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Abstract: The production and use of antibiotics increased significantly after the Second World War
due to their effectiveness against bacterial infections. However, bacterial resistance also emerged
and has now become an important global issue. Those most in need are typically high-risk and
include individuals who experience burns and other wounds, as well as those with pulmonary
infections caused by antibiotic-resistant bacteria, such as Pseudomonas aeruginosa, Acinetobacter sp,
and Staphylococci. With investment to develop new antibiotics waning, finding and developing
alternative therapeutic strategies to tackle this issue is imperative. One option remerging in popularity
is bacteriophage (phage) therapy. This review focuses on Staphylococcus aureus and how it has
developed resistance to antibiotics. It also discusses the potential of phage therapy in this setting and
its appropriateness in high-risk people, such as those with cystic fibrosis, where it typically forms
a biofilm.
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1. Introduction

Bacterial infections are the cause of major health problems, but after the advent of
antibiotics, there was the view that the issue was resolved. However, one pathogen of
current global importance, Staphylococcus aureus (S. aureus), has developed drug resistance
mechanisms to the currently available antibiotics, including cloxacillin, vancomycin, dapto-
mycin, and others, and is resultantly responsible for over two million infections and over
23,000 deaths in the United States alone each year [1–3]. With antibiotic development by
the pharmaceutical industry waning, there are many unanswered questions, including
what alternatives are being developed and whether bacteriophages could be a solution.

Bacteriophages (phages) are found in all habitats, and their interaction with bacteria
has attracted greater attention from scientists for almost a decade [4]. Bacteriophage
therapy or phage therapy (PT) that consists of specific virulent bacteriophages can be used
for targeting multidrug-resistant bacteria and can mimic the action of an antibacterial
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agent [5]. Indeed, PT has currently been used to treat patients with methicillin-resistant
Staphylococcus aureus (MRSA) infections [6–9]. According to the NCBI database, a total
of 69 genomes of virulent staphylophages have been deposited, with 26 and 43 genomes
belonging to the family of Podoviridae and Myoviridae phages, respectively [10]. The high
efficiency of staphylophages in the therapeutic cocktail is attributed to its broad host range
and high lytic capabilities [11].

Although various successful investigations have explored using singular or multiple
phage types (phage cocktails), a definitive answer on their safety and efficacy as part of
standard clinical care is still unknown [12]. This review describes one of the challenges
faced prior to its clinical translation, namely, the approaches utilized by S. aureus to develop
resistance and form biofilms, and then discusses the potential of bacteriophage to treat
these infections as part of a therapeutic treatment strategy. Several challenges to the current
recommendation for treating S. aureus-specific infections are also highlighted.

2. Narrative Review
2.1. Staphylococci

Staphylococci are frequently isolated as the causal agent of bacterial infections in
humans, and its management remains challenging due to the advent of multidrug-resistant
strains [13]. It commonly causes surgical wound infections and pneumonia and is the
second most common cause of blood infections [14]. Importantly, S. aureus has been
extremely efficient at developing resistance to the most recent antibiotic classes. Although
methicillin-resistant S. aureus (MRSA) was quite rare between the 1960s and 1980s, the
problem escalated in the mid-1990s when particular ‘epidemic’ strains became established
in hospitals throughout the UK, which were caused by SCCmec type 1. Several antibiotics
targeting methicillin-resistant S. aureus (MRSA) have been developed and approved for
use, including linezolid, daptomycin, tigecycline, ceftobiprole, telavancin, ceftaroline,
dalbavancin, oritavancin, and tedizolid [15]. However, they have reduced efficacy when
staphylococci establish as biofilms, typically seen with device-associated infections and
endocarditis [16]. To evaluate the correlation and development of MRSA strains, research
was conducted, leading to two postulated theories. The first suggested that all methicillin-
resistant strains were descendants from the integration of SCCmec into the genome of S.
aureus and with further mutations, namely, SCCmec types I–V evolving thereafter [17].
The second multi-clone theory, which is more universally accepted, implies that SCCmec
integrated into various S. aureus strains over time [18].

The global impact of MRSA infections is now being felt due to the ease of its trans-
mission between patients and hospital staff. This has been eloquently exemplified by
Dickmann et al. [19], who showed a high prevalence of MRSA, consequently leading to
ventilator-associated pneumonia, chronic wound infection, bloodstream infection (bac-
teremia), and sepsis. However, community-MRSA strains can be easily transmitted within
hospitals and from hospitals transmitted into the community [20]. Furthermore, the emer-
gence of vancomycin resistant S. aureus (VRSA) has increased the potential risk of patient
transmission even further [21]. Since the development of antibiotic resistance by S. aureus
occurs at the genetic level, its genetic structure and the evolution of existing resistance are
discussed in more detail in the subsequent sections.

2.2. Genetic Structure of Staphylococcus aureus

The S. aureus genome consists of a circular double-stranded chromosome as well as
several plasmids. The number of complete and draft genomes has grown exponentially,
with hundreds now available in the NCBI repository [22,23]. Upon examination, conserva-
tional similarities and differences are seen between methicillin-sensitive S. aureus (MSSA)
and MRSA (Figure 1). For example, the genomic core (representing ~75% of the entire
genome) is extremely conserved between both MRSA and MSSA isolates and contains
genes associated with housekeeping and other metabolic functions [24]. In addition to the
core genome, accessory genomes can be obtained from other bacterial species by lateral
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gene transfer [25]. This domain accounts for ~25% of the entire genome and consists of mo-
bile genetic elements such as virulence factors, chromosome cassettes, genomic plasmids,
transposons, and antibiotic resistance dynamics [26].
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Figure 1. Circular diagram of the MRSA 252 and MSSA 476 chromosomes. Colored segments on
the outer ring (pink): genomic islands and horizontally acquired DNA. Rings inside and moving
internally represent annotated CDS (in Mbp). tRNA and rRNA (green), additional DNA compared
to other S. aureus strains (red and blue), percentage of G + C content, and G + C deviation (>0%,
olive; <0%, purple). Predicted function coding for CDSs: pathogenicity/adaptation (royal blue);
energy metabolism (black); information transfer (red); surface-associated (dark green); degrada-
tion of large molecules (cyan); degradation of small molecules (magenta); central/intermediary
metabolism/intermediary metabolism (multi-colored); unknown (light green); regulators (light
blue); conserved hypothetical (multi-colored segments); pseudogenes (brown); phage plus insertion
sequence elements (pink); miscellaneous (grey). Adapted from Holden et al. [27].

