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Abstract: This study reports the antimicrobial activities of the biopolymers poly[3-(3,4-dihydoxyphenyl)
glyceric acid] (PDHPGA) and poly[2-methoxycarbonyl-3-(3,4-dihydroxyphenyl)oxirane] (PMDHPO),
extracted from the six plants of Boraginaceae family: Symphytum asperum (SA), S. caucasicum (SC), S. gr and
iflorum (SG), Anchusa italica (AI), Cynoglosum officinale (CO), and Borago officinalis (BO) collected in various
parts of Georgia. The study revealed that the antibacterial activities were moderate, and biopolymers from
only three plants showed activities against all tested bacteria. Biopolymers from CO stems as well as SC
and AI did not show any activity except low activity against a resistant P. aeruginosa strain, which
was the most resistant among all three resistant strains. On the other hand, the antifungal activity
was better compared to the antibacterial activity. Biopolymers from BO stems exhibited the best
activities with MIC/MFC at 0.37–1.00 mg/mL and 0.75–1.5 mg/L, respectively, followed by those
from SG stems. Biopolymers from SC and AI roots showed antifungal activities against all six fungi,
in contrast to the antibacterial activity, while biopolymers from CO stems and SA roots had activities
against four fungi and one fungus, respectively. The sugar-based catechol-containing biopolymers
from BO stems demonstrated the best activities among all tested biopolymers against T. viride,
P. funiculosum, P. cyclpoium var verucosum, and C. albicans (MIC 0.37 mg/mL). In addition, biopolymers
from SG stems were half as active against A. fumigatus and T. viride as ketoconazole. Biopolymers
from all plant materials except for CO stems showed higher potency than ketoconazole against
T. viride. For the first time, it was shown that all plant materials exhibited better activity against
C. albicans, one of the most dreadful fungal species.

Keywords: extracts; catechol-based biopolymers; antimicrobial activity; resistant strains;
Boraginaceae family

1. Introduction

Biopolymers are chain-like molecules that consist of repeated chemical blocks derived
from renewable resources that may decompose in the environment. The recent popular use
of biomaterials is due to the fact that reducing the usage of non-renewable resources reduces
the environmental pollution produced by synthetic materials. Furthermore, biopolymers
have attracted significant attention as a class of polymer materials with a wide range of
applications, especially in the medical [1] and pharmaceutical fields [2,3]. Due to their
biodegradability and non-toxic nature, biopolymers play a positive role in the maintenance
of a clean and safe environment.

Hydroxycinnamic acids have been extensively used in the preparation of polyesters,
but there are also reports about their use in the synthesis of polyamides and poly(anhydride
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esters), among many others. These polymers have a wide spectrum of applications, rang-
ing from industrial (e.g., (super) engineered plastics) to biomedical domains (e.g., drug
delivery systems and shape memory materials) [4]. Plant-derived, adhesive polymers from
natural sources such as 3,4-dihydroxycinnamic acid (caffeic acid) and 4-hydroxycinnamic
acid (p-coumaric acid) modified by transesterification were found to show strong adhe-
sive characteristics on metal surfaces, which were equivalent to conventional superglues
from petroleum resources [5]. Lignin-mimetic polyesters prepared using an in-bulk poly-
condensation of bioavailable aromatic hydroxyl(carboxylic acids) can be applied as an
environmentally degradable plastic with extremely high performance and can be used in
automobiles, aircraft, electronic devices, and other materials [6].

