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Abstract: Bacterial contamination in water bodies is a severe scourge that affects human health
and causes mortality and morbidity. Researchers continue to develop next-generation materials for
controlling bacterial infections from water. Photo-antibacterial activity continues to gain the interest
of researchers due to its adequate, rapid, and antibiotic-free process. Photo-antibacterial materials
do not have any side effects and have a minimal chance of developing bacterial resistance due to
their rapid efficacy. Photocatalytic two-dimensional nanomaterials (2D-NMs) have great potential
for the control of bacterial infection due to their exceptional properties, such as high surface area,
tunable band gap, specific structure, and tunable surface functional groups. Moreover, the optical
and electric properties of 2D-NMs might be tuned by creating heterojunctions or by the doping
of metals/carbon/polymers, subsequently enhancing their photo-antibacterial ability. This review
article focuses on the synthesis of 2D-NM-based hybrid materials, the effect of dopants in 2D-NMs,
and their photo-antibacterial application. We also discuss how we could improve photo-antibacterials
by using different strategies and the role of artificial intelligence (AI) in the photocatalyst and in the
degradation of pollutants. Finally, we discuss was of improving the photo-antibacterial activity of
2D-NMs, the toxicity mechanism, and their challenges.

Keywords: photo-antibacterial agent; 2D-NMs; photocatalysis; environmental remediation; infectious
disease; artificial intelligence; carbon

1. Introduction

Bacterial contamination causes infectious diseases and is the third-greatest cause of
mortality and morbidity. Bacterial contamination in water bodies is a severe scourge that
affects human health globally. Numerous bacterial strains have a critical role in bacterial
infectious diseases, but our main focus is bacterial infections caused by contaminated
water. Contaminated water is a severe global threat [1–5]. High levels of contamination,
either chemical or biological, in water cause severe health issues. Biological contamination,
mainly bacteria and viruses, should be eradicated from water bodies to provide safe and
healthy water to society. Biological contamination is responsible for many waterborne and
infectious diseases. These bacteria have developed resistance against antibiotics because
of excessive use of antibiotic drugs. Bacterial resistance affects bacterial strains’ tolerance
ability, leading to severe health issues in human beings [6–9]. For this reason, newer
materials that effectively remove biological contamination from water bodies and at the site
of infection need to be developed. In this sense, nanomaterials might kill/inhibit bacterial
infection without causing increased bacterial resistance.

Nanomaterials have gained increasing interest from researchers for developing newer
antibiotic materials. We have many reasons to believe that nanomaterials play an essential
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role in controlling bacterial infections, as nano-sized materials easily penetrate bacterial
cell walls. For instance, there are many nanomaterials using Cu, Zn, Ag and Au, as well
as CNTs, CNFs, and two-dimensional nanomaterials (2D-NMs), that have been used as
antibiotic materials that effectively kill/inhibit bacterial strains, especially those with multi-
drug resistance (MDR) and extensive drug resistance (XDR) [10–22]. Another way to
reduce or minimize MDR and XDR is via photo-antibacterial activity, which offers newer
possibilities for controlling bacterial infections from water using photocatalytic materials,
cellular oxygen, and visible light irradiation [23–26]. Moreover, it is important to mention
that these materials have insignificant toxicity against different cell lines, whereas some
materials exhibit some toxicity at a certain level [27–30]. Therefore, photo-antibacterial
activity is an exceptional candidate for controlling bacterial infection at the site of infection
and from water bodies.

Numerous semiconductor materials such as TiO2, ZnO, CdS, C3N4, BiOX, and 2D-NMs
have been effectively used in the photocatalysis process to effectively degrade various pol-
lutants, including bacteria. Among them, 2D-NM-based semiconductor materials, such as
layered double hydroxides (LDHs), graphitic carbon nitride (g-C3N4), black phosphorus
(BP), graphene, graphene oxide (GO), and transitional metal chalcogenides (TMDs) (WS2,
MoS2, MXene, TeS2), effectively degrade various pollutants and kill/inhibit bacteria. Usually,
2D-NMs are a class of nanomaterials with a one to two atomic layer thickness, giving them
exceptional optical, electrical, and mechanical properties. The 2D-NM-based semiconductor
materials are more compelling than their bulk materials for use as photo-antibacterial agents
due to their irreplaceable characteristics such as high surface area, high electrical and mechan-
ical stability, functionalization ability, tunable band gap, and high biocompatibility [31–40].
Usually, these 2D-NMs generate electron–hole pairs and charge separation upon exposure to
solar irradiation. The produced photocarriers mainly generate reactive oxygen species (ROS),
hydroxyl radicals, and superoxide radicals as reacting species for the degradation of pollutants
and killing/inhibiting of bacteria during photocatalytic activity. Moreover, incorporating met-
als, carbon, polymers, and surface functionalization within 2D-MNs (or 2D-NM-based hybrid
materials) improves their band gap value, biocompatibility, and photon absorption, producing
high photo-antibacterial activity [37,41,42]. In this sense, 2D-NM-based hybrid materials have
numerous advantages in terms of high photo-antibacterial activity, high biocompatibility, and
being environmentally friendly.

Furthermore, 2D-NM-based hybrid materials provide a newer platform with advance-
ment in the materials sciences, with which we can easily tune structural, optical, and electronic
properties. Usually, photo-antibacterial agents depend on the photocatalyst material’s char-
acteristics, such as crystallinity, size, shape, surface area, and porous texture. Dosage, pH,
pollutant concentration, and light intensity affect photocatalytic activity as well. Undoubt-
edly, synthesizing 2D-NM-based hybrid materials using different components with different
properties might be beneficial for developing photo-antibacterial agents with desired proper-
ties [43,44]. However, enumerating the usefulness of photocatalysts in controlling bacterial
infection is one of the most significant challenges of today. We can resolve such associated
issues with the help of artificial intelligence (AI), which can effectively design experiments
and optimize the photocatalyst materials, thereby minimizing the cost of experiments [45–47].
This review article focuses on the photo-antibacterial activity of 2D-NMs and their hybrid
materials. We discuss the effects of dopants such as metals, polymers, and 2D-NMs within the
2D-NMs on photo-antibacterial activity. Additionally, biocompatibility, mode of action, and
the role of AI in photo-antibacterial activity are also discussed. Finally, challenges and future
aspects of 2D-NMs and 2D-NM-based hybrid materials are also discussed, which provide
newer insight into photo-antibacterial activity (Figure 1).
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Figure 1. A schematic illustration of 2D-NM-based photo-antibacterial activity.