2.3. Staphylococcal Cassette Chromosome (SCC)

As an important basic mobile genetic element, the SCC serves as the motor vehicle for
gene substitution among Staphylococcus species. It typically contains the mec gene (although
not always present), which codes for methicillin resistance, regulatory genes, as well as
the cassette chromosome recombinases (ccr), which enables the integration and cutting of
SCCmec [28]. SCCmec typing enables structural determination of SCCmec and can assist in
inferring the origins of particular MRSA strains [29]. Each SCCmec element integrates at
the same site, which is a precise site at the 3‘ end of a unique ORF (open reading frame) of
unknown function, designated orfX [30]. To date, 13 different types of SCCmec (I-XIII) have
been defined according to their subparts, namely, the ccr and the mec complexes [31,32]
(Figure 2).
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2.4. Update on Treatment of S. aureus Infections and Its Associated Challenges

Treatment agents currently available for S. aureus infections include cloxacillin, flu-
cloxacillin, cefazolin, ceftaroline, ceftobiprole, vancomycin, daptomycin, linezolid, te-
icoplanin, tigecycline, co-trimoxazole, doxycycline, clindamycin, telavancin, dalbavancin,
oritavencin, and others [34]. Several antibiotic guidelines for treating S. aureus infections
have been established and regularly updated according to the epidemiological data of
antibiotic resistance patterns, national and global surveillance of resistance, and efficacy
data of newly anti-staphylococcal agents [35]. The guideline consists of recommended
antibiotics (weak and strong recommendations) and therapy regimes (dosage and duration)
used for specific types of infections such as skin and soft-tissue infections (SSTIs), urinary
tract infections (UTI), bone and joint infections, bacteremia, endocarditis, pneumonia, and
meningitis [36]. However, infections caused by MRSA deserve special attention as common
antibiotics used for MSSA are no longer effective against them, and their propensity to
rapidly spread, causing an outbreak, is very common [37,38]. For example, abscesses are
generally managed by performing incision and drainage only; however, antibiotics must
be given together with this surgical procedure for an abscess caused by MRSA PFGE strain
type USA300 in the United States [39,40]. Nonetheless, different countries may have their
own policies regarding MRSA treatment strategies. For example, antibiotic therapy after
drainage is not recommended even for uncomplicated abscesses caused by USA300 strains
due to its low prevalence in the United Kingdom (UK) [41].

Topical antiseptics such as hydrogen peroxide 1% cream remain an effective option
for patients with uncomplicated impetigo due to MRSA [36]. Despite new anti-MRSA
agents that have been officially licensed, there is no solid evidence to establish the optimal
agent(s) for specific infections caused by MRSA. Retapamulin ointment 1%, an agent of
the pleuromutilin class, is still inferior to oral linezolid in a clinical trial, thus, limiting its
use for this condition [42]. Ceftobiprole, dalbavancin, and tedizolid are not recommended
for the SSTIs caused by MRSA due to inconcrete evidence from the clinical trials [43–45].
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In fact, major side effects, including thrombocytopenia and optic neuropathy, have been
reported in patients treated with linezolid and tedizolid [46].

Limited data from clinical trials also suggested that complicated (non-catheter re-
lated) UTIs caused by MRSA should be treated with intravenous glycopeptides such as
vancomycin or teicoplanin [36]. Similarly, intravenous glycopeptides are strongly recom-
mended for treating necrotizing pneumonia due to Panton–Valentine leucocidin (PVL)-
producing MRSA strains despite no recent update about the existing guideline in the UK
since 2008 [47]. As for hospital-acquired pneumonia (HAP) caused by MRSA, a similar
approach to therapy is not highly recommended due to a lack of data based on clinical
trials [36]. On another note, serious adverse events such as multiorgan failure and septic
shock have been reported in patients with pneumonia receiving telavancin compared with
those receiving vancomycin [48]. In addition, the inhibitory interaction of daptomycin
with lung surfactant has been observed; hence, it is not licensed as an anti-MRSA agent
for pneumonia [49]. Recently, a cross-resistance towards daptomycin has been reported
among vancomycin-resistant S. aureus isolates, which is caused by a mutation in the mprF
gene [50]; thus, stringent infection control measures should be advocated.

