates were S. aureus. The
prevalence of constitutive MLSB, inducible MLSB, and macrolide-streptogramin (MS) phenotypes was
39.6%, 14.3%, and 2.2%, respectively. Genes including ermC, ermA, ermB, msrA, msrB, lnuA, and mphC
were found in 82.6%, 5.8%, 7.7%, 3.8%, 3.8%, 13.5%, and 3.8% of isolates, respectively. Erythromycin
resistance was significantly reduced by doxorubicin, neomycin, and omeprazole. Quinine, ketoprofen,
and fosfomycin combated and reversed erythromycin/clindamycin-induced resistance. This study
highlighted the significance of managing antibiotic resistance and overcoming clindamycin treatment
failure. Doxorubicin, neomycin, omeprazole, quinine, ketoprofen, and fosfomycin could be potential
inhibitors of erythromycin and inducible clindamycin resistance.

Keywords: erythromycin resistance; inducible clindamycin resistance; MLSB; potential inhibitors

1. Introduction

Staphylococcus aureus (S. aureus) has been regarded as the most pathogenic bacterium
of the Gram-positive Staphylococcus genus [1]. S. aureus is considered a commensal and
opportunistic bacterium that colonizes the majority of the human population. It turns
opportunistic when it invades populations with low immunity, such as immunocompro-
mised people, diabetics, the elderly, and children, or when it enters the body through
wounds [1,2]. S. aureus infections have been linked to high rates of morbidity and mor-
tality. S. aureus is responsible for a wide range of diseases, from minor to moderate skin
infections to more severe and even fatal infections, such as toxic shock syndrome, food
poisoning, osteomyelitis, and endocarditis [3,4]. The multiple pathogenic implications of
S. aureus are controlled by its potential virulence factors and the remarkable diversity of
antibiotic resistance mechanisms [5]. Methicillin-resistant S. aureus (MRSA) isolates have
been responsible for major outbreaks of nosocomial infections for many years and are now
increasingly isolated from the community, where they can cause fatal infections [6].

Erythromycin, the first macrolide discovered in 1952, has been reported to be effec-
tive against a wide range of bacterial infections, including S. aureus [7,8]. Excessive use
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of erythromycin has led to the emergence of mechanisms responsible for its resistance.
Several mechanisms have been involved in S. aureus resistance to erythromycin. The most
common mechanism of resistance is the modification of the ribosomal binding site, which
reduces erythromycin’s ability to bind to ribosomes. The synthesis of ribosomal methylase,
which is encoded by erm genes, mediates this modification [9]. The active elimination of
erythromycin by efflux systems, which are encoded by the msr and mef genes, is the second
mechanism [10,11]. The third known cause of resistance in S. aureus is the production of
macrolide-inactivating enzymes such as macrolide phosphorylases that are encoded by
mph genes [12].

Macrolides, such as erythromycin, lincosamides, such as clindamycin, and strep-
togramin B (quinupristin) are antibiotics that belong to a group collectively called the
macrolides-lincosamides-streptogramin B (MLSB) group [13]. They are chemically and
structurally different, but their mechanism of action is similar as they prevent bacterial
protein synthesis by binding to 23s rRNA in the 50S ribosomal subunit [13,14]. MLSB group
is used to treat staphylococcal infections [13]. Three major mechanisms underlie S. aureus
resistance to MLSB (Figure 1): methylation of rRNA (target-site modification), active efflux,
and enzymatic inactivation. In rRNA methylation, the methylase enzyme attaches one or
two methyl groups to the adenine residue in the 23S rRNA moiety, lowering the affinity of
the ribosomal subunit to MLS antibiotics [15]. The second reported mechanism is antibiotic
efflux, which is mediated by msr genes, resulting in resistance to macrolide and strep-
togramin B antibiotics (MS) [16]. The third known mechanism is the enzymatic inactivation
of antibiotics, which confers resistance to structurally related antibiotics only. For instance,
specific resistance to macrolides is conferred by esterases and phosphotransferases, which
are encoded by ere and mphC genes, respectively [17,18]. The lnu genes, which mediate
resistance to only lincosamides, encode nucleotidyltransferases [19,20]. Furthermore, the
vgb genes encode enzymes that hydrolyze streptogramin B, whereas the vga and vat genes
confer resistance to streptogramin A [21].
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Figure 1. Mechanisms of S. aureus resistance to MLSB antibiotics. MLSB: macrolides-lincosamides-
streptogramin B.

MLSB-resistance phenotypes can be constitutive (cMLSB), in which rRNA methylase is
usually produced. Inducible MLSB-resistance (iMLSB) phenotypes are elicited when rRNA
methylase is produced in the presence of an inducing agent, such as erythromycin [14,22].
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Infections caused by iMLSB S. aureus isolates fail to respond to clindamycin therapy
because the rRNA methylase enzyme secretion is active in the presence of erythromycin as
an inducer, resulting in clindamycin inactivation and increasing antibiotic resistance. This
prompts some researchers to warn against the use of clindamycin for S. aureus isolates with
the iMLSB-resistance phenotypes [14,23,24].

The golden age of antibiotic therapy may be coming to an end due to the increasing
incidence of antibiotic resistance worldwide. Resistance has an impact on all aspects of
medicine and makes effective empirical therapy more challenging to achieve [25]. As a
result, various inhibitor development strategies have been proposed and implemented. The
enzymatic activity was exploited to search for compounds with potential inhibitory activity [26].

Previous studies on erythromycin combinations with pellitorine, sesamin, piperic acid
and tetrahydropiperine [27], hydroxyamines [28], totarol [29], oleic and linoleic acids [30]
showed significant decreases in minimum inhibitory concentration (MIC) of erythromycin
against MS S. aureus isolates by inhibiting MsrA protein. Previous studies on CCCP [31],
caffeine [32], piperine [33], omeprazole [34], vitamin D3 [35], vitamin K [36], verapamil [37],
and digoxin [38] showed inhibitory activity on S. aureus efflux proteins. Neomycin also
potentiated anti-staphylococcal activity of mupirocin [39]. Both meloxicam and ketoprofen
were selected for their approved antimicrobial activity [40,41]. In addition, ketoprofen
was reported to inhibit the methyltransferase enzyme responsible for the inactivation of
thiopurine drugs [42]. Concerning quinine, a significant decrease was noted after com-
bining quinine with other phytochemicals, such as reserpine [43]. Furthermore, a study
reported in Australia demonstrated an additive effect between quinine and ampicillin [44].
Doxorubicin, 5-fluorouracil, and cisplatin have antimicrobial activity [45–47]. Addition-
ally, doxorubicin was reported to inhibit DNA methyltransferase as a chemotherapeutic
agent [48]. There are no previous studies approved the effect of potential inhibitors on
the suppression of erythromycin resistance against iMLSB S. aureus isolates. On the other
hand, no previous studies were conducted to detect potential inhibitors of inducible clin-
damycin resistance.

The present study aims to determine the prevalence of resistance to different classes
of antimicrobial agents, mainly the MLSB group, among S. aureus isolated from different
clinical sources. Moreover, the underlying mechanisms of MLSB-resistance phenotypes
were explored. Furthermore, twenty-one compounds were selected to assess their in-
hibitory effects on erythromycin resistance and inducible clindamycin resistance. Potential
inhibitors of resistance to erythromycin and inducible clindamycin were identified in order
to overcome antibiotic resistance and achieve the desired therapeutic outcomes.