2. Photo-Antibacterial Activity

Bacterial infectious diseases are one of the severe threats that affect human beings.
There are several strategies, such as the use of chemically and naturally synthesized an-
tibiotics, to inhibit/kill bacterial strains. Metal and metal-oxide-based nanomaterials are
proven antibacterial agents that effectively kill/inhibit all bacterial strains (including MDR
and XDR strains). Usually, the development of bacterial resistance ensues in one of several
ways, including (1) alteration in interface/interaction site between bacteria and antibiotics,
(2) leakage of antibiotics to reduce concentration in bacteria, and (3) alteration of antibi-
otics or enzymatic degradation. Several treatment strategies, such as microwaveocaloric,
sonodynamic, and photo-responsive, have been efficiently used to treat bacterial infections.

Furthermore, these treatment strategies rapidly kill/inhibit bacterial strains compared
to conventional methods. The photo-responsive or photo-antibacterial strategy is continu-
ously gaining interest due to the easy and cost-effective nature of the technology. Usually,
photo-antibacterial activity is produced by photocatalytic materials that activate by ab-
sorbing photons to generate ROS, damaging bacterial cellular membranes and thereby
killing/inhibiting bacteria. The ROS enter within the bacterial cells that destroy lipids
and proteins, thereby causing cellular disruption of the bacterial cells and stopping other
physiological activity. Photo-antibacterial activity has several advantages, such as relatively
faster response and minimized/avoided bacterial resistance compared with conventional
antibiotic treatment [48–51]. Usually, photo-antibacterial activity involves the use of semi-
conductor materials to kill/inhibit bacteria, whereas antibiotic molecules might lead to
bacterial resistance by encouraging the survival of resistant bacterial strains. The photo-
antibacterial agents kill bacteria by damaging the cellular membranes/other structures,
thereby impeding the development of bacterial resistance. Moreover, photo-antibacterial
agents often have a broader spectrum of antibacterial activity compared with antibiotic
molecules, further impeding bacterial resistance. It is important to mention here that the
development of bacterial resistance is a complex process and occurs with prolonged or exces-
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sive use of any antibacterial agents [48,52,53]. Figure 2 shows a graphical illustration of the
photo-antibacterial activity of nanomaterials. Furthermore, photo-antibacterial agents have
high antibacterial activity against gram-positive bacteria compared with gram-negative
bacteria due to their cell wall structures. Gram-negative bacteria have an additional outer
membrane that is difficult to penetrate, whereas gram-positive bacteria are composed of
a loose peptidoglycan layer that is easily penetrated by small molecules or is more sensi-
tive to ROS. Photo-antibacterial agents are a broad-spectrum therapeutic strategy because
photo-excited ROS affect many metabolic pathways of bacterial strains that depend on
their cellular structure. Moreover, immediate ROS generation might easily kill bacteria
under solar irradiation, thereby not causing bacterial resistance.
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3. Role of Oxygen in Photo-Antibacterial Activity

Bacterial infectious disease is one of the most severe global threats due to bacterial
resistance. Indeed, researchers continue to focus on newer antibiotic materials, especially
2D-NMs, that efficiently kill/inhibit bacterial strains without developing bacterial resistance
due to their exceptional characteristics. Photo-induced activity is one ancient technique
used for environmental pollutant degradation. Researchers have observed that ambient
oxygen is necessary to initiate the reaction for the degradation of pollutants and inactivation
of bacterial strains. Solar irradiation exposure effectively kills numerous bacterial strains
because of the photo-stimulation of endogenous porphyrins. Usually, two types of photo-
induced reactions kill the bacterial strains: (1) Type-1 pathways, which comprise electron
transfer reactions, lead to the generation of ROS (hydroxyl radicals, superoxide, and
hydrogen peroxide). Excess ROS leads to the cellular disruption of bacterial strains, thereby
causing cell death of the bacteria. (2) Type-2 pathways comprise the energy transfer from
photosensitizers that can generate singlet oxygen. It is essential to mention that other
pathways (Type-3), such as Psoralens photo-activation by UV light, generate DNA mono
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adducts and inter-strand cross-links, subsequently killing bacterial strains. These pathways
more effectively kill bacterial strains in the absence of oxygen [54–56]. In general, we can
say that photo-antibacterial activity is mainly oxygen-dependent, but might be possible in
the absence of oxygen. We have substantial evidence suggesting oxygen’s role in photo-
antibacterial activity. For instance, Feuerstein et al. use Porphyromonas gingivalis and
Fusobacterium nucleatum in the presence of oxygen under visible light irradiation. Their
data suggested that photo-toxicity depends on oxygen, and hydroxyl radicals play an
essential role in photo-antibacterial activity [57]. Maclean et al. used S. aureus bacterial
strains in the presence and absence of oxygen under visible light. Their data indicated a
slight decrement in bacterial growth under visible light in the presence of oxygen, which
was attributed to oxygen being required for the photo-activation process [58]. Dai et al.
used methicillin-resistant S. aureus (MRSA) in the presence of oxygen under blue light
irradiation. Their data suggested that the reduction of bacterial strains under blue light
irradiation and photo-activation is oxygen-dependent [59]. These studies indicate that
photo-activation is oxygen-dependent and that ROS plays a crucial role in the inactivation
of bacterial cells. Moreover, solar irradiation shows some photo-antibacterial activity in
some bacterial strains at a certain level. By using photosensitizers or 2D-NMs, we can easily
improve ROS production, leading to bacterial cellular disruption. Photocatalysts based
on 2D-NMs mainly operate via the excitation of electron–hole pairs, separation of charge,
redox reaction on catalyst surfaces, and generation of ROS, subsequently causing bacterial
cell death. It is important to mention here that the the active species varies with different
photocatalyst materials.