Rifampicin is used as an adjunct therapy in patients with MRSA bone or joint infec-
tions for its ability to penetrate the biofilm [47]. There has been an increasing preference
for using dalbavancin among clinicians for its long half-life and convenient dosing regi-
men [51]. Nonetheless, recent evidence from the clinical trials fails to support the use of
these drugs for this condition. Instead, intravenous glycopeptides are highly recommended
with proper therapeutic drug monitoring in view of the nephrotoxic effect associated with
the prolonged use of vancomycin [36,52]. A similar recommendation is proposed for MRSA
bacteremia except for the use of teicoplanin. Linezolid, telavancin, and ceftaroline can be
used as alternative second-line drugs if vancomycin is contraindicated [53,54], although it
is not highly recommended by the recent guidelines [36]. In meningitis cases, intravenous
vancomycin is highly recommended, and rifampicin may be considered for severe infec-
tion [36]. Intrathecal vancomycin can be performed directly into the ventricles of the brain
if vancomycin is not effective via the intravenous route [36]. However, a neurotoxic effect of
vancomycin has been observed at the cellular level following an intrathecal administration
of the drug in vivo; hence, the intrathecal dose needs to be properly regulated [55]. Bacte-
riostatic drugs for treating meningitis, such as chloramphenicol, clindamycin, or linezolid,
are strongly prohibited [36]. Vancomycin has also been recommended for the treatment
of native or prosthetic valve MRSA endocarditis [56]. As an alternative, a combination of
daptomycin and another anti-MRSA agent is recommended [36].

It seems that vancomycin is highly recommended for the majority of MRSA-specific
infections. Indeed, vancomycin or daptomycin, in combination with other anti-MRSA
agents, have effectively been used for treating invasive MRSA infections [57]. However,
their effectiveness is diminishing due to increasing resistance amongst MRSA strains,
compounded further by the fact that many have existing resistance to several other classes
of antibiotics [58,59]. For example, cross-resistance towards daptomycin has been reported
among vancomycin-resistant S. aureus isolates, which is caused by a mutation in the mprF
gene [50]. Although numerous anti-staphylococcal antibiotics have been developed during
the past 30 years, and several guidelines have been revisited, infection with S. aureus
continues to result in severe morbidity and, sadly, mortality, creating an increasingly urgent
need for more appropriate treatments and better patient management. Apart from the
adverse events caused by several anti-MRSA agents and inconcrete findings from the most
available clinical trial data, the development of antibiotic resistance and biofilm formation
by S. aureus has created a new platform for us to look for other alternative therapies, such
as phage therapy. This is further elaborated in the respective sections below.

2.5. Resistance to Antimicrobial Therapy

A pathogen’s success in causing infection depends on two factors, (i) developing
resistance to antibiotics and (ii) virulence factors. Resistance in S. aureus is obtained via
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the acquisition of mobile genetic elements (SCCmec) containing resistance genes such as
mecA encoding a unique protein called penicillin-binding protein 2a (PBP2a). Its low
affinity for β-lactam antibiotics thus enables it to substitute the biosynthetic functions of
PBPs [60]. In addition to SCCmec, other mobile genetic elements involved in resistance
acquisition include plasmids, transposons, insertion sequences, integrons, integrative-
conjugative elements, and pathogenicity islands [61]. One staphylococcal conjugative
plasmid (pGO1/pSK41) has been directly shown to have contributed to resistance to amino-
glycosides, penicillin, trimethoprim, bleomycin, tetracycline, macrolides, lincosamide,
streptogramin B, and more recently linezolid and vancomycin [62]. Furthermore, trans-
posons, which themselves are a group of mobile genetic elements, can transfer resistance
genes due to their ability to transfer between plasmids or from a DNA chromosome to
a plasmid (or vice versa) [63]. Thus, antibiotic resistance emerges rapidly through the
acquisition of antibiotic-resistance genes from other strains of S. aureus or even from other
genera. The development of resistance due to antibiotic treatment failure results in out-
breaks of multiple drug-resistant (MDR) strains, typically in hospital institutions as well as
the general population [64]. For example, MRSA infections in US hospitals have almost
doubled, more than any other nosocomial pathogens [65]. Indeed, a significant proportion
of all health care-associated S. aureus infections appear to be caused by MRSA [66]. This
observation has been further corroborated by Ehsanollah et al., who showed that MRSA
is the most important nosocomial pathogen in Malaysian hospitals, rising from 10% in
1985 to 44.1% in 2007 [67]. S. aureus was first observed with intermediate susceptibility to
vancomycin in Japan in 1997 [68]. However, four clinical isolates of S. aureus, derived from
the USA, were subsequently found to be vancomycin-resistant [69]. These observations
suggest that S. aureus infections continue to be challenging to treat as new clones of MRSA
emerge from hospitals and from the community. Early treatment and proper monitoring
are crucial steps in the prevention of MRSA infections [70], however, are hindered further
when they acquire resistance genes from the same and/or different genera of bacteria.
The story of antibiotic resistance begins with penicillin, produced by the mold Penicillium
rubens [71]. Affecting the production of peptidoglycan, which is essential for cell wall syn-
thesis [72], it was first reported to successfully treat infections in humans in 1940 by Chain
and colleagues [73]. Shortly after, Kirby and colleagues published the first description
of penicillin resistance [74], caused by a plasmid-encoded penicillinase that resultantly
hydrolyses the beta-lactam ring [75]. Although initially rare, most penicillinase-producing
S. aureus strains isolated from hospitalized patients are currently resistant to penicillin [76].
Subsequent to penicillin, a new variant called methicillin was introduced in 1961 [77], but
resistance quickly established [78] and resulted from the acquisition of mecA [79]. Interest-
ingly, SCCmec was not identified in S. aureus before this, and thus it has been postulated
that it originated from Staphylococcus sciuri since it carries a homologous gene for mecA. Of
significance, when this homolog gene (pbpD) has been introduced into MSSA strains, it
confers to an MRSA phenotype [80].