Phenols, phenolic-rich plant extracts, including catechol and catechol-based polymers,
exhibiting antibacterial and antifungal activities are of great interest to researchers and
industry [7]. Antimicrobial polymers can slow or inhibit the growth of drug-resistant
strains and present high antimicrobial efficacy due to the various antimicrobial modes and
polymeric structures [8]. The phenolic-rich plant extracts of the Boraginaceae family have
important therapeutic (antimicrobial, antitumor, antiviral, anti-inflammatory, cardiotonic,
contraceptive, antiplatelet activity, etc.) and cosmetic applications [9]. Their pharmacologi-
cal effects are related to the presence of various classes of compounds such as phenolic acids,
phenols, naphthoquinones, flavonoids, terpenoids, and the purine derivative allantoin.
However, plants of the Boraginaceae family are also rich in hepatotoxic pyrrolizidine alka-
loids (which serve as chemical defense compounds, mainly against herbivores), and thus
their consumption is restricted; nevertheless, the use of Boraginaceae plants as poultices
for wounds does not raise any objection [9,10]. There are many references in the literature
regarding the antimicrobial activity of phenolic plant extracts. Thus, Raphaelli et al. [11]
reported an evaluation of the antimicrobial activities of apple phenolic extracts against
Escherichia coli, Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus.
Hussain et al. [12] studied the composition and antimicrobial activities of different Emirati
date (Phoenix dactylifera L.) pits against Staphylococcus aureus (ATCC 29123), Escherichia coli
(ATCC 25922), and Candida albicans (ATCC 66027). Different extracts from these six date pits
showed different antimicrobial activities. The only common finding was that none exhib-
ited activity against C. albicans. Dikpınar et al. [13], in his review, mentioned the isolation of
numerous phenolic compounds from plants/plant extracts that showed the ability to pre-
vent the growth of bacteria and fungi. The review revealed that phenolic compounds from
medicinal plants demonstrated different antimicrobial activities according to their molecu-
lar structures, such as the permeabilization and destabilization of the plasma membrane
or the inhibition of extracellular enzymes. Salazar-Aranda [14] reported an antimicrobial
activity evaluation of extracts from 17 plants from different regions of northeast Mexico
against three Gram-negative bacterial strains (Pseudomonas aeruginosa, Klebsiella pneumoniae,
and Acinetobacter baumannii), three Gram-positive bacterial strains (Enterococcus faecalis and
two Staphylococcus aureus strains), and seven clinically isolated yeasts (Candida albicans,
C. krusei, C. tropicalis, C. parapsilosis, and C. glabrata). It was shown that the antimicrobial
activities from different plants and against different bacterial and fungal strains ranged
from 31.25 to 250 mg/mL. In addition, plant phenolics and their extracts can be very good
inhibitors of many foodborne pathogenic and spoilage bacteria [15,16]. In an extensive
review, Taco et al. [17] reported the antimicrobial activities of plant extracts from several
sources such as grape pomace, grape seed, apple, and various exotic fruit and medicinal
plant samples. It was mentioned that red grape pomace exhibited a strong bactericidal
effect against E. coli and S. aureus at 12 mg/mL [18]. Grape seed extracts also appeared to
be active against bacteria such as S. Typhimurium, Listeria monocytogenes, Bacillus spp., Pseu-
domonas aeruginosa, and Campylobacter spp. [19,20], while red pitahaya (exotic fruits extracts)
demonstrated a good antimicrobial spectrum against Gram-positive and Gram-negative
bacteria, yeasts, and molds at concentrations from 7.8 µg/mL to 50 mg/mL [21,22].

Recently, the antimicrobial properties of some caffeic and 3-(3,4-dihydroxyphenyl)
glyceric acid derivatives against Gram-positive and Gram-negative bacteria, a series of
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fungi [23], and three resistant bacterial strains (methicillin-resistant Staphylococcus aureus,
resistant Escherichia coli, and resistant Pseudomonas aeruginosa) were evaluated in vitro [24].
The studies revealed that some caffeic and 3-(3,4-dihydroxyphenyl)glyceric acid deriva-
tives appeared to be more active than the reference drugs ampicillin and streptomycin,
whereas the antifungal activities of all compounds were greater than the reference drug
ketoconazole, while some compounds appeared to be more active than bifonazole [23].
Kepa et al. [25] studied the antibacterial potential of caffeic acid (CA) alone and in an
antibiotic–phytochemical combination against Staphylococcus aureus reference and clin-
ical strains isolated from infected wounds. The effects of caffeic acid on the S. aureus
strains were different, with variations in the minimum inhibitory concentration (MIC) from
256 µg/mL to 1024 µg/mL. The study revealed that the antimicrobial action of CA is
probably strain-dependent. On the other hand, it was postulated that the antimicro-
bial activity of CA against S. aureus clinical isolates is higher than that of the reference
drug. Furthermore, CA is capable of increasing the antimicrobial effect in combination
with antibiotics.

