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Abstract: Ruthenium N-heterocyclic carbene (NHC) complexes have unique physico-chemical prop-
erties as catalysts and a huge potential in medicinal chemistry and pharmacology, exhibiting a
variety of notable biological activities. In this review, the most recent studies on ruthenium NHC
complexes are summarized, focusing specifically on antimicrobial and antiproliferative activities.
Ruthenium NHC complexes are generally active against Gram-positive bacteria, such as Bacillus
subtilis, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes and are seldom active against
Gram-negative bacteria, including Salmonella typhimurium, Pseudomonas aeruginosa and Escherichia
coli and fungal strains of Candida albicans. The antiproliferative activity was tested against cancer
cell lines of human colon, breast, cervix, epidermis, liver and rat glioblastoma cell lines. Ruthenium
NHC complexes generally demonstrated cytotoxicity higher than standard anticancer drugs. Further
studies are needed to explore the mechanism of action of these interesting compounds.

Keywords: Ru-NHC complexes; N-heterocyclic carbenes; antitumor agents; antiproliferative activity;
antibacterials; antimicrobials; antifungals

1. Introduction

Ruthenium (II) complexes represent an important class of organometallic compounds
with numerous applications in the fields of homogeneous, heterogeneous and photocat-
alytic catalysis [1,2], including biological stains, and in the field of therapy [3,4]. Ruthenium
complexes endowed with anticancer properties [5] are attracting significant attention, due
to their vast and different structural types and their ability to variously bind different
ligands with the advantage of lower toxicity than platinum complexes [6–8]. These com-
pounds reasonably penetrate more efficiently tumor cells and effectively bind to DNA,
from which comes the suggestion of their use in different cancers [9,10], including lung [11],
breast [12], ovarian [13–16] and colorectal ones [8]. Recently, nanomedicine formulations
of metal complexes developed for the treatment of cancers are under study [17]. More-
over, numerous other biological activities [18], such as antioxidant, anti-inflammatory [19],
and antimicrobial [3,20,21], have been described for ruthenium complexes. Recent stud-
ies are also addressed to the use of ruthenium complexes as antivirals for the treatment
of COVID-19 [22]. Ruthenium complexes include those with Schiff bases [23–25], phos-
phines [26], carbazole [27], N-heterocyclic carbenes (NHCs), cycloruthenated and half-
sandwiched compounds [28]. Considering the huge variety of ruthenium (II) complexes,
this review will focus merely on one class of them, namely Ru-NHC complexes. Ru-NHC
complexes have promising catalytic potential for a vast range of synthetic applications,
including the activity in transfer hydrogenation [29,30] of ketones, metathesis reactions [31],
secondary alcohol oxidation [32], N-alkylation of amines, amides, and sulfonamides [33,34]
and Oppenauer-type oxidation [35,36]. The high catalytic activity of these compounds is
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even comparable to that of the Noels catalyst [37]. More importantly, Ru-NHC complexes
exhibit notable pharmaceutical activities. The importance of these compounds is also
well-established by recent computational studies [38], suggesting the structural basis of the
biomolecular action of these compounds. In this review, we want to highlight the impor-
tance of the antimicrobial and antiproliferative activities of the Ru(II)-NHC complexes that
may be considered significant starting points for the development of new antimicrobial
and anticancer agents, providing an update of recent studies inherent this relevant topic in
medicinal chemistry in the last five years.