In clinical settings, methicillin was replaced by oxacillin due to its acid stability; how-
ever, oxacillin-resistant S. aureus strains (ORSA) subsequently developed [81]. Vancomycin,
a glycopeptide antibiotic, was then introduced in 1956 and worked effectively for more than
40 years before so-called vancomycin-intermediated S. aureus (VISA) were observed [82].
S. aureus strains present with resistance to vancomycin were then observed, including;
low-level-resistant vancomycin-resistant S. aureus (LLR-VRSA) and high-level-resistant
vancomycin-resistant S. aureus (HLR-VRSA) [83]. Eleven VRSA strains were identified
and reported in 2009 in three geographically distinct countries [84], and their resistance
to vancomycin was caused by the vanA operon. Carried on a particular transposon, it
is suggested to have inserted itself initially from an Enterococcus plasmid to a secondary
endogenous plasmid in S. aureus [49]. Indeed, enterococci possess many mobile genetic
elements, including transposons, which can be transferred to the same or different species
of bacteria via horizontal gene transfer [85]. This purposeful breach in the S. aureus restric-
tion barrier infers a new defense mechanism utilized by this bacterium to maintain the
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adaptive advantage, and the transmission of resistance genes will be further enhanced if
such process occurs within the restricted space such biofilms. As the pipeline to develop
new antibiotics wanes and resistance in different bacterial genes emerges, our ability to
control bacterial infections in the near future will be greatly challenged [86].

2.6. Role of Biofilm Formation in S. aureus Infections

Microbial populations tend to adhere to surfaces by producing extracellular polymeric
substances (EPS) and forming biofilms (Figure 3) [87]. Bacterial cells growing in a biofilm
are difficult to treat by antibiotics since the EPS matrix prevents them from reaching the
bacteria via physical repulsion or limited diffusion [88]. It has been estimated that of
all bacterial infections, ~80% involve biofilm formation [89], and these appear to be 10–
1000-fold more resistant to antibiotics compared to their planktonic counterparts [90]. The
challenge to eradicate bacterial biofilms via antibiotics is well documented, with evidence
suggesting some variabilities between drugs. For example, oxacillin, cefotaxime, and
vancomycin have shown limited penetration, whereas amikacin and ciprofloxacin are far
more effective in this function [91]. However, eradication of biofilms is very challenging,
especially in clinical settings, as high rates of recurrent or chronic bacterial infections
have been observed due to biofilms [92]. The development of biofilm-related S. aureus
infections is always associated with medical devices or procedures used as part of patients’
management, such as indwelling catheters or implants, and chronic conditions such as
chronic lung infections, chronic wounds, endocarditis, and others [92]. Several in vitro
studies have demonstrated the promising role of bacteriophages in controlling S. aureus
biofilms [93–95]. In addition, data on the complete resolution of S. aureus biofilm-related
infections have been published recently by Pires et al. [96]. However, over time, bacterial
biofilms have become increasingly resistant to yet more antibiotics, and innate host defense
mechanisms, including antimicrobial peptides (AMPs) and neutrophil phagocytosis, have
proven ineffective [97]. Moreover, the use of sub-minimal inhibitory concentration (MIC)
of daptomycin and tigecycline could activate a signal for the induction of virulence genes
in S. aureus via the regulation of biofilm adhesion factor genes and its exoproteins [98].
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Collectively, as described in this review, staphylococci readily form antibiotic resis-
tance, whether in free planktonic forms or biofilms. It can adapt over very short periods
when a new antibiotic is introduced to develop resistance, which ultimately increases
these infections’ economic and healthcare burden. Thus, an alternative treatment regimen
that permanently eliminates infection is desperately required. One postulated solution is
bacteriophage therapy.
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2.7. Phage Therapy

The term “phage” is defined as a type of virus that can enter and destroy bacterial cells
whose potential was appreciated early in history [99,100]. The morphological structure of
a bacteriophage is unique as it consists of a head that is filled with DNA or RNA and a
tail that is used for the introduction of the genome into the bacterial cells (Figure 4). It has
limited receptors on eukaryotic cells; hence, it may not enter mammalian cells, making it
the most promising alternative therapeutic option in humans [101,102].
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Their bactericidal activity begins with the binding of the virion to specific bacterial cell-
surface receptors via phage receptor binding proteins (RBP), followed by the adsorption
of phage DNA into a bacterium. This then initiates various molecular mechanisms which
promote phage propagation and resultant bactericidal activity [103]. Bacteriophage therapy
has been actively implemented since the early twentieth century after its discovery by
Twort [104] and D’Hérelle [105]. Since this period, its popularity diminished as antibiotic
use became the preferred method of treating infections in western countries. However,
with the advent of antibiotic resistance, several recent investigations have explored the
efficacy of treating bacterial infections with phages in the human setting [106–108]. Chan
and Abedon first suggested that treatment strategies could be categorized by the number of
phage types used, with ‘monophage therapy’ exploiting a single phage type and ‘polyphage
therapy’ involving multiple phage types [109]. Levin and Bull initially emphasized the
importance of accurately matching pathogens with specific phages. Although usually
assessed in vitro, phage activity in this setting is not always predictive of their efficacy
in vivo [110]. It has also been identified that phage preparations should be purified by
filtration and passed through specific columns or resins to remove endotoxins from the
phage lysate to a level appropriate for use, and toxicity testing of formulations in vivo
should be conducted [111–113].

As natural predators of bacteria, bacteriophages have several innate mechanisms
to destroy biofilms (Figure 5). For example, degradation of the extracellular matrix is
initiated by the induction of bacterial cells to produce exopolysaccharides (EPS)-degrading
enzymes, which later break down the polysaccharides and proteins of the extracellular
matrix (biofilms). Hence, this could facilitate the penetration of bacteriophages into the
biofilms and later replicate in the bacterial cells and destroy them [114]. The phage can
also express polysaccharide depolymerases, an enzyme that is able to degrade biofilms, as
well as polysaccharide-forming capsules and lipopolysaccharides [115,116]. Interestingly,
bacteriophages can enter the bacterial genome and integrate themselves, leading to “floating
bacterial cells” that could interfere with the formation of biofilms [115].
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enzymes, (c) diffusion via biofilm water channels for inner layer penetration, and (d) adsorption to
bacteria for biofilm penetration. The role of each bacteriophage is depicted in various colors (dark
yellow, orange, yellow, and white).