In our previous studies, we reported the isolation of water-soluble mucilaginous high-
molecular-weight (>1000 kDa or 500 kDa) fractions (HMFs) from plants of the Boraginaceae
family: Symphytum asperum (SA), S. caucasicum (SC), S. gr and iflorum (SG), S. officinale (SO),
Anchusa italica (AI), Cynoglosum officinale (CO), Borago officinalis (BO), and Paracynoglossum
imeretinum (PI) through the ultrafiltration of hot-water extracts using membrane filters
with a cut-off values of 1000 kDa or 500 kDa. The HMFs obtained using this procedure
are free of pyrrolizidine alkaloids and allantoin. According to UV data , IR spectra, and
different techniques of NMR spectroscopy (13C NMR, APT, 1H NMR, 1D NOE, 2D 1H/13C
HSQC, and 2D DOSY) [26,27] (Supplementary materials, Figures S1–S8, Table S1), the main
chemical constituent of the HMFs of the above-mentioned medicinal plants was found to be
an exotic bioactive carbohydrate-based catechol-containing bio-polyether, namely poly[3-
(3,4-dihydroxyphenyl)glyceric acid] (PDHPGA) (1, Figure 1), that is, poly[oxy-1-carboxy-
2-(3,4-dihydroxyphenyl)ethylene] (POCDPE). The repeating unit of PDHPGA is a 3-(3,4-
dihydroxyphenyl)glyceric acid residue. Most of the carboxyl groups of PDHPGA from
AI, SG, and BO, unlike of biopolymers from SA, SC, SO, CO, and PI, are methyl-esterified
and are named poly[2-methoxycarbonyl-3-(3,4-dihydroxyphenyl)oxirane] (PMDHPO) (2 in
Figure 1) [26].
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Figure 1. Poly[3-(3,4-dihydroxyphenyl)glyceric acid] (PDHPGA) (1) and poly[2-methoxycarbonyl-3-
(3,4-dihydroxyphenyl)oxirane] (PMDHPO) (2).

The polyoxyethylene (polyethylene glycol) chain is the backbone of polymeric molecule
PDHPGA. 3,4-Dihydroxyphenyl (catechol) and carboxyl groups are regular substituents at
two carbon atoms in the chain of PDHPGA [26]. On the other hand, a poly (2,3-glyceric acid
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ether) chain is the backbone of the polymeric molecule of PDHPGA. The basic moiety of
poly (2,3-glyceric acid ether) is glyceric acid, a natural three-carbon sugar acid, which is an
oxidative form of the simplest of all common aldoses, namely glyceraldehyde. In this case,
a poly (2,3-glyceric acid ether) chain constitutes the backbone of the polymeric molecule of
PDHPGA, with catechol groups as the regular substituents in the chain. PDHPGA, bearing
a lot of catecholic groups along the polymeric chain, is a novel sugar-based multicatechol-
containing biopolymer. Thus, we can consider PDHPGA as a representative of an exotic
class of carbohydrate-based catechol-functionalized biopolymers with ether bonds. Such
biopolymers, to our knowledge, are unknown in nature, as all above-mentioned synthetic
and natural polymers are either polyesters or copolymers [4–6].

PDHPGA exhibits high immunomodulatory (anticomplementary), antioxidant, anti-
inflammatory, wound and burn healing, and anticancer activities, both in vitro and
in vivo [27].

Later, the antibacterial properties of natural polyethers from different species of the Bor-
aginaceae family (PDHPGA-SA, PDHPGA-SC, PDHPGA-SG, PDHPGA-AI, and PDHPGA-
CO), along with the synthetic polymers poly[2-methoxycarbonyl-3-(3,4-dimethoxyphenyl) oxi-
rane (PMDMPO), poly[2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane] (PMDBPO), and
poly[2-methoxycarbonyl-3-(3,4-dihidroxphenyl)oxirane] (PMDHPO), were investigated against
the pathogenic strains S. aureus ATCC 25923 and E. coli ATCC 25922. It was shown that only
a synthetic oligomeric analogue of PMDHPO exhibited antimicrobial activity against these
pathogenic strains at the concentrations that were used [27]. Interesting data obtained about the
antimicrobial activities of synthetic compounds prompted us to continue research in this field
and examine natural polyethers from the above-mentioned species of the Boraginaceae family
against Gram-positive and Gram-negative bacteria, three resistant bacterial strains (MRSA,
E. coli, and P. aeruginosa), and a panel of fungi.

The aim of this study was to examine and evaluate the antimicrobial activities of
sugar-based catechol-containing biopolymers from SA, SC, SG, AI, CO, and BO.