2. N-Heterocyclic Carbenes (NHCs)

N-heterocyclic carbenes (NHCs) are a category of electron donor ligands able to form
dative metal–ligand bonds, leading to a universal class of compounds in organometallic and
coordination chemistry. NHCs typically mimic the chemical properties of phosphines [39].
They belong to five different families: imidazolinylidenes, imidazolylidenes, triazolinyli-
denes, thiazolilylidenes and pyrazolinylidenes (Figure 1) [40].
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NHCs are suitable for efficient design because they can be synthesized within a few
steps, offering the possibility of the N and C functionalization for structure modification.
They act as excellent σ-donors, generating a structural variety ranging from linear, square
pyramidal, trigonal bipyramidal, tetrahedral and octahedral geometries of metal-NHC
complexes. The essential role of NHCs is related to their ability to form complexes with
metals. Metal-NHCs are widely used for organic processes, such as the formation of amide
linkage, hydrogenation, isomerization, cycloisomerization, cyclopropanation, hydrosily-
lation, allylation and deallylation, enol-ester synthesis, heterocycle synthesis and C-C
alkyne coupling [40]. Most importantly, different organometallic-NHC complexes, such as
silver, gold, platinum, copper, palladium and selenium demonstrated interesting biological
properties [41–44], including antimicrobial [45–47], anticancer [48–54], antiparasitic [55],
hemolytic and thrombolytic activities [56,57]. Recent studies for gold and silver-NHC
compounds are addressed to breast [58,59], ovarian [60] and cervical human cancer [61].
Research has been carried out in order to understand the mechanism of action of gold
and silver-NHC complexes as anticancer agents, finding activity against human topoi-
somerases I and II [62,63], actin [64] and tubulin [65], or triggering the reactive oxygen
species-dependent intrinsic apoptotic pathway [66]. Recently, gold and silver compounds
with NHC have been indicated as promising compounds for the treatment of COVID-
19 [67], as they demonstrated a strong inhibition of the S/ACE2 interaction and particularly
of the PLpro enzymatic activity [68]. Moreover, an Ag-N-heterocyclic carbene complex
bearing the hydroxyethyl ligand determined the inhibition of human carbonic anhydrase I
(hCA I) and hCA II isoenzymes, α-glycosidase and AChE and BChE enzymes, thus sug-
gesting the selection of NHC complexes for further studies in glaucoma, epilepsy and other
diseases related to metabolic enzymes [69].

3. Ruthenium-NHC Complexes

Besides the importance of ruthenium-NHC complexes in organometallic catalysis [70,71]
and bioinorganic chemistry, they have been described as effective anticancer and antimi-
crobial agents [40,43,47]. Patil et al., 2020, published the advances in the design, synthesis,
characterization and biomedical applications, particularly the antimicrobial and anticancer
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activities, of ruthenium NHC–metal complexes and other metals (silver, gold, palladium,
rhodium, iridium, and platinum), covering works published from 2015 to 2020 [39]. Several
studies regard only the activity of Ru-NHC complexes as antiproliferative agents, whereas
the antimicrobial activity is almost always studied along with other activities, including
antiproliferative and antioxidant. The two paragraphs below summarized these studies.

3.1. Ru(II)-NHC Complexes with Antiproliferative Activity

Recent studies regarding the antiproliferative activity of Ru(II)-NHC complexes are
summarized and the half-maximal (50%) inhibitory concentration (IC50) values are given,
when reported in the literature.

Lam et al., 2018, [72] investigated several halide-substituted benzimidazolium-derived
NHC of RuII/OsII complexes, using NHCs that were symmetrically and non-symmetrically
methyl- and benzyl-substituted, and reported their inhibition of the selenoenzyme thiore-
doxin reductase (TrxR) and antiproliferative activities. The anticancer activity was studied
against human colon (HCT-116), human cervical (SiHa) and human breast cancer (NCI-
H460) cells. The diiodido(1,3-dibenzylbenzimidazol-2-ylidene)(η6-p-cymene)ruthenium(II)
complex 1 is a potent TrxR inhibitor and an antiproliferative agent. The authors found out
that there was no clear correlation between the two activities, thus, it was suggested that
TrxR inhibition was unlikely to be the main mode of action.

Tabrizi et al., 2019, [73] studied the in vitro antiproliferative potential and cyclooxygenase-2
(COX-2) inhibitory activity of a cyclometalated Ru(II) complex (2) containing ibuprofen
(Ibu), 1,3,5-triaza-7-phosphaadamantane (PTA) and a CCC-pincer containing naproxen
moiety (CCC-Nap). Antiproliferative studies were carried out on breast cancer (MCF-7 and
MDA-MB-231), colon cancer (HT-29) cell lines, healthy breast cell lines (MCF-10A), and
human embryonic kidney normal cells (HEK293) by means of 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay, after 72 h exposure. The complex 2 was quite
potent, about twice as active as cisplatin against breast cancer cells, and around 14 times
less active against HT-29 cell lines than cisplatin. Interestingly, the complex 2 inhibition
studies against COX-2 revealed that it displayed approximately about 16- and 5-times
stronger interactions than the free Ibu and CCC-Nap ligands, respectively. Moreover, it
improved the production of reactive oxygen species (ROS) by 10.7-fold compared to H2O2,
when used as a positive control in MCF-7 cells.