Most phage/antibiotic studies have focused on P. aeruginosa, due to its significant
clinical impact as an opportunistic pathogen, in cystic fibrosis (CF), burns, pneumonia, and
urinary tract infections [117]. In one study conducted by Wright et al., utilizing a formu-
lation of six phages at 105 PFU direct in the ear as a treatment strategy for chronic otitis
media caused by P. aeruginosa, patients were observed for up to 42 days’ post treatment,
and encouragingly, there was a reduction in infection by over 50% [118]. Similarly, Gu
et al. formulated a mixture of three phages to treat mice that were inoculated with Klebsiella
pneumoniae. Results showed that a single intraperitoneal dose provided 1 h post-bacterial
inoculation resulted in 100% recovery [119]. Another study by Chaudhry and colleagues
treated biofilm-producing P. aeruginosa with two phages together or in combination with
three antibiotics (ceftazidime, ciprofloxacin, and tobramycin). Significantly, only moderate
activity was observed when each phage/antibiotic treatment was conducted singularly.
However, synergistic activity was observed when phages and antibiotics were applied con-
currently [120]. These findings importantly indicate that combining phages and antibiotics
can be superior over the use of single agents to enhance the suppression of bacteria, enable
more effective biofilm penetration, and prevent the emergence of phage resistance [121].
Trend et al. also screened multiple phages of P. aeruginosa (E79, F116, and P5) for activity
against P. aeruginosa strains isolated from children with CF. Excitingly, the authors identified
E79 as a possible new therapeutic phage candidate for P. aeruginosa lung infections in CF
due to its broad antibacterial activity (91% of the tested strains were sensitive) [122].

Although much attention has focused on treating Gram-negative bacteria with phage,
Estrella and colleagues demonstrated that many strains of staphylococci carried bacterio-
phages. These phages were able to lyse some but not all strains. However, by exposing
staphylococci to several phages, a susceptibility pattern could be recognized, and similari-
ties or differences between strains could be determined [123]. Since treatment options for
MRSA are restricted, novel preventive strategies are currently being formulated, including
phage/antibiotic combinations (e.g., vancomycin, daptomycin, and linezolid) [54,124,125].
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Moreover, biofilm-forming S. aureus are well known for their resistance to high concentra-
tions of antibiotics [126,127].

Lehman et al. were one of the first to characterize an S. aureus phage (AB-SA01) in
detail. S. aureus phage (AB-SA01) is a bacteriophage cocktail produced by AmpliPhi Bio-
sciences Corporation that consists of three naturally occurring, obligately lytic myoviruses
related to Staphylococcus phage K belonging to the Herelleviridae family. Importantly, it did
not contain any bacterial virulence or antibiotic resistance genes when sequenced. In addi-
tion, they confirmed that this phage’s inherent characteristics met the human use criteria
and was predicted to remain active against circulating multidrug-resistant S. aureus strains
for long enough to be useful under good manufacturing practices. Overall, results offered
great promise, with AB-SA01 killing ~95% of S. aureus isolates [128]. Furthermore, there
has been a rationale for specific formulations of the phages that make up AB-SA01 (phages
Sa83, Sa87, and J-Sa36) where their synergistic activities to kill otherwise non-susceptible S.
aureus strains have been shown [128]. Another study by Sanjay et al. used both a single and
cocktail formulation comprising two phages (MR 5 and MR 10) to treat rats infected with
MRSA [86]. Importantly, they showed effective treatment and better persistence stability
when using a cocktail formulation of phage rather than when used singularly [129]. Using
a lethal model of S. aureus ventilator-associated pneumonia (VAP), Prazack and colleagues
demonstrated reduced mortality in mice treated with and without teicoplanin compared to
the placebo [130]. Rahman and colleagues studied the synergistic effects between phage
and antibiotics in biofilm-producing S. aureus strains [131]. Specifically, they used phage
SAP-26 concurrently with azithromycin, vancomycin, or rifampicin and found a syner-
gistic effect with SAP- 26 and rifampicin, where there was a 65% reduction in live cells.
A similar significant bactericidal effect was observed when azithromycin or vancomycin
was formulated with phage (40% and 60%, respectively). Importantly, this was the first
study to illustrate the synergistic effects of a phage/antibiotic mixture against S. aureus
biofilms [131]. Although it has been postulated that phages can degrade biofilm matrix
using depolymerizes [93], they cannot be identified in many phage genomes to explain
this activity [132]. Nevertheless, phages can replicate deep within a biofilm, disrupting
its matrix. Following this interruption, the subsequent addition of antibiotics results in
enhanced bacterial reduction [93].

Kumaran et al. also studied the synergistic activity of phage/antibiotic treatment
against biofilm-forming S. aureus using the SATA-8505 phage with vancomycin, cefazolin,
linezolid, dicloxacillin, and tetracycline, simultaneously or sequentially. Results demon-
strated minimal bactericidal activity when both phage and antibiotic were concurrently
added, which was significantly increased when phage treatment preceded antibiotics,
particularly with vancomycin and cefazolin [133]. Subsequent studies by Akturk and col-
leagues and by Dickey and Perrot have corroborated these initial findings [93,94]. Another
important point worth mentioning about these studies is the window of opportunity for
antibiotic administration. In these studies, when antibiotics were delivered 12 h after phage
application, higher bacterial suppression was observed compared to when antibiotics were
delivered after 24 h. Others have supported these observations suggesting that there is
a specific time window during which subsequent administration of antibiotics results
in optimal bactericidal activity [120]. Identifying this time window is critical for future
therapeutic applications. The use of other bacteria in combination with phages has shown
some remarkable findings. The combination of Staphylococcal epidermis, a normal skin mi-
croflora with phage saGU1, inhibited the growth of phage-resistant S. aureus in vitro [134].
However, this finding cannot be confirmed as no synergistic effect was observed in their
in vivo experiment.