4. Photo-Antibacterial Activity of 2D-NMs

Antibacterial 2D-NMs are among the most promising and frequently used agents
due to their remarkable characteristics, high surface area, excellent biocompatibility, cost-
effectiveness, and remarkable photocatalytic activity, which make them exceptional ma-
terials for photo-antibacterial activity. Moreover, their photo-antibacterial activity with
relatively less resistance, rapid sterilization, and non-invasive antibacterial activity makes
them outstanding candidates for next-generation photo-antibacterial agents. Additionally,
the photo-antibacterial activity might be tuned by different synthesis strategies by changing
their morphology and band gap value. Numerous 2D-NMs have been efficiently used
for photo-antibacterial activity. For instance, Huang et al. synthesized graphitic carbon
nitride (g-C3N4) using a simple heating process and tested it against an E. coli bacterial
strain. Their data indicated that the g-C3N4 produces photo-antibacterial activity with
100% inhibition at 4h of exposure. Moreover, g-C3N4 is reusable for up to 3 consecutive cy-
cles [60]. Mao et al. synthesized BP using a simple exfoliation process and tested it against
both E. coli and S. aureus under solar irradiation. Their data indicated that the prepared
BP effectively kills/inhibit both E. coli and S. aureus within 10 min of solar irradiation [61].
Markovic et al. synthesized different graphene-based materials such as GO, graphene quan-
tum dots (GQDs), carbon quantum dots (CQDs), and nitrogen-CQDs (N-CQDs) using the
Hummers and thermal decomposition processes. The prepared graphene-based materials
killed/inhibited the 19 bacterial strains. However, GO shows relatively poor antibacterial
activity compared with other graphene-based materials [26]. Zhao et al. synthesized MoS2
using the Li-ion intercalation method and tested it against MDR E. coli and methicillin resis-
tance S. aureus (MRSA) under solar irradiation. Their data suggested that the single layer
MoS2 effectively controlled bacterial infection. Interestingly, single-layer MoS2 showed the
complete inhibition of MDR E. coli within 15 min of solar irradiation, whereas complete
inhibition of MRSA was observed within 25 min of solar irradiation. Additionally, the
generation of ROS and smaller size promoted the antibacterial activity [62]. Zhang et al.
synthesized MoS2 using ultra-sonication, hydrothermal, and intercalation processes for
rapid sterilization. Their data showed that MoS2 that was prepared using ultra-sonication,
hydrothermal treatment, and intercalation effectively killed/inhibited E. coli at rates of 33%,
62%, and 99%, respectively, within 180 min of solar irradiation [63]. Wu et al. synthesized
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MoS2 using a simple annealing process, and modulation of the S compound within the
MoS2 via changing the annealing temperature significantly affected the photocatalytic
activity. The prepared MoS2 sample severely damaged the bacterial cell wall by increas-
ing the production of ROS due to decrease in the photo-generated electrons [64]. Table 1
shows the different 2D-NMs and their photo-antibacterial activity. The data mentioned
above and shown in Table 1 demonstrate that the 2D-NMs can be effectively used for
photo-antibacterial activity due to their band gap values, high surface area, and exceptional
electronic characteristics. The high surface area improved the active sites, and the lower
band gap value improved the photon absorption, resulting in high photo-antibacterial ac-
tivity. However, as controlling bacterial infection within a few minutes remains a challenge.
Researchers continue to focus on developing newer 2D-NMs or amended dopants with
existing materials that may be able to control bacterial infections within a few seconds or
minutes of solar irradiation.

Table 1. Different 2D-NMs and their photo-antibacterial activity.

S. No. 2D-NMs Synthesis Process Bacteria Inhibition Time (min) References

1. g-C3N4 Heating E. coli 240 [60]
2. BP Exfoliation E. coli and S. aureus 10 [61]
3. MoS2 Li-ion intercalation MDR E. coli and MRSA 15 and 25, respectively [62]

4. MoS2
Ultra-sonication, hydrothermal

treatment, and intercalation E. coli 180 [63]