2. Results
2.1. Isolation and Identification of Isolates

Out of 99 staphylococcal isolates, 91 isolates were identified as S. aureus based on
microscopical examination and biochemical reactions (D-mannitol fermentation and cata-
lase and coagulase production). The isolates were collected from different hospitals near
Mansoura University, Egypt. They were gathered from various clinical sources, including
wounds (n = 36), blood (n = 30), nasal swabs (n = 24), and broncho-alveolar lavage (n = 1).

2.2. Antimicrobial Susceptibility Testing

The susceptibility of the tested S. aureus clinical isolates (n = 91) to different classes
of antimicrobial agents was detected. The isolates exhibited diverse resistance to tested
antimicrobial agents, including ceftazidime (96.7%), cefoxitin (94.5%), amoxicillin-clavulanic
acid (80.2%), oxacillin (69.2%), cefotaxime (64.8%), gentamicin (64.8%), cefepime (60.4%),
ciprofloxacin (46.4%), levofloxacin (37.4%), clarithromycin (56%), azithromycin, erythromycin,
quinapristin/dalfopristin (57.1%), clindamycin, amikacin (38.5%), and imipenem (28.6%).
All isolates were sensitive to linezolid (Figure 2a, Table S1). Eighty-six isolates were iden-
tified as MRSA, where they showed resistance to cefoxitin and oxacillin (Table S1). The
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MIC of vancomycin among all isolates was less than 2 µg/mL. Therefore, no vancomycin-
resistant S. aureus (VRSA) isolates were detected.
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Figure 2. Antimicrobial resistance, phenotypic and genotypic detection of MLSB determinants.
(a) Prevalence of antimicrobial resistance among the tested S. aureus clinical isolates. AMC: amoxicillin-
clavulanic acid, OX: oxacillin, FOX: cefoxitin, CAZ: ceftazidime, CTX: cefotaxime, FEP: cefepime, IPM:
imipenem, CN: gentamicin, AK: amikacin, CIP: ciprofloxacin, LEV: levofloxacin, CLR: clarithromycin,
AZM: azithromycin, E: erythromycin, DA: clindamycin, RP: quinapristin/dalfopristin, LZD: linezolid,
MLSB: macrolide-lincosamide-streptogramin B. (b) Distribution of different MLSB phenotypes among
the tested S. aureus isolates. R: resistant to both erythromycin and clindamycin, HD: hazy D (HD)
zone, two zones of growth around clindamycin disk, one zone with a light hazy growth up to
clindamycin disk, and the second zone with heavy growth, showing D zone with two zones of
growth around clindamycin disk, D: D zone positive with clear zone of D around clindamycin disk,
D+: D zone positive with small colonies grew towards the clindamycin disk inside the D zone, MS:
macrolide-streptogramin (MS) phenotype, resistant to erythromycin and sensitive to clindamycin
without D zone. (c) Prevalence of MLSB-resistance genes among MLSB-resistant S. aureus isolates.

2.3. Phenotypic Detection of MLSB Phenotypes

Different MLSB phenotypes were observed among 91 S. aureus clinical isolates
(Figure 2b). A total of 37 isolates exhibited cMLSB resistance, in which 36 isolates showed
the R phenotype; however, only one isolate showed the HD (hazy D zone) phenotype. The
iMLSB was detected in 13 isolates, where 3 isolates showed the D phenotype and 10 isolates
showed the D+ phenotype. The MS phenotype was detected in two isolates. The remaining
39 isolates were sensitive to both erythromycin and clindamycin (S phenotype) (Figure 3).
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Figure 3. MLSB phenotypes. (a) Isolate no. 47; R phenotype of constitutive MLSB (cMLSB) in tested
S. aureus isolates, resistant to both clindamycin and erythromycin. (b) Isolate no. 12; HD phenotype
of cMLSB in tested S. aureus, with two zones of growth around clindamycin disk, one zone with a
light hazy growth up to clindamycin disk, and the second zone with heavy growth, showing D zone.
(c) Isolate no. 10; D phenotype of inducible MLSB (iMLSB), with a clear D zone around clindamycin
disk. (d) Isolate no. 15; D+ phenotype of iMLSB, which revealed a D-shaped zone with small colonies
growing towards the clindamycin disk inside the D zone. (e) Isolate no. 36; MS phenotype in tested
S. aureus isolates that showed resistance to erythromycin and susceptibility to clindamycin without
any D zone. (f) Isolate no. 27; S phenotype, sensitive to both clindamycin and erythromycin.

2.4. Prevalence of MLSB-Resistance Genes

A total of 52 isolates with different MLSB-resistance phenotypes were screened for
various resistant genes. PCR detection of erm genes (ermA, ermB, and ermC) revealed that
the ermC gene was the most frequently detected gene; it was detected in 43 (82.6%) MLSB-
resistant S. aureus isolates. The ermA and ermB genes were detected in three (5.8%) and four
(7.7%) MLSB-resistant isolates, respectively. Additionally, PCR analysis revealed that msrA
and msrB genes, which mediate the active efflux of macrolides and streptogramin B out of
the cell, were found in two isolates, nos. 36 and 38 (3.8%) (Figure 2c, Table 1).

The lnuA gene, which confers specific resistance to lincosamides, was detected in
seven isolates (13.5%). Additionally, isolates no. 36 and 38 (3.8%) were positive for the
mphC gene that confers resistance to macrolides only (Figure 2c, Table 1).
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Table 1. Genotypes of macrolide-lincosamide-streptogramin B (MLSB)-resistant S. aureus clinical isolates.

Isolate Number Genes Present Result of D Test

1, 3, 4, 5, 6, 7, 8, 9, 21, 22, 23, 24, 25, 26, 29, 30, 31,
33, 34, 35, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50. ermC R

2, 37, 49 ermB R
10 ermA D

11, 15 ermC, lnuA D+

12 ermC, lnuA HD
13, 18, 28, 52, 16, 17, 19 ermC D+

14 ermC D
20, 32 ermC, lnuA R

27 ermA, lnuA D

36 msrA, msrB, mphC,
lnuA MS

38 msrA, msrB, mphC MS
47 ermA R
51 ermB D+

2.5. Screening for the Effect of Different Compounds on Erythromycin Resistance
2.5.1. Screening for the Effect of Different Compounds on Erythromycin Resistance against
iMLSB S. aureus Isolates

The effect of tested compounds on erythromycin resistance against isolate no. 10
(D phenotype) showed that quinine, fosfomycin, and meloxicam decreased the MIC of
erythromycin by 4-fold. Doxorubicin and ketoprofen reduced the MIC of erythromycin by
8-fold. Moreover, neomycin decreased the MIC of erythromycin by 16-fold. The remaining
tested compounds showed only a 2-fold reduction in the MIC of erythromycin, while
CCCP did not exhibit any effect on erythromycin (Table S2). Thus, quinine, fosfomycin,
doxorubicin, neomycin, meloxicam, and ketoprofen were selected as potential inhibitors
of erythromycin resistance against S. aureus isolate no. 10 and were similarly evaluated
against other iMLSB S. aureus isolates no. 14 and 27 (D phenotype) and no. 13 and 28 (D+

phenotype) (Figure 4, Table 2).
Quinine and meloxicam lowered the MIC of erythromycin by 4–8-fold against tested

isolates. Upon the addition of fosfomycin, the MIC of erythromycin decreased by 2–4-fold
against tested isolates. Doxorubicin decreased the MIC of erythromycin by 32-fold against
tested isolates except isolates no. 14 and 13 (8–16-fold decrease). Moreover, neomycin
achieved a reduction of 8-fold against all tested isolates except isolate no. 14 (128-fold
decrease). Concerning ketoprofen, it showed an 8-fold decrease in erythromycin resistance
against all isolates except isolate no. 14 (16-fold decrease) (Table 2).
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Table 2. Effect of potential inhibitors on erythromycin resistance against S. aureus isolates no. 10,
14, and 27 (D phenotype), isolates no. 13 and 28 (D+ phenotype), and isolates no. 36 and 38 (MS
phenotype).