Rana et al., 2021, [74] described the synthesis and study of two pyridine and pyrimi-
dine Ru(II)-NHC complexes, functionalized annulated NHC 3 and 4 with a half-sandwich
geometry, and their in vitro cytotoxicity studies against lung (A549), colon (HCT-116) and
breast (MCF-7) cancer cell lines and non-cancerous 3T3 cells (embryonic fibroblast iso-
lated from a mouse), using cisplatin as the reference (IC50 were 64; 23.2; 14 and 64 µM,
respectively) via the MTT assay. Both compounds were more active than the reference,
with the exception of 3 against HCT-116 cancer cells, and, overall, compound 4 was more
active than compound 3. Moreover, in silico studies, predicting the binding-sites and
atomic interactions of lead molecules with B cell CLL/lymphoma (BCL-2) (PDB entry:
4lvt) and DNA dodecamer (PDB entry: 1bna), suggested that the order of reactivity of the
molecules is 4 > 3. Subsequently, the same group [75] investigated a pyrimidine function-
alized non-annulated half-sandwich Ru(II)-NHC complex, namely chloro(p-cymene)-1-
methyl-3-pyrimidylimidazolideneruthenium(II)-hexafluorophosphate 5, derived from the
non-annulated NHC precursor 1-methyl-3-pyrimidylimidazolium-hexafluorophosphate.
The half-sandwich geometry of the molecule was established with single crystal X-ray
diffraction. As well, this compound was more active than cisplatin against the cell lines
used [74]. Particularly, 5 and 4 were 3- to 4-fold more active than 3 and cisplatin. Predicting
binding affinities for 5 and 4 were −7.1 and −7.0 kcal/mol–1, respectively, for BCL-2 and
−7.3 and −8.2 kcal/mol–1, respectively, for DNA. DNA cleavage activity of complex 5
confirmed the ability of ruthenium to perform a direct double-strand breaking. Moreover,
molecular docking analysis suggested that complex 5 binds, with the highest binding affin-
ity, a hydrophobic pocket in BLC-2, different from that of complexes 3 and 4. The opposite
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was found in the contact simulation of the complexes with a DNA strand: complexes 4 and
5 are superimposed, while complex 3 binds the other side of the DNA strand. However,
the binding affinity predicted for 4 was higher than 5.

Rodriguez-Prieto et al., 2021, [76] reported the synthesis of three spherical carbosilane
metallodendrimers of different generations holding Ru-NHC complexes. Compounds 6
and 7, which belong to the first- and second-generation dendrimers, respectively, are shown
in Table 1, while the third-generation dendrimer is not shown. These compounds showed
cytotoxic activity similar, or even better, than cisplatin against four cancer cell lines, namely
advanced prostate (PC3), breast (HCC1806), cervix (HeLa), human liver (HEPG2) and the
non-tumoral fibroblast (HFF-1) cell line, as determined by MTT assay. IC50 for cisplatin was
referred to data of the literature: IC50 = 30.18 ± 2.58 µM (MCF-7), 11.75 ± 1.23 µM (HeLa),
17.29 ± 1.05 µM (HFF-1) [77]. The complexes have been proposed as possible candidates
for cancer treatment, due to their combined double action, i.e., antitumoral and carrier for
anticancer siRNA. These compounds were capable of forming dendriplexes by promoting
the entrance of Mcl-1-FITC (myeloid cell leukemia-1 fluorescein labelled) small interfering
RNA (siRNA) to HEPG2 cancer cells, protecting the siRNA from RNAse. Moreover, the
cellular uptake of the three complexes was studied by confocal microscopy with Mcl-
1-FITC siRNA. Particularly, the second-generation dendrimer 7 was more active than
first-generation dendrimer 6. Compound 7 displayed promising antitumoral properties,
being selective, even more than cisplatin, against cancer cell lines, with respect to the
normal ones. The different activity was related to the inability of first-generation dendrimer
6 to interact with the siRNA. The compounds were internalized into the cells by endocytosis
and internalization increased by generation of the dendritic system.

Table 1. Antiproliferative activity of Ru(II)-NHC complexes.

Structure Compd. Biological Activities Ref
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15 (HB324) G1 Arrest * = ≥1 µM
AC50 ** = ~4 µM Wilke et al., 2023 [81]

* G1 arrest, which means a proliferation inhibition equal to 100% or above, indicating occurring cell death; ** AC50
is the concentration necessary to induce apoptosis in half of the cell population.

Paşahan et al., 2022, [78] recently reported a study on Ru-NHC complexes as potential
anticancer agents, examining their antiproliferative activity against rat glioblastoma (C6)
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and human cervix adenocarcinoma (HeLa) cell lines by ELISA assay. Four complexes,
namely 8–11, were more active than cisplatin, used as the standard (IC50 = 136 ± 0.7 mM
(C6) and 126 ± 0.6 mM (HeLa)).