5. GO Hummers method 19 types of bacteria 1440 [26]
6. MoS2 Annealing E. coli 10 [64]

4.1. Photo-Antibacterial Activity of Metal-Doped 2D-NMs

As an emerging material, 2D-NMs have expanded into many research areas, including
biomedical applications, due to their exceptional characteristics. These extraordinary prop-
erties, including photo-absorption and lower band gap values, make them good candidates
for photo-responsive treatments that can be implemented with solar irradiation to gener-
ate ROS for controlling bacteria. Researchers still focus on improving photo-absorption
ability and narrowing the band gap values of 2D-NMs, which significantly improves pho-
tocatalytic efficiency. In this respect, metal doping within the 2D-NMs might enhance
photo-absorption. Usually, the integration of metals within the 2D-NMs enhances active
sites, identical pore size distribution, and narrowing of the band gap values, resulting in
high photo-responsive ability. Numerous metal-doped 2D-NMs have been synthesized and
effectively used for controlling bacterial infection under solar light irradiation. For instance,
Ma et al. synthesized Ag–C3N4-based composite materials using a thermal polymeriza-
tion process and tested them against E. coli under solar irradiation. Their data indicated
that the prepared Ag–g-C3N4-based composite materials had significantly higher photo-
antibacterial activity than the pure g–C3N4. The prepared Ag–g-C3N4-based composite
materials effectively killed/inhibited E. coli within 20 min of solar light irradiation. This
enhanced photo-antibacterial activity was primarily due to the absorption of photons and
rapid transportation of the electron–hole pair [65]. Li et al. synthesized Ag2WO4–g-C3N4-
based composite materials using a deposition–precipitation process on inactivate bacteria.
Their data suggested that the prepared Ag2WO4–g-C3N4-based composite materials effec-
tively killed/inhibited bacteria under solar irradiation of 90 min due to the synergetic effect
of Ag2WO4 and g-C3N4, which improved the separation of electron–hole pairs [66]. Sun
et al. synthesized GO–g-C3N4-based photocatalyst materials and tested them against E. coli
using a sonication process. Their data indicated that the synthesized GO–g-C3N4 materials
effectively killed the bacteria. Additionally, the GO–g-C3N4 materials could effectively
be used for up to four consecutive cycles at more than 90% inhibition [67]. Kumar et al.
synthesized Ag-decorated WS2 nanosheets (Ag–WS2) using the CVD process and tested
them against E. coli bacterial strains. Their data suggested that incorporating Ag within the
WS2 enhanced photo-antibacterial activity, resulting in next-generation materials for fast
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and smart water-treatment technology [68]. Figure 3 shows a schematic illustration of the
photo-antibacterial activity of Ag–WS2. Liu et al. synthesized GQDs and ZnO–GQDs using
a simple heating process and tested photo-antibacterial activity against both E. coli and
S. aureus bacterial strains. Their data indicated that incorporating ZnO within the GQDs
significantly enhanced the photo-antibacterial activity, and complete inhibition/killing was
observed at 5 min of exposure [69].
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Kiani et al. synthesized rGO-decorated CuO nanowires (rGO–CuO–NW) using oxida-
tion and electrodeposition techniques and tested them against E. Coli under solar irradiation.
Their results showed that the rGO–CuO–NW wires generated ROS under solar irradiation.
Excess ROS could elicit cellular disruption, killing the bacterial strains within 150 min of
exposure [70]. Wang et al. synthesized vanadate quantum dots (V-QDs) incorporated with
a gC3N4 (V-QDs–g-C3N4)-based composite to inactivate Salmonella and S. aureus. Their
results showed that both bacterial strains were effectively inhibited within 15 min of solar
irradiation [71]. Liu et al. synthesized Si–rGO-based Ag nanoparticles (Ag–Si–rGO) using
simple oxidation and oil–water stratification and controlled a bacterial infection within
5 min of exposure [72]. Another study focused on the synthesis of Ag2S-decorated exfoli-
ated WS2 using in situ growth, testing the material against E. coli and S. aureus. Their results
showed that the strong adhesion of Ag2S onto the surface of WS2 efficiently enhanced the
antibacterial activity. Figure 4 shows the SEM, TEM, EDS, and crystal structure of Ag2S,
WS2, and Ag2S–WS2. The SEM and TEM images confirm the adhesion of Ag2S onto the
surface of WS2. The synthesized Ag2S–WS2 effectively killed/inhibited both E. coli and
S. aureus at 20 min of irradiation; suggesting that Ag2S–WS2 is a highly effective disinfec-
tant [73]. Wu et al. synthesized a MnO2–g-C3N4-based composite deposited on a Ti implant
and tested it for rapid sterilization under solar irradiation. Their results indicated that
the MnO2–g-C3N4-based composite coating effectively inhibited/killed bacterial strains
within 20 min of solar irradiation with 99.26% and 99.96% inhibition of E. coli and S. aureus
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bacteria, respectively. The killing/inhibition of bacteria was mainly due to the generation
of ROS during solar irradiation [74]. Sharma et al. synthesized CeO2–GO using a simple co-
precipitation process and tested it against different bacterial strains. Their data suggested
that the CeO2–GO effectively inhibited bacterial strains (E. coli, S. aureus, S. typhi, and
P. aeruginosa.) under solar irradiation. Additionally, the killing/inhibition of the bacterial
strains was mainly due to membrane leakage and ROS [75]. Caires et al. synthesized Ag
nanoparticles using green synthesis and rGO oxidation processes. Next, an rGO–Ag-based
nanocomposite was prepared using a simple mixing process, and the prepared rGO–Ag
nanocomposite was tested against S. aureus under blue light irradiation. Their data sug-
gested that the prepared rGO–Ag nanocomposite effectively inhibited S. aureus within
30 min of blue light exposure [76]. Ding et al. synthesized CuS–g-C3N4–based composite
materials using a simple hydrothermal process and tested them against both E. coli and
S. aureus bacterial strains. Their data indicated that the synthesized CuS–g-C3N4-based
composite materials effectively killed/inhibited bacterial strains under solar irradiation.
Moreover, increasing reaction temperatures and the amount of CuS increased the photo-
antibacterial activity due to the increased recombination of photo-generated electron–hole
pairs. Additionally, ROS generation increased the bacterial strains’ cellular disruption [77].
Tan et al. synthesized Ag–rGO-based composite materials for controlling bacterial infection
under NIR exposure. Their results showed that the prepared Ag–rGO-based composite
effectively killed/inhibited E. coli and MDR Klebsiella pneumonia (K. pneumonia) within
5 min of NIR exposure. The NIR exposure induced cellular membrane disruption via ROS
generation [78].
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Qian et al. Zn doped g-C3N4 incorporated with Bi2S3 (Zn–gC3N4–Bi2S3) using poly-
merization and electrostatic absorption. Their results demonstrated that the Zn–g-C3N4–
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Bi2S3 effectively controlled the P. aeruginosa and S. aureus infection within 15 min of expo-
sure. The unusual photo-responsive antibacterial activity of the Zn–g-C3N4–Bi2S3 compos-
ite material was mainly due to the lower recombination rate and higher photo-generated
current; the authors concluded that the material might effectively be used for tracheal re-
pair [79]. Table 2 summarizes different metal-doped 2D-NMs and their photo-antibacterial
activity. The data mentioned above and Table 2 indicate that the integration of metal within
the 2D-NMs might enhance the photo-antibacterial activity mainly by significantly enhanc-
ing the electronic properties, porosity, and photon adsorption ability, as well as narrowing
the band gap values, resulting in a lower recombination rate and higher photo-generated
current and thus, enhanced photo-antibacterial activity. Moreover, the synthesis process
also affects the electronic structures of metal–2D-NMs, suggesting that similar materials
subjected to different synthesis processes might change their photo-antibacterial activity.