Isolate No.
MIC of E
(µg/mL)

The Effect of Potential Inhibitors on Erythromycin Resistance

Potential
Inhibitor

MICs
(µg/mL)

Conc. Of the
Inhibitor
(µg/mL)

MICs of E in
Combination
with Inhibitor

(µg/mL)

Fold Change p-Value

10 (D) 1750

Quinine

1250 625 437.5 4-fold (-) 0.003 *
14 (D) 875 1250 625 218.75 4-fold (-) 0.02 *
27 (D) 1750 1250 625 218.75 8-fold (-) 0.003 *

13 (D+) 1750 1250 625 218.75 8-fold (-) 0.003 *
28 (D+) 1750 1250 625 218.75 8-fold (-) 0.003 *

10 (D) 1750

Fosfomycin

2 1 437.5 4-fold (-) 0.02 *
14 (D) 875 2 1 437.5 2-fold (-) 0.2
27 (D) 1750 2 1 437.5 4-fold (-) 0.02 *

13 (D+) 1750 2 1 875 2-fold (-) 0.02 *
28 (D+) 1750 1 0.5 437.5 4-fold (-) 0.02 *

10 (D) 1750

Doxorubicin

8 4 218.75 8-fold (-) 0.0005 *
14 (D) 875 8 4 109.375 8-fold (-) 0.0005 *
27 (D) 1750 8 4 54.688 32-fold (-) 0.0001 *

13 (D+) 1750 8 4 109.375 16-fold (-) 0.0001 *
28 (D+) 1750 8 4 54.688 32-fold (-) 0.0001 *

10 (D) 1750

Neomycin

1 0.5 109.375 16-fold (-) 0.0005 *
14 (D) 875 2 1 6.836 128-fold (-) <0.0001 *
27 (D) 1750 1 0.5 218.75 8-fold (-) 0.003 *

13 (D+) 1750 16 8 218.75 8-fold (-) 0.02 *
28 (D+) 1750 2 1 218.75 8-fold (-) 0.004 *
36 (MS) 100 64 32 0.781 128-fold (-) <0.0001 *
38 (MS) 200 0.0625 0.3125 6.25 32-fold (-) 0.0001 *

10 (D) 1750

Meloxicam

2048 1024 437.5 4-fold (-) 0.003 *
14 (D) 875 1024 512 218.75 4-fold (-) 0.02 *
27 (D) 1750 2048 1024 437.5 4-fold (-) 0.003 *

13 (D+) 1750 2048 1024 218.75 8-fold (-) 0.003 *
28 (D+) 1750 2048 1024 218.75 8-fold (-) 0.003 *
36 (MS) 100 1024 512 12.5 8-fold (-) 0.003 *
38 (MS) 200 128 64 50 4-fold (-) 0.003 *

10 (D) 1750

Ketoprofen

3125 1562.5 218.75 8-fold (-) 0.003 *
14 (D) 875 3125 1562.5 54.688 16-fold (-) 0.0005 *
27 (D) 1750 3125 1562.5 218.75 8-fold (-) 0.003 *

13 (D+) 1750 3125 1562.5 218.75 8-fold (-) 0.003 *
28 (D+) 1750 3125 1562.5 218.75 8-fold (-) 0.003 *
36 (MS) 100 3125 1562.5 12.5 8-fold (-) 0.003 *
38 (MS) 200 1562.5 781.25 25 8-fold (-) 0.003 *

36 (MS) 100
CCCP

2 1 25 4-fold (-) 0.02 *
38 (MS) 200 2 1 50 4-fold (-) 0.02 *
36 (MS) 100

Caffeine
22,000 2750 25 4-fold (-) 0.02 *

38 (MS) 200 5500 2750 50 4-fold (-) 0.02 *
36 (MS) 100 Omeprazole 5000 2500 12.5 8-fold (-) 0.0005 *
38 (MS) 200 625 312.5 50 4-fold (-) 0.003 *

Isolate no.: number of isolates, MICs: minimum inhibitory concentrations, E: erythromycin, conc.: concentration,
p-value: probability-value, (-): decrease, *: probability-value is <0.05, which is considered statistically significant.
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Figure 4. The effect of potential inhibitors on MIC of erythromycin among different MLSB phenotypes
of S. aureus isolates. (a) The effect of potential inhibitors (quinine, fosfomycin, doxorubicin, neomycin,
meloxicam, and ketoprofen) on erythromycin resistance against D phenotype isolates no. 10, 14, and
27. (b) The effect of potential inhibitors (quinine, fosfomycin, doxorubicin, neomycin, meloxicam,
and ketoprofen) on erythromycin resistance against D+ phenotype isolates no. 13 and 28. (c) The
effect of potential inhibitors (CCCP, caffeine, neomycin, meloxicam, ketoprofen, and omeprazole) on
erythromycin resistance against MS phenotype isolates no. 36 and 38. MICs: minimum inhibitory
concentrations, E: erythromycin, CCCP: carbonyl cyanide m-chlorophenylhydrazine, *: probability-
value (p-value) is <0.05, which is considered statistically significant.

2.5.2. Screening for the Effect of Different Compounds on Erythromycin Resistance against
MS S. aureus Isolates

The effect of different compounds on erythromycin resistance against isolate no.
36 indicated that neomycin exhibited a 128-fold decrease in the MIC of erythromycin.
Meloxicam, ketoprofen, and omeprazole reduced the MIC of erythromycin by 8-fold, while
CCCP and caffeine reduced the MIC of erythromycin by 4-fold. Compounds (quinidine,
emetine, fosfomycin, ciprofloxacin, doxorubicin, and verapamil) showed only a 2-fold
decrease in the MIC of erythromycin. On the other hand, other tested compounds showed
no effect on erythromycin resistance (Table S3).

Therefore, CCCP, caffeine, neomycin, meloxicam, ketoprofen, and omeprazole were
chosen as potential inhibitors of erythromycin resistance against S. aureus isolate no. 36
and were similarly assessed against other MS S. aureus isolate no. 38. Neomycin decreased
the MIC of erythromycin by 32-fold. Ketoprofen showed an 8-fold reduction in the MIC
of erythromycin. Furthermore, meloxicam, CCCP, caffeine, and omeprazole resulted in a
4-fold reduction in the MIC of erythromycin (Figure 4, Table 2).

2.6. Screening for the Effect of Different Compounds on Inducible Clindamycin Resistance against
iMLSB S. aureus Isolates

The MIC of clindamycin and tested compounds were determined against selected
isolate no. 10 (D phenotype) (Table S4). Induction of clindamycin resistance using ery-
thromycin (8 µg/mL) showed a 16-fold increase in the MIC of clindamycin (Table S4).
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The inhibitory activity of each tested compound on inducible clindamycin resistance was
detected (Table S4). Quinine, fosfomycin, and ketoprofen showed a 4-fold decrease in the
MIC of clindamycin and were selected to assess their effects against other iMLSB S. aureus
isolates no. 14 and 27 (D phenotype) and no. 13 and 28 (D+ phenotype) (Table S4).