Chen et al., 2020, [79] reported the synthesis and in vitro antiproliferative activity
evaluation of a small panel of NHC-coordinated ruthenium(II) arene complexes. The
compounds showed cytotoxic activities against the human ovarian A2780 cancer cells.
The highest cytotoxic activities were found for 12 and 13, which were about 2-fold more
potent than cisplatin. Furthermore, these compounds induced apoptosis in a caspase-
dependent manner, primarily through intracellular ROS overproduction and cell cycle
arrest at the G1 phase. Moreover, in a preclinical metastatic model of A2780 tumor xenograft,
administration of 12 and 13 resulted in a marked inhibition of tumor progression and
metastasis. A significant alleviated systemic toxicity was observed in animals for both
complexes in comparison with cisplatin.

Sari et al., [80] designed four (NHC)Ru(II)(η6-p-cymene) complexes, bearing 2-morpholinoethyl
and 4-vinylbenzyl substituents to the benzimidazole core and different alkyl/aryl groups to
the second nitrogen atom, and studied their cytotoxic activity against MCF-7 breast cancer
cells and their DNA-binding properties. The authors individuated the compound 14 as
lead, showing an IC50 of 3.61 µM, and that it can bind the plasmidic DNA without exerting
genotoxic effects.

A recent interesting article by Wilke et al., [81] described the study of the ruthenium
complex HB324 (15), which showed promising potential as a novel anticancer agent in vitro.
This complex showed good effects, even in low micromolar concentrations, especially
regarding proliferation inhibition and apoptosis induction via the mitochondrial pathway
on human B-cell precursor leukemia Nalm-6 cells. Moreover, of particular interest is
the upregulation of the Harakiri resistance protein, which inhibits the anti-apoptotic and
death repressor proteins BCL-2 and BCL-xL. Finally, compound 15 showed synergistic
activity with various established anticancer drugs, including vincristine, and overcame the
resistance in several cell lines, such as neuroblastoma cells.

3.2. Antimicrobial Ru(II)-NHC Complexes Possessing Other Additional Abilities
(Antiproliferative, Antioxidant and Anticholinesterase)

Antimicrobic resistance is a cause of great concern worldwide and significantly af-
fects humanity’s capacity to prevent and treat a growing number of bacterial and fungal
infections [82]. In the past decade, the antimicrobial activity of ruthenium complexes has
been reviewed [83] and studied as antimicrobial agents and alternatives or adjuvants to the
more traditional antibiotics [84]. The recent antimicrobial studies regarding complexes of
NHC-ruthenium are summarized in Table 2, and the minimal inhibitory concentrations
(MICs) are reported.

Roymahapatra et al., 2015, [85] described the synthesis, pro-apoptotic and antimicro-
bial studies of two pyrazine functionalized Ru(II)-NHC complexes of methylimidazolyli-
dene and methylbenzimidazolylidene, namely bis-[2,6-di-(N-methylimidazol-2-ylidene)
pyrazine]ruthenium(II) hexafluorophosphate (16) and bis-[2,6-di-(N-methylbenzimidazol-
2-ylidene)pyrazine]ruthenium(II) hexafluorophosphate (12). Inhibition of cell proliferation
was studied against human colon carcinoma cell lines (HCT15) and human epidermoid
cancer cells (Hep2) by the standard MTT assay. Complex 16 was more active than com-
plex 17 against both cancer cell lines. DNA binding and cleavage studies demonstrated
that these complexes may induce cancer cell apoptosis. Moreover, complex 16 showed
antimicrobial activities against Gram-positive (Staphylococcus epidermidis NCIM2493) and
Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853), and antimycotic properties
against Candida albicans SJ11 (unicellular fungus) by targeting their cell wall and DNA or
plasmid inside the cell.