Table 2. Metal-doped 2D-NMs and their photo-antibacterial activity.

S. No. Metal–2D-NMs Synthesis Process Bacteria Exposure Time (min) References

1. Ag–g-C3N4 Thermal polymerization E. coli 90 [65]
2. Ag–Si–rGO Oxidation E. coli 5 [72]
3. Ag2S–WS2 In-situ E. coli and S. aureus 20 [73]
4. Ag–WS2 CVD E. coli 180 [68]

5. Ag–rGO Oxidation and mixing E. coli and
K. pneumonia 10 [78]

6. Ag–rGO Green process S. aureus 30 [76]
7. AgWO4-gC3N4 Deposition–precipitation E. coli 90 [66]
8. GO–g-C3N4 Sonication E. coli 120 [67]
9. CuS–g-C3N4 Hydrothermal E. coli and S. aureus 20 [77]
10. GO–CuO Thermal oxidation E. coli 150 [70]
11. V-QD–g-C3N4 Thermal Salmonella 10 [71]
12. MnO2–g-C3N4 - E. coli and S. aureus 20 [74]

13. CeO2–GO Co-precipitation E. coli, S. aureus, S.
typhi, P. aeruginos. - [75]

14. ZnO–GQDs Heating E. coli and S. aureus 5 [69]

15. Zn–g-C3N4–Bi2S3
Polymerization and

electrostatic absorption
S. aureus and
Pseudomonas 15 [79]

4.2. Photo-Antibacterial Activity of 2D-NM-Based Hybrid Materials

At present, 2D-NMs and metal-doped 2D-NMs are of great interest to researchers due
to their exceptional characteristics. Remarkably, incorporating metals within different 2D-
NMs augments the materials’ applicability, including for photo-antibacterial applications.
However, some of the most significant challenges involve the stability of 2D-NMs, high
photo-antibacterial activity, and the leach-out ability of the metal ions from metal-doped
2D-NMs. Incorporating polymers, metals, carbon, and other 2D-NMs within the 2D-NMs
(i.e., 2D-NM-based hybrid materials) might resolve such issues. Numerous 2D-NM-based
hybrid materials have been used to control bacterial infections under solar irradiation. For
instance, Xiao et al. synthesized poly-thiophenes that incorporated rGO (P–rGO) using the
grafting method for controlling bacterial infections under solar irradiation. Their results
show that the P–rGO inhibited/killed 100% E. coli within 10 min of irradiation due to signif-
icantly enhanced optical absorption (UV to NIR) and photo-generated electron transfer [80].
Using a condensation process, Qian et al. synthesized glycol-chitosan that incorporated car-
boxyl graphene (GCCG). The prepared GCCG effectively controlled the focal infection by
killing E. coli and S. aureus within 10 min of NIR exposure. Moreover, effective contact and
high surface area might enhance the photo-responsive ability [81]. Tan et al. synthesized
BP nanosheets (BPS) using a simple liquid exfoliation process and encapsulated them with
poly (4-pyridone methyl styrene) (PPMS) to produce a BPS–PPMS composite. Their results
show that the prepared BPS–PPMS composite effectively inhibited/killed both E. coli and
S. aureus bacterial strains within 10 min of exposure by generating ROS. Additionally, the
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prepared BPS–PPMS composite had high biocompatibility, and incorporating the PPMS
polymer significantly improved the BPS chemical stability [82]. Figure 5 shows a schematic
illustration of the Ti–PPMS–BS-based photo-antibacterial activity. Chen et al. synthesized
peptide-conjugated dopamine–rGO (PD–rGO) using the oxidation and mixing process.
Their results show that the prepared PD–rGO-based composite materials effectively killed S.
aureus bacterial strains within 10 min of NIR exposure. Additionally, incorporating the pro-
tein within the PD–rGO-based composite materials significantly enhanced the therapeutic
efficacy of the composite [83].
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Budimir et al. synthesized a Kapton–Au–polyethylene-based composite with rGO (K–
Au–PE–rGO) for controlling bacterial infection under NIR irradiation. Their results show
that the prepared K–Au–PE–rGO composite material effectively killed/inhibited E. coli
and S. aureus within 10 min and Staphylococcus epidermidis (S. epidermidis) within 30 min of
NIR exposure. The electron-rich amino group improved photo-thermal efficiency [84]. Zhu
et al. synthesized chitosan–MoS2–Ag that was deposited onto a Ti (CMAT) surface. Their
results show that the Ag–MoS2 exhibited higher photo-antibacterial activity compared
with the CMAT-based composite against both E. coli and S. aureus bacterial strains due
to rapid electron transfer, resulting in high ROS production. Nonetheless, the prepared
CMAT-based composite also effectively inhibited both E. coli and S. aureus with 98.6%
and 99.7% inhibition, respectively [85]. Yuan et al. synthesized MoS2–PDA–RGD for
controlling a bacterial infection under solar irradiation. Their results show that the prepared
MoS2–PDA–RGD composite effectively controlled bacterial infection under NIR irradiation
due to the generation of ROS and oxidative stress [86]. Figure 6 shows the SEM and
photographic images of the antibacterial activity of MoS2–PDA–RGD.
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Zhang et al. synthesized CuS–MoS2-based hydrogel and tested it against wound-
healing and controlling bacterial infections. Their data indicated that the CuS–MoS2-based
hydrogel inhibited bacterial growth under solar light irradiation [87]. Xiang et al. synthe-
sized ZnO–carbon dots–C3N4 (Z–C–C3N4)-based composite materials to inactivate bacterial
strains and improve wound-healing ability. Their results indicate that the Z–C–C3N4-based
composite materials effectively controlled bacterial (E. coli and S. aureus) infection with
99.97 and 99.99% inhibition, respectively, due to the generation of ROS and hyperther-
mia [88]. Zhang et al. synthesized a composite incorporating red phosphorus (RP) and
GO (RP–GO) composite. Their results indicate that the prepared RP–GO-based composite
effectively inactivated bacterial (E. coli and S. aureus) strains with 99.99% inhibition within
20 min of solar irradiation [89]. Li et al. synthesized Bi2S3/Ti3C2Tx-based composite mate-
rials using a simple etching process for photo-antibacterial activity. Their results indicate
that the prepared Bi2S3/Ti3C2Tx-based composite materials effectively killed/inhibited
S. aureus and E. coli with 99.86% and 99.92% inhibition at 10 min of irradiation, respectively,
by increasing the production of ROS. Incorporating Ti3C2Tx in the Bi2S3 increased the
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impurity level, reducing the band gap value and increasing the photo-generated electrons,
thereby generating high ROS [90] (Figure 7). Zhang et al. synthesized phosphorus (P)-
doped MoS2–g-C3N4-based composite materials for the inactivation of bacteria under solar
light irradiation. Their results indicate that the prepared P–MoS2–g-C3N4-based composite
materials completely inhibited E. coli, whereas P–MoS2 showed 61.6% and g-C3N4 showed
44.7% inhibition. The prepared P–MoS2–g-C3N4-based composite materials improved the
active site, thereby creating high photo-antibacterial activity [91]. Cao et al. synthesized
chlorine-loaded chitosan-functionalized MoS2 (CC–MoS2) using simple exfoliation and
mixing processes for photodynamic antibacterial activity. Their results indicate that the pre-
pared CC–MoS2-based composite effectively killed/inhibited bacterial strains within 5 min
of laser light exposure. Moreover, the data indicated that the CC–MoS2-based composite is
highly efficient compared with other cationic composites [92].
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Table 3 summarizes the 2D-NM-based hybrid materials and their photo-antibacterial
application. Some salient observations can be made based on the literature above and
Table 3. Indeed, metal incorporation within the 2D-NMs significantly enhanced the photo-
catalytic or photo-antibacterial activity, addressing a significant drawback of 2D-NMs alone.
The main advantage of 2D-NM-based hybrid materials is the ability to tune the desired
characteristics of the materials based on their applicability. These 2D-NM-based hybrid
materials, as photo-antibacterial agents that are easily reusable up to 3-5 times without
any significant difference in efficiency and that do not induce bacterial resistance, have
major advantages over commercially available antibiotics. Moreover, due to their syner-
getic effects, 2D-NM-based hybrid materials show significantly high photo-antibacterial
activity, exceptional biocompatibility, and are environmentally friendly. Additionally, the
photo-antibacterial activity of 2D-NM-based hybrid materials mainly generates ROS, which
leads to the disruption of the cellular membrane and subsequently the death of bacteria.
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Table 3. 2D-NM-based hybrid materials and their photo-antibacterial application.