Similarly, induction of clindamycin resistance by erythromycin (8 µg/mL) against
S. aureus isolates no. 14 and 27 revealed a 16-fold increase in the MIC of clindamycin.
Additionally, induction of clindamycin resistance using erythromycin against S. aureus
isolates no. 13 and 28 showed a 256-fold increase in the MIC of clindamycin (Table 3).

Table 3. Effect of potential inhibitors on inducible clindamycin resistance against S. aureus isolates no.
10, 14 and 27 (D phenotype) and isolates no. 13 and 28 (D+ phenotype).

Isolate
No.

ICR

Fold
Change

Inhibition of ICR

DA
(µg/mL)

DA/E
(µg/mL)

Potential
Inhibitor

MICs
(µg/mL)

Conc. of
Inhibitor
(µg/mL)

MICs of DA/E in
Combination
with Inhibitor

(µg/mL)

Fold
Change p-Value

10 (D) 0.0625 1
16-fold

(+)
Quinine

1250 625 0.25 4-fold (-) 0.02 *

14 (D) 0.0625 1 1250 625 0.25 4-fold (-) 0.02 *

27 (D) 0.0625 1 1250 625 0.25 4-fold (-) 0.02 *

13 (D+) 0.0625 16 256-fold
(+)

1250 625 2 8-fold (-) 0.003 *

28 (D+) 0.0625 16 1250 625 4 4-fold (-) 0.003 *

10 (D) 0.0625 1

16-fold
(+) Fosfomycin

2 1 0.25 4-fold (-) 0.02 *

14 (D) 0.0625 1 2 1 0.25 4-fold (-) 0.02 *

27 (D) 0.0625 1 2 1 0.5 2-fold (-) 0.02 *

13 (D+) 0.0625 16 256-fold
(+)

2 1 4 4-fold (-) 0.003 *

28 (D+) 0.0625 16 1 0.5 4 4-fold (-) 0.003 *

10 (D) 0.0625 1

16-fold
(+) Ketoprofen

3125 1562.5 0.25 4-fold (-) 0.02 *

14 (D) 0.0625 1 3125 1562.5 0.25 4-fold (-) 0.02 *

27 (D) 0.0625 1 3125 1562.5 0.25 4-fold (-) 0.02 *

13 (D+) 0.0625 16
256-fold

(+)

3125 1562.5 0.5 32-fold (-) 0.0001 *

28 (D+) 0.0625 16 3125 1562.5 0.5 32-fold (-) 0.0001 *

Isolate no.: number of isolate, ICR: inducible clindamycin resistance, MICs: minimum inhibitory concentrations,
E: erythromycin, DA: clindamycin, (+): increase, conc.: concentration, (-): decrease, p-value: probability-value,
*: probability-value is <0.05 which is considered statistically significant.

Quinine showed a 4-fold decrease in the MIC of clindamycin against all tested isolates
except isolate no. 13 (8-fold decrease). Additionally, the MIC of clindamycin was decreased
by 4-fold after the addition of fosfomycin except isolate no. 27 (2-fold decrease). Moreover,
a 4-fold reduction in the MIC of clindamycin was observed upon the addition of ketoprofen
against all tested isolates, and more pronounced activity was observed with isolates no. 13
and 28 (32-fold decrease) (Table 3).

2.7. Checkerboard Microdilution Assay

Erythromycin/doxorubicin and erythromycin/neomycin combinations resulted in
synergistic effects (fractional inhibitory concentration index (FICI) = 0.5) against isolate
no. 10. Erythromycin with meloxicam, quinine, fosfomycin, and ketoprofen showed
additive effects (Table 4). Synergistic effects were observed in erythromycin/neomycin and
erythromycin/omeprazole combinations against isolate no. 36 with FICI = 0.313 and 0.5,
respectively. Erythromycin combinations with CCCP, caffeine, meloxicam, and ketoprofen
resulted in additive effects (Table 4).
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Table 4. Combined effect of erythromycin/potential inhibitors on S. aureus isolates no. 10 (D
phenotype) and no. 36 (MS phenotype) using checkerboard assay.

Isolate No. Potential Inhibitor FICI Combined Effect

10 (D)

Quinine E/Q 0.625 Additive
Fosfomycin E/F 0.75 Additive
Doxorubicin E/D 0.5 Synergism
Neomycin E/N 0.5 Synergism
Meloxicam E/M 0.75 Additive
Ketoprofen E/K 0.625 Additive

36 (MS)

CCCP E/CCCP 0.625 Additive
Caffeine E/C 0.531 Additive

Omeprazole E/O 0.5 Synergism
Neomycin E/N 0.313 Synergism
Meloxicam E/M 0.625 Additive
Ketoprofen E/K 0.625 Additive

Isolate no.: number of isolate, FICI: fractional inhibitory concentration index, E: erythromycin, D: doxorubicin,
N: neomycin, M: meloxicam, CCCP: carbonyl cyanide m-chlorophenylhydrazine, C: caffeine, O: omeprazole,
K: ketoprofen.

Furthermore, the clindamycin/erythromycin combination produced an antagonis-
tic effect with FICI = 16.668 against isolate no. 10. Quinine combinations with clin-
damycin and clindamycin/erythromycin showed additive effects. Moreover, fosfomycin
revealed a synergistic effect when combined with clindamycin (FICI = 0.375). The clin-
damycin/erythromycin/fosfomycin combination exhibited an additive effect. Regarding
ketoprofen, synergism was also detected in the clindamycin/ketoprofen combination
(FICI = 0.5). The clindamycin/erythromycin/ketoprofen combination produced an addi-
tive effect (Table 5).

Table 5. Combined effect of clindamycin/erythromycin/potential inhibitors on S. aureus isolate no.
10 (D phenotype) using checkerboard assay.

Isolate No.
FICI and

Combined
Effect of DA/E

Potential
Inhibitor FICI Combined

Effect

Isolate no. 10
16.668

(antagonism)

Quinine
DA/Q 1 Additive

DA&E/Q 0.56 Additive

Fosfomycin
DA/F 0.375 Synergism

DA&E/F 0.56 Additive

Ketoprofen
DA/K 0.5 Synergism

DA&E/K 0.75 Additive
Isolate no.: number of isolate, FICI: fractional inhibitory concentration index, DA: clindamycin, E: erythromycin,
Q: quinine, F: fosfomycin, K: ketoprofen.