Streciwilk et al., 2018, [86] studied antimicrobial activities of three Ru(II) naphthalimide-
NHC complexes against Gram-positive (Bacillus subtilis 168 DSM402; Staphylococcus aureus
DSM 20231 and ATCC 43300) and Gram-negative (Escherichia coli DSM 30083, Acinetobacter
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baumannii DSM 30007 and P. aeruginosa DSM 50071) bacteria and the cytotoxic activity
against MCF-7 human breast cancer and HT-29 colon adenocarcinoma cells. Complexes
18 and 19 showed activity only against Gram-positive bacteria, while showing no activity
against Gram-negative (MIC = 256 µg/mL; 366 µM). Compound 19 also showed cytotoxic-
ity against the two cell lines used. The results were compared to cisplatin or 5-fluorouracil
(IC50 values for standards below 10 µM). DNA-binding studies were also carried out by
recording the circular dichroism of B-DNA and c-Kit2 G4 in the presence of increasing
amounts of 19, highlighting a strong binding of 19 to the B-DNA model and suggesting
intercalation as a mode of connection. Further studies carried out by the same research
group [87] with complex 19 on HCT-116 colorectal cancer cells demonstrated that it triggers
apoptosis via a rapid and consistent activation of the ROS-p38 MAPK pathway. Follow-
ing this, the same group [88] reported a research, similar to the previous one, regarding
the antimicrobial and antiproliferative activity of a bis-naphthalimide NHC–ruthenium
(II) complex (20). It showed a slight antimicrobial effect against Gram-positive bacteria,
whereas it was not cytotoxic against the cell lines studied.

Table 2. Antimicrobial and other activities (antiproliferative, antioxidant and anticholinesterase) of
Ru(II)-NHC complexes.
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Table 2. Cont.

Structure Compd. Biological Activities Ref
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Boubakri et al., 2019, [89] studied a series of Ru(II)-NHC complexes against three
Gram-positive bacteria (Micrococcus luteus LB14110, Listeria monocytogenes ATCC19117,
S. aureus ATCC6538) and three Gram-negative bacteria (Salmonella typhimurium ATCC14028,
P. aeruginosa ATCC 9189, E. coli) using the well diffusion method. The reference antibacterial
drug used was ampicillin. The complex 21 and 22 were the most active against M. luteus,
L. monocytogenes and S. typhimurium (ampicillin, MIC = 0.004, 0.002 and 0.625 mg/mL,
respectively). The compound 22 was also active versus E. coli (for this compound only an
inhibition zone value was given). Moreover, the antifungal activity of the Ru(II)–NHC
complexes, with respect to C. albicans, was tested via the solid medium diffusion method.
Also in this case, the compound 21 was active, showing the highest diameter of growth
inhibition (34± 0.18 mm). Interestingly, the compound 21 also showed acetylcholinesterase
inhibitory activity (AChEI), with a percentage inhibition to the order of 47.1%. Regarding
the anticancer activity, the compounds 21 and 22 also showed cytotoxicity against two
human breast cancer cell lines, namely MCF-7 and MDA-MB-231, as assessed by MTT assay.
The compound 21 also showed antioxidant activity, as demonstrated via the 2,2-diphenyl-
1-picrylhydrazyl (DPPH) and 2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS)
assays, from a concentration of 1 mg/mL, showing a scavenging activity very similar to
that of the two controls, i.e., gallic acid and butylated hydroxytoluene. A recent study by
the same group [90] deepened the study of compound 21 and highlighted the interesting
results obtained for this compound, along with its congener 23. The compound 21 showed
antibacterial activity against L. monocytogenes, S. aureus and S. typhimurium, sometimes
equal to, or higher than, references ampicillin (MIC = 3.9 µg/mL, 1.95 µg/mL, 3.9 µg/mL)
or kanamycin (MIC = 12.5 µg/mL, 6,25 µg/mL, 12.5 µg/mL). Both the compounds 21
and 23 showed antifungal activity against C. albicans, equal to the reference fluconazole
(MIC = 1.25 µg/mL). The two compounds also showed moderate cytotoxicity against
MCF-7 and MDA-MB-231 cancer cell lines, as assessed by MTT assay. The compounds
21 and 23 were also studied for inhibition of acetylcholinesterase (AChE) and tyrosinase
(TyrE), giving interesting results compared to galantamine (IC50 = 0.25µg/mL against
AChE) and kojic acid (IC50 = 5.05µg/mL against TyrE). The compound 23 showed an
interesting antioxidant activity, similar to that of the standard butylated hydroxytoluene
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(BHT: EC50 = 31.55 µg/mL, 17.41 µg/mL, 89.55 µg/m), as determined for DPPH, ABTS
and β-carotene assays, respectively.