S. No. Hybrid Materials Synthesis Process Bacteria Exposure Time (min) References

1. P–rGO Reduction E. coli 10 [80]
2. GCCG Condensation E. coli and S. aureus 10 [81]
3. BPS–PPMS Exfoliation E. coli and S. aureus 10 [82]
4. MoS2–PD–RGD Immobilization E. coli and S. aureus 8 [86]
5. GO–NH2 Oxidation E. coli and S. aureus 10 [93]
6. PD–rGO Oxidation S. aureus 10 [83]

7. K–Au–PE–rGO Exfoliation and reduction E. coli, S. aureus, and
S. epidermidis 30 [84]

8. CMAT - E. coli and S. aureus 20 [85]

9. CuS–MoS2-based
hydrogel

Hydrothermal and
freeze-thawing E. coli and S. aureus 15 [87]

10. Z–C–C3N4 Thermal polymerization E. coli and S. aureus 15 [88]
11. RP–GO Hydrothermal E. coli and S. aureus 20 [89]
12. Bi2S3/Ti3C2Tx Etching S. aureus and E. coli 10 [90]
13. P–MoS2–g-C3N4 Layer-by-layer E. coli - [91]
14. CC–MoS2 Sonication and mixing E. coli 5 [92]

5. Strategy to Improve Photo-Antibacterial Efficiency

The photo-antibacterial efficiency directly depends on the design of photocatalytic
materials that can tune their band gap value and photo-absorption ability. Designing
efficient photocatalytic materials is one of the most significant challenges of today. Re-
searchers unceasingly focus on newer photocatalytic materials by changing their structures
via incorporation or inserting dopants (metal/non-metals) that increase/decrease the band
gap value, subsequently producing high photocatalytic activity [48,94]. Usually, the doping
process introduces foreign elements (metal/non-metals) within semiconductor materials
that significantly enhance a material’s applicability. There are mainly three types of dopants,
(1) metals, (2) non-metals, and (3) co-dopants. These dopant materials directly tune the
properties of photocatalyst materials in various ways, such as by (1) improving surface
and interface characteristics, (2) tuning the band gap value and electronic configuration,
(3) reducing the recombination rate of photo-generated electrons, or (4) improving the
stability of the 2D-NMs. The perfect incorporation of dopants within the photoactive
materials might promote the adsorptive ability to enhance photocatalytic efficiency via
more internal active sites, uniform pore size, higher surface area, band gap value, or more
polar environments. Incorporating metal or inorganic dopants might improve pore size
distribution, resulting in higher photocatalytic activity. The porosity plays a crucial role in
intra-particle diffusion for adsorption, and photo-degradation is one of the most important
factors that directly affect the performance and define the synergy between factors [95–99].