2.8. Molecular Docking Study for Potential Inhibitors of Erythromycin Resistance
2.8.1. Molecular Docking Study of Doxorubicin at S-Adenosyl-L-Methionine
(SAM)-Binding Site of ErmC’ Protein

The docking of doxorubicin at ErmC’ showed a docking energy score =−7.59 kcal/mol,
and it was capable of binding similarly to the binding mode of the co-crystallized ligand
(sinefungin) (−9.75 kcal/mol), which included six hydrogen bonding interactions, one H-π
interaction with Phe12, and ten hydrophobic interactions (Figure S1). Two hydrogen bonds
with Glu38 and Glu59 and all hydrophobic interactions, except those with Ile85, Asp61,
and Ser9, were common in doxorubicin and sinefungin (Figure 5, Table S5).
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Figure 5. The molecular docking results of sinefungin (SFG) and doxorubicin at S-adenosyl-L-
methionine (SAM) binding site of ErmC’ protein, and erythromycin, neomycin, and omeprazole at
MsrA protein. (a) 3D interaction of SFG (violet) at SAM-binding site of ErmC’. (b) 3D diagram of
overlay view of doxorubicin (dark yellow) and SFG (violet) at SAM-binding site of ErmC’. (c) 3D
representation of erythromycin (yellow) at active site of MsrA protein. (d) 3D representation of
overlay view of neomycin (dark pink), erythromycin (yellow) at active site of MsrA protein. (e) 3D
representation of overlay view of omeprazole (red) and erythromycin (yellow) at active site of MsrA
protein. For clarity, non-interacting residues were deleted. Hydrogen bonds are shown in black, and
arene hydrogen bonds are shown in dark blue (UniProtKB ID: Q9ZNK9).

2.8.2. Molecular Docking Study of Neomycin and Omeprazole at Binding Site of
MsrA Protein

From the docking study, neomycin showed a binding affinity of −7.21 kcal/mol
compared to erythromycin, which showed a docking score of −5.91 kcal/mol. Neomycin
formed six hydrogen bonds, an H-Pi interaction with Tyr280, an ionic bonding interaction
with Glu193, and eight hydrophobic interactions (Figure S1). Neomycin and erythromycin
showed similar interactions at the same binding site of MsrA protein, forming H-bonding
with Glu449 and Met450 and hydrophobic interactions with Glu446, Met450, Tyr280,
Gln189, Tyr192, Ile442, and Glu193 residues (Figure 5, Table S6).

Omeprazole, on the other hand, was capable of docking at the MsrA protein as well,
where it formed an H-bond interaction with Glu446 and nine hydrophobic interactions
(Figure S1). It showed a docking score of −6.93 kcal/mol. Additionally, omeprazole
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showed similar bonds with erythromycin at the binding site of MsrA protein, where both
compounds bind by hydrogen bonding interaction with Glu446, in addition to hydrophobic
interactions with Glu446, Tyr280, Tyr192, Ile442, and Glu193 (Figure 5, Table S6).

2.9. Molecular Docking Study of Quinine, Fosfomycin and Ketoprofen at SAM-Binding Site of
ErmC’ Protein

Quinine showed a consistent binding mode (docking energy score (∆G) = −6.87
kcal/mol) to the co-crystallized ligand (SAM) (docking energy score (∆G) =−8.58 kcal/mol),
including two hydrogen bonding interactions with Glu59 and Gly38 residues of ErmC’, one
ionic bonding interaction of amino group in quinine with Glu59, and seven hydrophobic
interactions (Figure S2). Moreover, quinine and SAM can fit the SAM-binding site of ErmC’.
It showed similar hydrogen bond interactions (with Glu59 and Gly38) and hydrophobic
interactions when compared to SAM (Figure 6, Table S7).
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Figure 6. The molecular docking results of SAM, quinine, ketoprofen, and fosfomycin at the SAM-
binding site of ErmC’ protein. (a) 3D diagram of SAM (red) at SAM-binding site of ErmC’. (b) 3D
diagram of overlay view of quinine (green) and SAM (red) at SAM-binding site of ErmC’. (c) 3D
diagram of overlay view of ketoprofen (magenta) and SAM (red) at SAM-binding site of ErmC’.
(d) 3D diagram of overlay view of fosfomycin (cyan) and SAM (red) at SAM-binding site of ErmC’.
For clarity, non-interacting residues were deleted. Hydrogen bonds are shown in black, and arene
hydrogen bonds are shown in dark blue (PDB ID: 1QAO).

On the other hand, molecular modeling studies showed that ketoprofen had a binding
mode (docking energy score (∆G) = −6.52 kcal/mol) compared to SAM (docking energy
score (∆G) = −8.58 kcal/mol). Ketoprofen interacted with Ile60 and Ile85 residues by
hydrogen bonds; it also interacted by Pro103 by an H-Pi interaction and demonstrated five
hydrophobic interactions (Figure S2). Ketoprofen and SAM fit the same binding site and
showed similar interactions with Ile85 (H-bond) and all hydrophobic interactions except
those with Asn11 and Asn101 (Figure 6, Table S7).

Docking studies also showed the involvement of five hydrogen bonds with fos-
fomycin, with a docking energy score (∆G) of −4.19 kcal/mol when compared to SAM
(−8.58 kcal/mol) (Figure S2). Ile13 and Asn101 appeared to form common hydrogen bonds
in fosfomycin and SAM (Figure 6, Table S7).
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3. Discussion

Staphylococcus aureus is an opportunistic Gram-positive pathogen that causes a variety
of clinical infections [49]. It is commonly isolated from infections in surgical sites, chronic
ulcers, purulent cellulitis, and wounds [50]. It can spread throughout the body and affect
organs, such as the brain, kidneys, hearts, muscles, bones, eyes, joints, and lungs [51].

In this study, 91 S. aureus isolates were collected from different clinical sources. Wounds
were the most common source of infection (39.6%), followed by blood (33%) and nasal
swabs (26.4%). Broncho-alveolar lavage was the least common type of specimen (1.1%).
This finding is similar to that reported by Razeghi et al. [52], where wounds were the major
source (43.4%), followed by blood (18.1%), among 490 S. aureus clinical isolates.

The antimicrobial susceptibility test demonstrated a high level of resistance to β-lactam
antibiotics, such as amoxicillin-clavulanic acid (80%), oxacillin (69.2%), cefoxitin (94.5%),
ceftazidime (96.7%), cefotaxime (64.8%), and cefepime (60.4%). A moderate level of resis-
tance was observed towards aminoglycoside antibiotics, such as gentamicin (64.8%) and
amikacin (38.5%), fluoroquinolones, such as ciprofloxacin (46.2%) and levofloxacin (37.4%),
macrolides, such as erythromycin and azithromycin (57.1%), and clarithromycin (56%).
Concerning clindamycin and quinapristin/dalfopristin, the resistance rates were 38.5% and
57.1%, respectively. The most effective antibiotics were linezolid and vancomycin (100%)
and imipenem (71.4%) for the management of infections caused by S. aureus (Figure 2a,
Table S1).

In the current study, 94.5% of S. aureus isolates were MRSA (Table S1). Similarly, a
high frequency of MRSA has also been reported in Egypt (89.4%) [53], Peru (80%) [54], and
Colombia (90%) [55]. Among S. aureus isolates collected in this study, 63.7% were multidrug-
resistant (MDR) (Table S1), which is similar to the rate reported in Egypt (63%) [56].

The prevalence of cMLSB, iMLSB and MS resistance phenotypes among S. aureus
isolates was 39.6%, 14.3%, and 2.2%, respectively (Figures 2b and 3). A comparable rate
of cMLSB was found by Kishk and co-authors (38.6%) [57]. The iMLSB prevalence is
comparable to that reported in Egypt (13.64%) [57], Nepal (11.48%) [58], India (22.0%) [59],
and Malaysia (22.1%) [60]. The incidence of the MS phenotype among our isolates is in
accordance with that previously reported in Egypt (2.27%) [57], Jordan (2.82%) [61], Greece
(2.90%) [62], and Ethiopia (1.26%) [63].