Onar et al., 2019, [91] studied four ruthenium NHC complexes for their antimicro-
bial, anticancer and DNA-binding activities. Antimicrobial activities of the compounds
were tested against one Gram-positive (B. subtilis ATCC 21332) and one Gram-negative
(E. coli ATCC 25922) bacteria and one fungal strain (C. albicans ATCC 60193). The studied
compounds were slightly more active than cefotaxime, used as a reference (MIC ranging
from 100 to 200 µg/mL, compared to 250 µg/mL of the standard drug). Interesting results
were obtained regarding cytotoxic activity. The benzimidazole-based ruthenium com-
plexes containing a benzyl group 24 and 25 showed cytotoxicity against human colorectal
Caco-2 cancer cell lines comparable to cisplatin, whereas they were non-cytotoxic against
non-cancer L-929 cell lines.

Slimani et al., 2020, [92] studied four [RuCl2(p-cymene)]2 complexes. The antibacterial
activity was tested against three Gram-positive (Micrococcus luteus LB 14110, S. aureus
ATCC 6538, Listeria monocytogenes ATCC 19117), and three Gram-negative (Salmonella
typhimurium ATCC 14028, P. aeruginosa ATCC 49189 and E. coli) bacteria, using the well
diffusion method. Ampicillin was used as a standard control drug (MIC = 0.004 mg/mL,
0.002 mg/mL and 0.625 mg/mL against M. luteus LB 14110; L. monocytogenes ATCC 19117
and S. typhimurium ATCC 14028, respectively). The compounds 26 and 27 demonstrated
effective antibacterial activity against the tested bacteria; particularly, the compound 26
showed excellent activity against S. typhimurium, being more active than the reference
drug. Moreover, the compound 26, from a concentration of 1 mg/mL, demonstrated a very
similar scavenging activity to that of the two controls, butylated hydroxytoluene (BHT) and
gallic acid (GA), as determined via DPPH assay. Finally, both 26 and 27 showed cytotoxic
activity against human breast cancer cell lines MCF-7 and MDA-MB-231.

Burmeister et al., 2021, [93] studied a series of benzimidazolium cations and the
corresponding organometallics of the type (p-cymene)(NHC)Ru(II)Cl2 as antibacterials
against Gram-positive (B. subtilis, S. aureus DSM 20231, S. aureus ATCC 43300) and Gram-
negative (E. coli, A. baumannii, P. aeruginosa) strains in a microtiter plate assay, according
to CLSI guidelines, using ciprofloxacin as a reference drug. The complex (1,3-dibenzyl-
5-bromo-1H-benzimidazol-2-ylidene)-dichlorido-(η6-p-cymene)ruthenium(II) 28 was the
most active compound against Gram-positive bacteria, while it showed low activity against
Gram-negative bacteria. This compound showed moderate inhibition of bacterial TrxR
(E. coli). Thus, the inhibition of TrxR is unlikely a major mechanism of the antibacterial
activity of the ruthenium NHC complexes.

4. Conclusions

NHCs have been recognized as a class of strong donating ligands, which may stabilize
diverse metal complexes of catalytic importance. Among these, the NHC ruthenium com-
plexes have been, and still are, a fruitful research, filed for various applications: catalytic,
photochemical and biological. This review provides an overview of the most recent studies
on ruthenium NHCs complexes with biological activities, focusing on the antimicrobial and
antiproliferative properties. Most of these compounds showed interesting antimicrobial
activity against Gram-positive bacteria and some are also active against Gram-negative bac-
teria and fungi. The antiproliferative activity was also demonstrated for several compounds
belonging to this class against several types of cancer cell lines.
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Abbreviations and Cancer Cell Lines Mentioned in the Text
ABTS 2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonic acid
A549 lung cancer cells
BCL-2 B cell CLL/lymphoma
BCL-xL B-cell lymphoma-extra large
Caco-2 colorectal cancer cells
C6 rat glioblastoma cancer cells
DPPH 2,2-diphenyl-1-picrylhydrazyl
HCC1806 breast cancer cells
HCT15 human colon carcinoma cell lines
HCT-116 human colon cancer cells
HeLa human cervix adenocarcinoma cancer cells
Hep2 human epidermoid cancer cells
HEPG2 human liver cancer cells
HEK293 normal cells
HFF-1 non-tumoral fibroblast cells
HT-29 colon cancer cells
IC50 half-maximal (50%) inhibitory concentration (IC50)
MCF-7 breast cancer cells
MCF-10A healthy breast cell line
MDA-MB-231 breast cancer cells
MIC minimal inhibitory concentration
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NCI-H460 human breast cancer cells
PC3 advanced prostate cancer cells
ROS reactive oxygen species
SiHa human cervical cancer cells
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