However, with all the foregoing data on the diversity of phage therapy, both in vitro
and in vivo, which greatly outweigh any specific concerns, we summarize some important
clinical studies that used phages or phage-related S. aureus anti-biofilm agents for the
treatment of staphylococcal infections over the current time period, as shown in Table 1. In
clinical settings, limited knowledge of the usage of phages has been recognized. To our
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knowledge, there is no phage product currently approved for humans, according to the
European Medicines Agency (EMA) or the Food and Drug Administration (FDA) [135].
Nonetheless, phages are mostly utilized for salvage therapy, and the therapeutic evaluation
is only based on clinical case series or reports [136]. In fact, there are only 27 clinical trials
registered on the clinicaltrials.gov website about bacteriophage therapy since April 2022.
Phage therapy (PT) is used in the majority of the cases that are related to biofilms in S.
aureus infections. These infections are mainly attributed to medical devices [137,138], im-
plants [139–147], or grafts [142,148], where biofilms are usually formed by S. aureus on these
devices. Phage therapy is also included in the management of patients with deep-seated in-
fections such as osteomyelitis [6,149–151] (chronic wound/ulcers [152], chronic rhinosinusi-
tis [153], and brain empyema [154]) and chronic prostatitis [155]. However, only one case of
healthy children requires exebacase for disseminated MRSA infections [156]. Exebacase is a
bacteriophage gene-derived lysin that is used as a single-patient FDA investigational new
drug in S. aureus infections [157]. Both single or cocktail PT formulations with different
dosage regimes are used as therapeutic agents in these cases (Table 1). Phage therapy is
also used in patients with only S. aureus [6,137–144,146–148,150,152–154,156] or polymi-
crobial [142,145,149–151,155] detected as causative agents in their clinical specimens. It is
also interesting to know that PT is only given intravenously [137,139,146,156] or only given
locally to the affected organs/tissues devices or grafts [6,140–142,144,145,148,149,151–154]
as well as by multiple routes [138,142,143,147,150,155] The use of PT is also combined
with other treatment modalities including antimicrobials alone [6,137,139,142,153,154] and
surgical procedures alone [148] or both approaches [138,140,141,143–147,149,151,156]. Inter-
estingly, there are only four cases that used PT alone [150,152,155], with two cases without
antibiotics [148,155]. The longest duration of PT is observed in a patient with diabetic
foot osteomyelitis, which is seven weeks in total [6]. Several patients had a mild adverse
event during PT, that is, transaminitis [138,146,147]. Most of the S. aureus biofilm-related
infections resolved with PT except in only two patients [142,145], indicating the promising
role of PT in human infections. Although narrative in nature and with potential biases, our
review could give an insight into the future direction of PT.

clinicaltrials.gov
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Table 1. Overview of the application of phage and phage-related therapy against Staphylococcus aureus biofilm-related infections in humans between 2018 and 2022.
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2018 Diabetic foot
osteomyelitis MSSA Eliava Institute Single Phage NR Multi-dose Local Levofloxacin (stopped on Day

7) 7w Resolved NR [6]

2019 Device-related infection MSSA AmpliPhi
Biosciences Phage Cocktail 3.0 × 109 Multi-dose Intravenous Cefazolin and minocycline 4w Resolved No [137]

2019 Osteomyelitis S. aureus * Queen Astrid
Military Hospital Phage cocktail 1.0 × 107 Multi-dose Local

Amoxicillin, vancomycin,
rifampicin, moxifloxacin,
colistin, fosfomycin and

clindamycin, and surgery

7–10 d Resolved No [149]

2019 Chronic wound S. aureus Banaras Hindu
University Phage cocktail 1.0 × 109 Multi-dose Local No 13 d Resolved No [152]

2019
Device-related infection

(prosthetic valve
endocarditis)

MSSA AmpliPhi
Biosciences Phage cocktail 1.0 × 109 Multi-dose Intravenous Flucloxacillin, ciprofloxacin

and rifampicin 2w Resolved No [139]

2020 Cranial empyema MSSA Pherecydes
Pharma Phage Cocktail NR Single-dose Local Dalbavancin NA Resolved No [154]

2020 Device-related infection
(knee prosthetic) MSSA Pherecydes

Pharma Phage Cocktail 1.0 × 109 Single-dose Local
Daptomycin, cloxacillin,

levofloxacin and rifampicin,
and surgery

NA Resolved NR [141]

2020 Device-related infection
(knee prosthetic) MRSA Adaptive Phage

Therapeutics Single Phage 5.4 × 109 Multi-dose
Dual routes
(local and

intravenous)
Daptomycin and surgery 3 d Resolved

Reversible
transamini-

tis
[138]

2020
Osteomyelitis MSSA LTD Eliava

Biopreparations Phage Cocktail 1.0 × 107 Multi-dose Dual routes
(local and oral) No 5w Resolved No

[150]
Osteomyelitis MSSA LTD Eliava

Biopreparations Phage Cocktail 1.0 × 107 Multi-dose Dual routes
(local and oral) No 5w Resolved No

Diabetic foot
osteomyelitis S. aureus * LTD Eliava

Biopreparations Phage Cocktail 1.0 × 107 Multi-dose Dual routes
(local and oral) No 6w Resolved No