In this study, the inducible MLSB mechanism was less frequent than the constitutive
mechanism, but both were associated with the presence of the erm genes. Target-site
modification is encoded by erm genes that cause the methylation of 23S rRNA, resulting
in resistance to the MLSB group [64]. The predominant gene among iMLSB isolates was
the ermC gene (n = 10/13; 76.9%), followed by ermA (n = 2/13; 15.4%) and ermB (n = 1/13,
7.7%) (Table 1). In accordance with our findings, other studies reported the prevalence of
the ermC gene among iMLSB isolates [61,65–67].

Compared to erm genes, lower percentages of msr-carrying isolates were identified
(3.8%). The msr genes mediate the active efflux of macrolides and streptogramin B and
reduce their intracellular concentrations [14]. Isolates containing the msr genes encoded
the MS resistance phenotype and harbored the mphC gene (Table 1), as Lüthje and Schwarz
revealed that the mphC gene often occurs linked to the msrA gene in S. aureus isolates [68–71].
Both the mph and mef genes encode macrolide phosphotransferase and macrolide efflux,
respectively, which mediate specific resistance to macrolides [72].

Regarding lnu genes, they inactivate lincosamides by different types of lincosamide nu-
cleotidyltransferases [73]. Among lnuA-carrying isolates, 42.9% had an iMLSB phenotype,
42.9% had a cMLSB phenotype, and 14.3% had an MS phenotype (Table 1). The prevalence
of lnuA (13.5%) is comparable to that detected in China (18.4%) [74]. The lnuB gene was not
detected among the tested isolates, which is in accordance with a study reported in Spain [75].

Screening for the inhibitory effect of the different compounds on erythromycin resis-
tance against tested iMLSB isolates indicated that doxorubicin and neomycin significantly
decreased (p-value < 0.05) the MIC of erythromycin (Figure 4, Tables 2 and S2). In addition,
the checkerboard method revealed that doxorubicin and neomycin showed synergistic ef-
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fects when combined with erythromycin (Table 4). Doxorubicin, a DNA-methyltransferase
inhibitor [48], can compete with sinefungin, a SAM-competitive inhibitor and a methyl-
transferase inhibitor [76–78] at the SAM-binding site of the ErmC’ protein (Figure 5, Table
S5, Figure S1). This inhibits the methylation of the macrolide binding site of 23S rRNA in
the 50S subunit. As a result, erythromycin can attach to the ribosome and prevent protein
synthesis [79]. Although doxorubicin can bind to the SAM-binding site of the ErmC’ pro-
tein, it showed a weak inhibitory activity on inducible clindamycin resistance. According to
Svetlov and co-authors, erythromycin binding to ribosomes depends on its ability to form
a hydrogen bond with the adenine nucleotide at position 2058 of the 23S rRNA, which is
crucial for its activity [80]. Unlike erythromycin, clindamycin forms many hydrogen bonds
with numerous amino acids, including A2058, A2059, G2505, and A2503, and van der Waal
bonds with C2452 and U2506. This is why N-6-methylation of A2058 is not a key factor
when it comes to clindamycin binding to the 23S rRNA of the ribosome [81]. Meanwhile,
both erythromycin and neomycin act as protein synthesis inhibitors as neomycin attaches to
the 30S ribosomal subunit [82,83]. In addition, neomycin is a positively charged antibiotic
that interacts with negative charges in the RNA at multiple distant sites, enabling the
stabilization and preventing the unfolding of RNA structures [84].

Additionally, neomycin and omeprazole significantly reduced the MIC of erythromycin
against isolates no. 36 and 38 (MS phenotype) (Figure 4, Tables 2 and S3). They also pos-
sessed synergistic effects with FICI ≤ 0.5 (Table 4). This may be due to the interactions
between both compounds and the MsrA protein (Figure 5, Table S6, Figure S1). The latter
is an ABC transporter protein, which removes macrolides and streptogramin B from the
cell, preventing them from reaching their target site on the ribosome [85]. Docking analysis
showed that neomycin and omeprazole were capable of binding to the MsrA protein,
competing with erythromycin at the active site of MsrA protein, blocking the release of
erythromycin out of S. aureus, and allowing erythromycin to exert its inhibitory effect on
protein synthesis [86]. In addition, the lipophilic nature of omeprazole plays an important
role in its solubility in bacterial membranes and its ability to bind to MsrA protein [87,88].
Furthermore, neomycin showed the highest binding affinity, suggesting that neomycin had
the highest inhibitory effect on erythromycin resistance compared to omeprazole.

In addition, quinine showed a 4–8-fold decrease in the MIC of clindamycin against
tested iMLSB isolates (Tables 3 and S4). In addition, quinine decreased the FICI of the clin-
damycin/erythromycin combination from 16.668 (antagonistic) to 0.56 (additive) against
isolate no. 10 (Table 5). This effect may be related to the ability of quinine to bind to the
ErmC’ protein (Figures 6 and S2).

Additionally, the MIC of clindamycin was significantly lowered upon adding keto-
profen against all selected isolates (Tables 3 and S4). Ketoprofen decreased FICIDA/E from
16.668 to 0.75 against isolate no. 10 (Table 5). There may be two reasons for their inhibitory
effect on inducible clindamycin resistance: (i) ketoprofen fit at the SAM-binding site of
ErmC’, as detected by docking analysis (Figures 6 and S2). Furthermore, ketoprofen is
considered a thiopurine S-methyltransferase inhibitor via non-competitive inhibitio.n [42];
(ii) as previously detected, ketoprofen inhibited the adherence of S. aureus [40,41], which
could be the cause of its synergistic effect with clindamycin (Table 5).

Moreover, a 2–4-fold reduction in the MIC of clindamycin was observed after the
addition of fosfomycin against all tested isolates (Tables 3 and S4). On the other hand,
an additive effect was observed when fosfomycin was combined with clindamycin and
erythromycin, with FICIDA/E falling from 16.668 to 0.56, as shown in Table 5. The good
binding affinity of fosfomycin to ErmC’ (Figures 6 and S2) and the synergism observed
between fosfomycin and clindamycin (Table 5) could represent an explanation for the
inhibitory effect of fosfomycin on inducible clindamycin resistance. The synergistic effect
of the fosfomycin/clindamycin combination may be due to the cell wall inhibiting activity
of fosfomycin that facilitates the entry of clindamycin into the bacterial cell, which in turn
prevents the synthesis of bacterial proteins by targeting the 23S rRNA of the bacterial
ribosome [89].
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Molecular modeling studies showed that quinine, ketoprofen, and fosfomycin formed
H-bond and hydrophobic interactions with key amino acids at the SAM-binding site of the
ErmC’ protein (Table S7). This binding inhibits N-6 methylation of A2058 at the macrolides-
binding site of 23S rRNA in 50S ribosomal subunit, thus allowing clindamycin to bind to
its binding site on the ribosome and decreasing inducible clindamycin resistance [90]. In
brief, quinine achieved the highest binding affinity, indicating that quinine had the highest
inhibitory activity on inducible clindamycin resistance. Conversely, fosfomycin had the
lowest effect.