Non-metal elements like nitrogen, carbon, boron, sulfur, fluorine, and chlorine can
efficiently enhance visible light absorption performance, thereby narrowing the bandgap
and the shift of the absorption edge, producing higher photocatalytic activity. Nitrogen is
one of the most efficient candidates for visible light-induced antibacterial photo-response,
as N provides a red shift of the absorption edge. Incorporating N by substituting O
leads to a low bandgap value because the hybridization of N and O 2p levels results in a
redshift, enhancing photo-absorption ability. Other dopants like S, B, C, and P demonstrate
excellent photo-responsive skills by narrowing the band gap value, resulting in a high
photo-antibacterial response [100–102]. It is essential to mention that enhanced photo-
response mainly depends on the impurity level of non-metal dopants, which are usually
above the valence band (VB) and lead to the extended optical absorption edge of photo-
responsive materials.

Non-metal dopants tend to acquire isolated sites and reduce agglomeration within
a semiconductor material, positioning it above the VB maximum and enhancing photo-
response ability. Additionally, non-metal doping has several advantages that are similar
to metal doping, and co-doping (metal–non-metal or metal–metal doping and non-metal
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doping) is another way to improve photo-antibacterial response by modulating the band
gap up to a desired level. In other words, metal and non-metal doping are promising
strategies to enhance the photo-induced antibacterial effect. The collaborative outcome of
reducing the band gap is enhanced photo-absorption ability, less recombination of photo-
generated holes and electrons, and a large population of charge carriers, subsequently
enhancing the photo-antibacterial response [49,103–108].

Despite the numerous parameters involved, such as light source, reactor shape, reac-
tion temperature, and distance between lamp and reactor, it is obvious that doping of carbon
nitride with transitional metals, mainly Pt, significantly improves the photo-responsive
ability compared with that of the non-metals like S, P, and N [109–111]. Another way to im-
prove the photo-responsive ability of materials is self-doping, which narrows the band gap
value of photocatalyst materials. The self-doping process is considered a promising method
for tuning band gap values and electronics properties with a marginal morphological
alteration. Moreover, self-doped photocatalysts provide enhanced structural characteristics
with high surface area and inter-connectivity of the materials, thereby improving electron
transport and subsequently producing high photo-responsive ability [112–116]. In general,
the incorporated material (metal/non-metal/polymers) and self-doping possess a high ex-
tinction coefficient of light absorption with high carrier mobility, high porosity, surface area,
and visual transparency to increase photo response, especially for bacterial degradation.

6. Biocompatibility of the 2D-NMs and Their Hybrid Materials

Researchers show ongoing interest in 2D-NMs for a variety of biomedical applications
due to their exceptional physicochemical characteristics. The biomedical applications of 2D-
NMs, such as drug delivery, nanomedicine, bio-imaging, and photo-thermal/photodynamic
therapy, strongly motivate investigation of their biocompatibility. Researchers unceasingly
focus on unraveling the interaction of 2D-NMs with cells/tissue/organs and their toxicity,
which is essential before biological application. Therefore, researchers focus on synthesizing
2D-NMs in terms of their biocompatibility. The biocompatibility of 2D-NMs might be tuned by
incorporating polymers, surface functional groups, and other materials. Studies have advised
that 2D-NMs show insignificant toxicity, while others show some toxicity. It is important to
mention that the design and synthesis process might affect the toxicity of 2D-NMs and their
hybrid materials via external conditions (ionic strength and temperature) and surfactants used
during the synthesis process. The toxicity of 2D-NMs depends on the types of materials, their
size, shape, and surface charge, and the types of cells involved [117–120]. The interaction of
2D-NMs with biological environments such as cell lines, bacteria, animals, and biomolecules
has been examined in the genetics and cellular toxicity contexts. The biocompatibility of
2D-NMs might depend on the type of 2D-NM and its surface properties and surface group.
Therefore, it is necessary to understand the genetic/cellular toxicity of different 2D-NMs with
different cells. Numerous 2D-NMs like graphene, GO, WS2, MXene, and MoS2 have been used
to ascertain biocompatibility against different cells. For instance, Lehner et at. synthesized GO
using a simple oxidation process, and the GO surface was functionalized with an amine group.
Next, the GO–amine-group was coupled with DNA. The surface amine group significantly
enhanced the biocompatibility of the GO (Figure 8) [121]. Another study synthesized Si3N4
nanosheets and tested them against the p53 tumor suppressor. The data indicated that
the Si3N4 nanosheets have high biocompatibility [122]. Yang et al. synthesized graphene
incorporated with polyethylene glycol (PEG–graphene) and ascertained the pharmacokinetics
in vivo. The data suggested that the PEG–graphene distribution over different time ranges has
high biocompatibility, indicating its effective use in biomedical applications [123]. Zhang et al.
synthesized dextran-incorporated GO (D–GO) for in-vivo tracking of radioactive isotopes.
The data indicate that the surface functionalization of GO using dextran significantly reduced
toxicity compared with GO [124]. Xie et al. synthesized lipid-functionalized WS2 for photo-
chemotherapy. The data indicate that lipid functionalization reduced toxicity and mainly
depends on the concentration. Another group focused on WS2 doped with bovine serum
albumin (BSA) (BSA–WS2) to improve theranostic ability. The data indicate that BSA–WS2
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has high biocompatibility compared with WS2 [125]. PEG–WS2 was also synthesized for the
photo-thermal treatment of tumors. The data indicate that incorporating PEG within the WS2
improves biocompatibility and effectiveness [126]. The study reports that the incorporation of
surface functional groups, polymers, hydrophilic groups, biomolecules, and carbon within the
2D-NMs enhanced biocompatibility. Numerous studies reported the insignificant toxicity of
2D-NM-based hybrid materials against different cell lines, whereas higher cellular toxicity was
observed at higher doses. Moreover, different materials show different biocompatibility levels
and attributed cellular/genetic toxicity, depending on the materials and cell lines [80,127–135].
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7. Artificial Intelligence (AI) in Photo-Antibacterial Activity