2020

Device-related infection
(knee prosthetic) MSSA Pherecydes

Pharma Phage Cocktail 1.0 × 109 Single-dose Local
Daptomycin, levofloxacin,

ofloxacin and doxycycline, and
surgery

NA Resolved NR
[140]

Device-related infection
(knee prosthetic) MSSA Pherecydes

Pharma Phage Cocktail 1.0 × 1010 Single-dose Local
Daptomycin, ceftazidime,

ciprofloxacin and rifampin, and
surgery

NA Improved
clinically No

Device-related infection
(knee prosthetic) MSSA Pherecydes

Pharma Phage Cocktail 1.0 × 109 Single-dose Local
Daptomycin, cefepime,

rifampin and levofloxacin, and
surgery

NA Improved
clinically NR



Antibiotics 2023, 12, 286 13 of 23

Table 1. Cont.
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2020

Device-related infection S. aureus * Gabrichevsky
Institute Phage cocktail 1.0 × 108 Multi-dose Dual routes

(local and oral)

Cefepime,
daptomycin,

linezolid and tobramycin
NA

Resolved but
died of other
complications

No

[142]Device-related infection S. aureus Gabrichevsky
Institute Single Phage 1.0 × 109 Multi-dose Dual routes

(local and oral) Rifampicin, flucloxacillin 2 d Resolved No

Device-related infection S. aureus Gabrichevsky
Institute Single Phage 1.0 × 109 Multi-dose Dual routes

(local and oral) Daptomycin 12 d
Resolved but
died of other
complications

No

Device-related infection S. aureus Gabrichevsky
Institute Phage cocktail 1.0 × 109 Multi-dose

Multiple (local,
inhaled, and

oral)
Daptomycin 8 d Not resolved No

Device-related infection S. aureus Gabrichevsky
Institute Single Phage 4.0 × 1010 Single-dose Local Sultamicillin NA Resolved No

2021 Chronic bacterial
prostatitis MRSA * Eliava Institute Phage Cocktail 1.0 × 105–1.0

× 107 Multi-dose

Multiple (oral,
intra-rectal,

and
intra-urethral)

No NA Resolved No [155]

2021 Osteomyelitis MSSA * Queen Astrid
Military Hospital Phage Cocktail 1.0 × 107 Multi-dose Local Clindamycin, rifampin and

ciprofloxacin, and surgery 2w Clinical
improvement NR [151]

2021 Device-related infection
(knee prosthetic) MSSA Adaptive PT Single Phage 2.9 × 1010 Multi-dose

Dual routes
(local and

intravenous)
Cefazolin and surgery 6w Resolved No [143]

2022 Device-related infection S. aureus
Sanubiom

GmbH, Fritzens,
Austria

Phage Cocktail 1.0 × 107 Single-dose Local Piperacillin/tazobactam and
surgery NA Resolved NR [144]

2022 Chronic rhinosinusitis MRSA Adaptive Phage
Therapeutics Single Phage 1.0 × 109–1.0

× 1010 Multi-dose Local Oritavancin 3w Resolved NR [153]

2022 Device-related infection MSSA *

Sanubiom
GmbH, Fritzens,
Austria, Phage

24.com

Phage Cocktail 1.0 × 107 Single-dose Local Piperacillin/tazobactam and
surgery NA Not resolved NR [145]

2022 Device-related infection MSSA Phage24.com,
Austria Phage Cocktail NA Single-dose

Local
(endovascular
grafts coated
with phage)

Surgery NA Resolved NR [148]

2022 Device-related infection MRSA NA Single Phage
1.0 × 109–1.0
× 1010; 2.0 ×

108
Multi-dose Intravenous Daptomycin and ceftaroline

and surgery 3 d Resolved
Reversible
transamini-

tis
[146]
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Table 1. Cont.
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2022 Device-related infection MRSA
Adaptive PT

(Gaithersburg,
MD, USA)

Single Phage

1.2 × 109; 2.4
× 107–2.4 ×

108; 3.0 ×
108–4.0 × 108

Multi-dose
Dual routes
(local and

intravenous)

Daptomycin and Bactrim and
surgery 3 d Resolved

Reversible
transamini-

tis
[147]

2022

Disseminated S. aureus
infections: meningitis,

retropharyngeal abscess,
cranial empyema, and

endocarditis

MRSA ContraFect Corp exebacase 3 mg Single-dose Intravenous
Vancomycin, linezolid,

daptomycin and ceftaroline,
and surgery

NA Resolved NR [156]

MSSA—Methicillin-sensitive Staphylococcus aureus; MRSA—Methicillin-resistant Staphylococcus aureus; NA—Not applicable; NR—Not reported; PFU—Plaque-forming unit; *—More
than one bacterium/case series (polymicrobial); PT– Phage therapy; d—day; w—week; Note: Device-related infection includes implants, grafts, and prosthetics.
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The knowledge gained from work performed in this research space will identify
opportunities to translate phage therapy into practice for S. aureus infections, as well as to
address knowledge gaps or issues that need to be addressed. As highlighted, phage offers
an extremely promising therapeutic alternative to combat staphylococcal infection found
in various human diseases, including septicemia, pneumonia-like infection, venous leg
ulcers, etc. [158]. Phages are characterized by their effective eradication capacity against
specific multidrug-resistant bacteria and associated low costs when compared to antibiotics.
Mainstream phage therapy is still evolving, and the knowledge gained from each study
is critically needed to understand the factors that influence their safety and efficacy in
medicine and other sciences. Specific to S. aureus infections, it is important to highlight that
relatively few phages would be needed and combined with currently available antibiotics
to have an effective outcome. Furthermore, different phages can be combined into unique
cocktails and administered via different routes, i.e., topically, orally, or both, to facilitate
effective penetration into the system/tissue [99].