4. Materials and Methods
4.1. Isolation and Identification of S. aureus Clinical Isolates

A total of 99 staphylococcal isolates were collected from different clinical sources
(blood, wounds, nasal swabs, and broncho-alveolar lavage) over a period of 7 months from
July 2018 to January 2019 from different hospitals near Mansoura University, Egypt. The
study was approved by the Research Ethics Committee, Faculty of Pharmacy, Mansoura
University (code no.: 2022-194). Standard procedures were followed for the isolation and
identification of S. aureus from clinical specimens [91]. The purified S. aureus specimens
were deposited as glycerol stocks at collection number MRCC6423 at the Microbial Resistant
Culture Collection, Mansoura University, Egypt.

4.2. Antimicrobial Susceptibility Testing

The antimicrobial susceptibility of S. aureus clinical isolates to different classes of an-
timicrobial agents, including amoxicillin/clavulanic acid (30 µg), oxacillin (1 µg), cefoxitin
(30 µg), ceftazidime (30 µg), cefotaxime (30 µg), cefepime (30 µg), imipenem (10 µg), gentam-
icin (10 µg), amikacin (30 µg), ciprofloxacin (5 µg), levofloxacin (5 µg), erythromycin (15 µg),
azithromycin (15 µg), clarithromycin (15 µg), clindamycin (2 µg), quinapristin/dalfopristin
(15 µg), and linezolid (30 µg) was evaluated by the Kirby–Bauer disk diffusion method us-
ing Mueller–Hinton agar plates (Oxoid, Thermo Fisher, Basingstoke, UK), according to the
criteria set by the Clinical and Laboratory Standards Institute (CLSI) [92]. Isolates with an
inhibition zone diameter≤ 21 mm with cefoxitin and an inhibition zone diameter ≤ 10 mm
with oxacillin were identified as MRSA [92]. Moreover, the MIC of vancomycin was de-
tected by the broth microdilution method using Mueller–Hinton broth microtitre plates
(Oxoid, Thermo Fisher, Basingstoke, UK), according to CLSI [92].

According to the definitions proposed by Magiorakos et al. [93], isolates that showed
resistance to at least one agent in three or more antimicrobial classes were considered MDR.
Extensive drug resistance (XDR) was identified as resistance to at least one agent in all
antimicrobial classes except two or fewer. Furthermore, pandrug resistance (PDR) was
identified as resistance to all agents in all antimicrobial classes.

4.3. Phenotypic Detection of MLSB Phenotypes

The Mueller–Hinton agar plate was inoculated with an overnight culture of S. aureus
isolates diluted to 0.5 McFarland. For detection of inducible clindamycin resistance, an
erythromycin (15 µg) disk was placed at a distance of 15 mm (edge to edge) from the
clindamycin (2 µg) disk. Then, these plates were incubated at 37 ◦C for 24 h.

Different MLSB-resistance phenotypes were detected among S. aureus isolates [94]:
(i) cMLSB phenotypes, including the R phenotype, where isolates were resistant to both ery-
thromycin and clindamycin, and the HD phenotype, in which there were two growth zones
around the clindamycin disk, one zone with a light hazy growth up to the clindamycin
disk and the other with heavy growth and showed “D”. (ii) iMLSB phenotypes, including
the D phenotype, which showed a clear D zone around the clindamycin disk, and the D+

phenotype, in which tiny colonies were growing towards the clindamycin disk inside the D
zone. (iii) The MS phenotype, in which isolates were sensitive to clindamycin but resistant
to erythromycin without a D zone.
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4.4. Detection of MLSB Determinants by PCR

The detection of 18 genes, including erm genes (ermA, ermB, and ermC), msr genes
(msrA and msrB), lnu genes (lnuA and lnuB), and mph genes (mphC) was performed by PCR
reaction among MLSB-resistant S. aureus isolates.

The PCR was carried out as indicated: 12.5 µL DreamTaq Green PCR Master Mix
(2X) (Thermo Fisher Scientific, Waltham, MA, USA), 2 µL of bacterial DNA (10 pg–1 µg),
1 µL of each primer (Table S8), and 8.5 µL nuclease-free water (Thermo Fisher Scientific,
Waltham, MA, USA), for a total of 25 µL per reaction. The PCR protocol began with
an initial denaturation of DNA at 95 ◦C for 5 min. Thereafter, there were 35 cycles of
denaturation at 95 ◦C for 30 s, annealing at temperatures indicated for each primer as listed
in Table S1 for 30 s, and extension at 72 ◦C for 1 min. Finally, there was an extension step at
72 ◦C for 5 min. The negative control was the reaction without the DNA template. A gel
documentation system (Model Gel Documentation 1.4, 1189, AccuLab, New York, USA)
was used to visualize PCR products after electrophoresis using 2% w/v agarose gel stained
with ethidium bromide and compared visually with 100 base plus DNA marker (Thermo
Fisher Scientific, Waltham, MA, USA) [95].

4.5. Screening for the Effect of Different Compounds on Erythromycin Resistance

Twenty-one different compounds were tested, including efflux inhibitor (CCCP), natu-
ral compounds (caffeine, quinine, quinidine, emetine, and piperine), antimicrobial agents
(fosfomycin, neomycin, ciprofloxacin, and cancidas), chemotherapeutic agents (doxoru-
bicin, 5-fluorouracil, and cisplatin), NSAIDs (meloxicam and ketoprofen), a proton pump
inhibitor (omeprazole), vitamins (vitamin D3 and vitamin K), antihypertensive drugs
(verapamil and digoxin), and a sedative drug (diazepam) (Table S9). Erythromycin thio-
cyanate was kindly provided from ADWIA, Egypt. The other compounds were supplied
by Sigma-Aldrich, St. Louis, MO, USA.

The MIC of erythromycin and the tested twenty-one compounds were determined
by the broth microdilution method against selected S. aureus isolates no. 10 (D phenotype)
and no. 36 (MS phenotype) [92]. Two-fold serial dilutions of erythromycin and tested
compounds were prepared in a 96-well microtiter plate. The diluted overnight culture of
1.5 × 105 CFU/well was added to each well. The MIC values of erythromycin alone and
in the presence of sub-inhibitory concentrations of the tested compounds were detected.
The plates were incubated for 24 h at 37 ◦C. Wells containing culture with and without
each tested compound were considered positive controls, while wells containing only broth
were considered negative controls.

The compounds that exhibited inhibitory activity on erythromycin resistance against
isolate no. 10 were further evaluated against isolates no. 14 and 27 (D phenotype) and no.
13 and 28 (D+ phenotype). Moreover, the compounds that elicited an inhibitory effect on
erythromycin resistance against isolate no. 36 were similarly assessed against isolate no. 38
(MS phenotype).

4.6. Screening for the Effect of Different Compounds on Inducible Clindamycin Resistance

Isolate no. 10 (D phenotype) was selected for the preliminary screening of the activity
of different tested compounds as potential inhibitors of inducible clindamycin resistance.

4.6.1. Induction of Clindamycin Resistance by Erythromycin

Inducible clindamycin resistance was determined by the modified broth microdilution
method according to CLSI [92]. The MIC of clindamycin was assessed alone and in the
presence of a fixed concentration of erythromycin (8 µg/mL) against isolate no. 10. In brief,
the two-fold serial dilutions of clindamycin alone or with erythromycin (8 µg/mL) were
inoculated with a diluted culture of a final concentration of 1.5 × 105 CFU/well. Thereafter,
the plates were incubated for 24 h at 37 ◦C. Positive controls (inoculum with and without
erythromycin) and negative controls (only media) were included in each plate.
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4.6.2. The Effect of Tested Compounds on Erythromycin-Induced Resistance
to Clindamycin

The inhibitory activity of the tested compounds on inducible clindamycin resistance
was determined using the broth microdilution method [92,96]. Determination of the MIC
of clindamycin (in the presence of erythromycin (8 µg/mL)) was then repeated with the
addition of a sub-inhibitory concentration of each tested compound. The plates were
inoculated with diluted overnight culture (1.5 × 105 CFU/well) of isolate no. 10. After that,
plates were incubated at 37 ◦C for 24 h, including both positive and negative controls.