Researchers have dedicated remarkable effort to developing newer semiconductor ma-
terials, including 2D-NM-based hybrid materials that are proficiently used for controlling
bacterial infection. These photo-antibacterial agents depend on semiconductor characteris-
tics such as crystallinity, size, shape, surface area, and porous texture. Furthermore, dosage,
pH, pollutant concentration, light intensity, and wavelength can also affect photocatalytic
activity. However, enumerating the efficacy of photocatalysts for controlling bacterial
infection is a significant challenge [136–143]. In this respect, designing experiments and
optimizing semiconductor materials using AI might produce next-generation tools that can
minimize the cost of experiments.

Machine learning (ML) is a branch of AI that could provide a data-driven process for
the effectual investigation and extrapolation of photocatalyst performance. Usually, ML-
based models in the literature are used to generate and subsequently manage experimental
designs [139,144,145]. Numerous ML-based models have been developed to optimize
photocatalyst materials for the photo-degradation of various contaminants, including
bacteria. For instance, the literature contains examples of photocatalytic water splitting,
solar photocatalysts, bismuth–ferrite for the removal of malachite green, octahedral 2D
materials, antibacterial activity, nanoparticles for antibacterial activity, the degradation
of perfluorooctanoic acid and water contaminants, the TiO2-based photo-degradation of
water contaminants, the TiO2-based photo-degradation of phenol, Fe-based tri-composite
for the photo-degradation of malachite green, research on the photocatalytic property
of BiFeO3–WO3, 2D material components for photocatalysts, and photocatalytic mem-
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branes [45,46,146–157]. Using ML, we can save time, experimental costs, and manpower
that would otherwise be spent in wet-lab experiments. ML is an evolving area that provides
a newer solution for photo-antibacterial materials assessment. Artificial neural networks
(ANN) are extensively used to envisage photocatalyst (carbon, metal, polymer, ceramic,
and composite) material characteristics and assist in designing/discovering novel pho-
tocatalyst materials. However, a limited model with a similar structure and pollutant
remains a concern. To the best of our knowledge, no studies have yet directly focused on
photo-antibacterial activity, as most of the studies focus on designing photocatalysts and
optimizing environmental pollutants/bacteria. Therefore, extensive research is required
to develop a newer model with different material properties, structures, and pollutants.
That said, these ML-based models demonstrate their usefulness in providing realistic solu-
tions for synthesizing materials. Undoubtedly, the integration of ML in material science,
chemistry, and biology will result in the enhanced applicability of these proposed materi-
als with minimal cost, which might be beneficial for developing research and managing
societal problems.

8. Conclusions

In summary, this review article provides a platform for researchers/academicians
to understand the development of photo-responsive 2D-NM-based hybrid materials, es-
pecially those with photo-antibacterial activity, to control bacterial infection in a smarter
way. These photo-antibacterial agents effectively treat bacterial infection within a shorter
exposure time without any adverse effects—most importantly, without causing bacterial
resistance. Using such photo-antibacterial agents, we can eliminate bacterial infection
on the surface of biological implants and infection sites and promote the wound-healing
process. 2D-NM-based hybrid materials are emerging materials that efficiently kill/inhibit
bacteria due to their exceptional properties, including photo-adsorption and lower band
gap values. The lower band gap value improves the photon absorption ability, resulting
in high photo-antibacterial activity. Metal doping within 2D-NMs might enhance the
photo adsorption ability as well. Typically, incorporating metals within the 2D-NMs in-
creased active sites, caused identical pore-size distribution, and narrowed the band gap
values, thereby creating high photo-responsive ability. Incorporating metals, polymers,
carbon, and surface functional groups within the 2D-NMs significantly enhanced photo
adsorption and biocompatibility. Additionally, 2D-NM-based hybrid materials significantly
exalted the excitation of electron–hole pairs, separation of charge, redox reaction on cat-
alyst surfaces, and generated ROS and subsequently the cell death of bacterial strains.
The biocompatibility of the 2D-NM-based hybrid materials against different cell lines
showed insignificant toxicity, whereas higher cellular toxicity was observed at higher
doses. The different materials showed a different level of biocompatibility, which was
attributed to cellular/genetic toxicity that depended on the materials and cell lines. Further-
more, 2D-NM-based hybrid materials were reusable as photo-antibacterial agents for up to
3–5 times without any significant difference in efficiency and without inducing bacterial
resistance, which is one of their major advantages over commercially available antibiotics.
Therefore, we should consider various methods for improving the photo-antibacterial
activity of next-generation 2D-NM-based hybrid materials in terms of designing metals,
materials composition, and biocompatibility as much as possible. We also need to de-
velop newer 2D-NM-based hybrid materials with enhanced photo-adsorption ability and
biocompatibility that can efficiently filtrate water and control bacterial infection. ML in
photocatalysts offers new insight by reducing the cost of experiments and manpower due
to their optimization of photocatalyst dosage, pH, the concentration of pollutants, design
of materials, and temperature. An ML-based model might provide newer pathways to
developing a reactivity model of catalysts and their association with structure (size/shape),
reaction conditions (temperature/pressure/agitation), the composition of materials (car-
bon/metal/polymers/ceramics/composite), and pollutants (chemical/biological). Using
such ML models, we could easily calculate the exact amount of catalyst and its reactivity
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with pollutants at respective conditions. Finally, we hope this review will inspire young
researchers to develop next-generation 2D-NM-based hybrid materials for controlling
bacterial infections and take innovative steps toward smart water-treatment technology.
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