However, several challenges have also been identified. For example, lysogenic phages
are commonly considered unsuitable for treatment due to their high potential for hori-
zontal gene transfer; however, some lytic phages show no positive value as antimicrobial
agents [159]. Performing whole genome sequencing allows one to avoid the application
of phages that carry toxic genes [160]. Additionally, phages can interact with the immune
system and trigger a response that may reduce the efficiency of phage therapy [161]. It has
also been shown that the spleen can inactivate phages in blood circulation [162], and allergic
reactions can narrow the potential use of phages [163]. Nonetheless, little or no impact
caused by the immune response on the potential killing of bacteria by phages is expected as
bacterial lysis occurs before a specific antibody is formed. In addition, there is no increase
generation of pro-inflammatory cytokines or reactive oxygen species following the adminis-
tration of phages, thus, limiting tissue damage [164]. Other challenges include the fact that
bacterial cells are able to develop resistance mechanisms against phages (e.g., modification
of surface receptors via mutations), which can be disseminated to other bacterial cells as a
result of selective pressures generated by phages during treatment periods [165]. However,
the amount of inoculum of phages during its administration with or without antibiotics
may play an important role in minimizing the risk of resistance [166]. Phages that are
highly bactericidal will be able to kill the bacteria faster than they can replicate; hence, a
higher inoculum of phages may be considered in the formulation of phage cocktails. It
is also important to note that staphylococci include numerous clones. Therefore, it may
be necessary to identify phage(s) based on these clone types and also the type of specific
strains. The bactericidal activity of phages towards S. aureus isolates has been shown to be
significantly associated with the type of the S. aureus clonal complex (CC). Phage V1SA20 is
only active against CC80 strains, while all phages exhibit poor activity against CC7, CC59,
CC239, and CC398 strains [167]. However, the host immune response and the nature of the
infection may influence the efficacy of phage therapy; even strain-specific phage is used [4].

Phage therapy (PT) should also be carefully assessed in patients with chronic infec-
tions caused by polymicrobial agents. For example, anti-S. aureus PT failed to completely
cure chronic polymicrobial biofilm infection of a bone allograft in a sarcoma patient. The
authors explained the possibility of incomplete coverage of anti-S. aureus PT against non-
staphylococci bacteria [151]. In addition, a special precaution should be implemented when
PT is used when treating infections in patients with cancers. Following the introduction
of bacteriophages (T4 and M13) into prostate cancer cell lines (PC-3), overexpression of
integrins was observed, which may be beneficial to prostate cancer cases [168]. However, it
may be detrimental to other types of cancers, such as ovarian and breast cancers. Overex-
pression of selected integrins (ITGAV and ITGB3) would promote the survivability of these
cancer cells and their proliferation [169]. Although there is a lack of phage receptors in
mammalian cells, Bichet et al. [170] demonstrated the uptake of phages by several cell lines
through micropinocytosis in vitro [170]. The uptake of phages and their internalization pro-
cess across the cell lines are very heterogenous, and the authors concluded that the type of
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cells and phages have no roles in their specificity. Interestingly, the viability of these phages
was lost due to the inactivation process [170]. This finding could further compromise the
accessibility of phages to the site of infection in the tissues or organs during phage therapy.
Modifications in the shape of phages may reduce the sequestration issues related to cellular
uptake during phage therapy. It has been shown that the elongated-shaped phages have
lower uptake rates by the cells compared with the disc-shaped phages [171]. Tolerability
and safety for patients are paramount but are affected by the solution formulations phages
are stored in. Formulations need to be specifically designed in order to maintain phage
stability in storage, which, when poorly formulated, would impact effectiveness during
treatment [172]. On a similar note, an appropriate therapeutic regime (dosage, dosing
interval, and timing) is also pivotal in ensuring the efficacy of phage therapy, as clearly
explained by [4].

Work currently being performed is also identifying phage-associated treatment options.
For example, phages can produce specific enzymes (e.g., endolysin), which are involved in
the rapid degradation and destruction of the bacterial cell wall. The promising findings
on phage-encoded endolysins from in vitro studies have been extensively reviewed, and
their synergy action with antibiotics could give insight into new therapeutic options [173].
This enzyme has shown bactericidal activity when added exogenously and is a potential
alternative to using live or engineered phages [174]. Furthermore, the possibility of bacteria
developing resistance to endolysin activity is low since endolysins target unique and highly
conserved peptidoglycan bonds [175]. When considered as a collective, the benefits of
phage therapy appear to outweigh any identified concerns greatly; however, more research
is necessary to address these and facilitate mainstream acceptance of this therapy.

3. Conclusions

This review summarises the essential aspects of antibiotic resistance observed in S.
aureus that must be addressed and understood in order to facilitate the development of
phage therapy into standard clinical practice. Overall, several points emerge from this
review. Firstly, positive interactions that are observed between phages and antibiotics
provide a strong rationale that phage/antibiotic combinations can be successfully used
against many multidrug-resistant bacteria [121,176]. Secondly, the effectiveness of such
combined therapy witnessed in vitro would have to be corroborated in relevant in vivo
systems to rationale clinical trials. Thirdly, research is desperately needed to deduce how
phage formulations work, considering they each exhibit their unique pharmacodynamic
properties [94]. Finally, the chronological administration of phages and antibiotics appears
to be the most promising approach to combat infectious biofilms. However, since the
vast majority of biofilms evolve from mono-species into polymicrobial biofilms, successful
treatment of these in the future may need to be comprised of multiple-species phage
cocktails targeting different bacterial receptors [93,133]. Nevertheless, the encouraging
results obtained are a great effort to continue experimentation with phage/antibiotic
combinations and are likely to reap the rewards of an alternative treatment to antibiotics in
the near future.
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