The compounds that showed inhibitory activity on inducible clindamycin resistance
against isolate no. 10 were selected, and their activities were similarly evaluated against
isolates no. 14 and 27 (D phenotype) and no. 13 and 28 (D+ phenotype).

4.7. Checkerboard Microdilution Method

Double combinations of erythromycin with potential inhibitors were tested against
S. aureus isolate no. 10 (D phenotype) using the checkerboard microdilution method.
Moreover, erythromycin was also combined with potential inhibitors against S. aureus
isolate no. 36 (MS phenotype) in order to test the activity of these potential inhibitors on
erythromycin resistance.

At the same time, three groups of combinations were performed, including (i) clin-
damycin with erythromycin, (ii) clindamycin with potential inhibitors, and (iii) clin-
damycin/erythromycin (8 µg/mL) with potential inhibitors against S. aureus isolate no. 10
(D phenotype) to evaluate the activity of these potential inhibitors on inducible clin-
damycin resistance.

Briefly, two-fold serial dilutions of antimicrobial agent (AMA) and potential inhibitor
(PI) were prepared in sterile tubes. The concentrations used for each compound ranged
from 1/8- to 4-fold the estimated MIC. Then, 50 µL of AMA was mixed with 50 µL of PI in a
96-well microtiter plate. Positive and negative controls were prepared for each combination.
Finally, the plates were inoculated with a diluted culture of 1.5 × 105 CFU/well and
incubated for 24 h at 37 ◦C [97,98].

To evaluate the effect of the combinations, the MIC and FIC were calculated after
overnight incubation. The combined effects were then determined based on FICI. For
the combination of AMA and PI, FICI is calculated according to the following equa-
tion: FICI = FICAMA + FICPI, where FICAMA = MICAMA (in the presence of PI)/MICAMA(alone),
and FICPI = MICPI (in the presence of AMA)/MICPI(alone). AMA was either clindamycin or clin-
damycin/erythromycin (8 µg/mL).

According to the European Committee on Antimicrobial Susceptibility Testing (EU-
CAST) [99], the data were assessed as follows: a synergistic effect is observed when
FICI ≤ 0.5; an additive effect is observed when 0.5< FICI ≤ 1; an indifferent effect is ob-
served when FICI is between 1 and 2; and an antagonistic effect is present when FICI ≥ 2.

4.8. Docking Studies

The molecular docking calculations were performed as in the literature [100] using the
Molecular Operating Environment (MOE) version 2019.01 Chemical Computing Group Inc.
software [101]. The crystallographic structure of erythromycin-resistance methyltransferase
(ErmC’) was obtained from the RCSB Protein Data Bank (PDB) (entry 1QAQ) and (entry
1QAO) [79]. The gene encoding macrolide-streptogramin resistance protein (MsrA) was
obtained and downloaded as predicted Alpha fold UniProtKB (entry Q9ZNK9) [102]. Both
MsrA and ErmC’ were prepared for molecular docking by the 3D-protonation and energy
minimization using the MOE software 2009. Additionally, the energy-minimized structure
served as a docking receptor. The site finder algorithm in MOE was utilized to identify
SAM-binding site. ChemBioOffice was used to create the two-dimensional structures of
the synthesized compounds, which were built using fragment libraries in MOE 2019, and
energy was minimized using the MMFF94x force field until a root-mean-square (RMS)
gradient of 0.01 kcal/mol was achieved. Redocking of co-crystallized ligands at binding
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sites was utilized to validate the docking setup and to show that it was appropriate for
the intended docking study, which is supported by the small root-mean-square deviation
(RMSD) of 1.43 Å (<2 Å) between the docked poses and the co-crystallized ligands. In
order to identify and assess the interactions between ligands and the SAM-binding site
of ErmC’, docking was carried out with specific parameters (rescoring function 1 and
rescoring function 2: London dG, placement: triangle matcher, retain: 2, and refinement:
force field). Based on the S-score of sinefungin and RMSD values, the most effective hits were
chosen. The retrieved compounds that have lower RMSD and higher S-values were recorded.

4.9. Statistical Analysis

GraphPad Prism 5 (GraphPad Software Incorporation, San Diego, CA, USA) was
adopted for all statistical analyses. The two-tailed paired t-test was used to compare two
groups when one group represents the effect before adding a potential inhibitor and the
other group indicates the effect after its addition. Probability values (p-values) <0.05 were
considered statistically significant.

5. Conclusions

Our results revealed a high prevalence of erythromycin resistance (57.1%). In addition,
isolates with inducible resistance phenotypes were also detected among tested isolates
(14.3%). This confirms the importance of identifying potential inhibitors of erythromycin
and inducible clindamycin resistance. Doxorubicin, neomycin, and omeprazole decreased
the MIC of erythromycin significantly. Moreover, they showed synergistic effects when
combined with erythromycin. On the other hand, quinine, ketoprofen, and fosfomycin
caused a noticeable decrease in the MIC of clindamycin. Furthermore, quinine and fos-
fomycin decreased FICIDA/E from 16.668 to 0.56, while ketoprofen reduced FICI DA/E
from 16.668 to 0.75. All data were confirmed by docking analysis. Therefore, doxorubicin,
neomycin, and omeprazole could be potential inhibitors of erythromycin resistance, while
quinine, ketoprofen, and fosfomycin could be potential inhibitors of inducible clindamycin
resistance. Further experiments are required to confirm the data by in vivo studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics12030503/s1, Figure S1: The 2D interactions of sine-
fungin and doxorubicin at S-adenosyl-L-methionine (SAM) binding site of ErmC’ protein, and
erythromycin, neomycin, and omeprazole at MsrA protein; Figure S2: The 2D interactions of SAM,
quinine, ketoprofen, and fosfomycin at SAM-binding site of ErmC’ protein; Table S1: Antimicro-
bial susceptibility of tested S. aureus clinical isolates to different classes of antimicrobial agents;
Table S2: Effect of different tested compounds on erythromycin resistance against S. aureus isolate
no. 10 (D phenotype); Table S3: Effect of different tested compounds on erythromycin resistance
against S. aureus isolate no. 36 (MS phenotype); Table S4: Effect of different tested compounds on
inducible clindamycin resistance against S. aureus isolate no. 10 (D phenotype); Table S5: Dock-
ing results for sinefungin and doxorubicin binding at ErmC’ protein (PDB ID: 1QAQ); Table S6:
Docking results for erythromycin, neomycin and omeprazole binding at MsrA protein (UniProtKB
ID: Q9ZNK9); Table S7: Docking results for S-adenosyl-L-methionine (SAM), quinine, ketoprofen,
and fosfomycin binding at ErmC’ protein (PDB ID: 1QAO). Table S8: Primers used for detection of
macrolide-lincosamide-streptogramin B (MLSB)-resistance determinants; Table S9: Different com-
pounds screened for their activity on erythromycin resistance and inducible clindamycin resistance.
References [103–111] are cited in the supplementary materials.
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