2. Results and Discussion
2.1. Chemistry

According to data from UV, IR, liquid-state 1H, 13C NMR, gCOSY, and 2D heteronu-
clear 1H/13C gHSQCED experiments, the main chemical constituent of the water-soluble
high-molecular fractions from the stems and roots of SA, SC, SG, SO, AI, CO, and BO was
found to be the biologically active caffeic-acid-derived polymer PDHPGA [26]. Most of
the carboxyl groups of PDHPGA from AI, SG, and BO, unlike of biopolymers from SA, SC,
SO, CO, and PI, are methyl-esterified [27].

Tests of the fractionation and molecular weight distribution of a biologically active
PDHPGA preparation from SA were carried out. The molecular weights and contents of
different fractions for the PDHPGA preparation were simultaneously determined using
high-performance size-exclusion chromatography (HPSEC) coupled with multiangle laser
light scattering (MALLS) and a refractive index detector (RID) with a refractive index
increment (dn/dc) [28].

Absorption maxima at 212 nm, 236 nm (shoulder), 282 nm (shoulder), and 286 nm were
observed in the UV spectra (H2O, λmax, nm) of PDHPGA-SA, PDHPGA-SC, PDHPGA-SG,
PDHPGA-AI, PDHPGA-CO, and PDHPGA-BO, which could be attributable to substituted
phenols (Figure S1). The IR spectra of PDHPGA-SA, PDHPGA-SC, PDHPGA-SG, PDHPGA-
AI, PDHPGA-CO, and PDHPGA-BO contained absorption bands characteristic of phenol-
carboxylic acids: 3425 (OH); 2924 (CH); 1605 (ionized carboxyl) and 1736 cm−1 for its ester
form; 1512 and 1443 (aromatic C=C); 1404 and 1219 (phenols); 1265, 1080, and 1018 (R-O-R’);
872 (C-H in the aromatic ring with one isolated hydrogen atom); and 818 cm−1 (C-H in the
aromatic ring with two neighboring hydrogen atoms (Figure S2). The signal assignments
of the 13C and 1H NMR spectra of PDHPGA-SA, PDHPGA-SC, and PDHPGA-CO and of
the methylated carboxylic groups of PDHPGA-SG, PDHPGA-AI, and PDHPGA-BO are
given in Supplementary Materials Table S1.
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The 2D DOSY experiment gave similar diffusion coefficients for the methylated and
non-methylated signals of PDHPGA. Both sets of signals fell in the same horizontal range
(Figure S8). This implies similar (same order of magnitude) molecular weights for methy-
lated and non-methylated polymers. Thus, we concluded that the NMR signals of both
the methylated and non-methylated carboxylic groups originated from the same PDHPGA
polymer. In order to confirm the proposed structure of the repeating unit of non-methylated
PDHPGA and the mostly methylated carboxylic groups of these poorly water-soluble high-
molecular-weight PMDHPOs, the 13C solid-state NMR spectrum was recorded (Figure 2),
and total assignments of the signals are given in Table 1. The total assignments of the
signals of the solid state 13C NMR of a mixture of PDHPGA + PMDHPO were in good
agreement with the results of the above-mentioned liquid-state 13C NMR classical spectra
of the PDHPGA and PMDHPO samples in D2O.
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Table 1. The signal assignments of the solid-state 13C{1H} CP/MAS NMR spectrum of PMDHPGA
(δ, ppm).

C Atom No. 13C Chemical Shift, δC, ppm

1 72
2 78
1′ 174

(−OCH3) 54
1” 130

2”, 5”, 6” 118
3”, 4” 143

Thus, according to data from different techniques of NMR spectroscopy, the main
chemical constituent of the high-molecular-weight fractions from the medicinal plants SA,
SC, SG, AI, CO, and BO is poly[3-(3,4-dihydroxyphenyl)glyceric acid] (PDHPGA), which
is poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene] (POCDPE).

2.2. Biological Evaluation
2.2.1. Antibacterial Activity Evaluation

The sugar-based catechol-containing biopolymers from SA, SC, SG, AI, CO, and BO
were tested for their antibacterial activities against a panel of six bacterial species, including
Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, using a microdilution
method for the determination of the minimal inhibitory (MIC) and minimal bactericidal
concentrations (MBC). The activities of these polymers were moderate to low, with MICs
in range of 0.75–6.00 mg/mL and MBCs of 1.00–9.00 mg/mL (Table 2). As can be seen
in Table 2, the polymers from SG stems exhibited the best activities among all tested
compounds, with MIC values of 0.75 mg/mL, while the polymer from SA roots showed
the lowest activity (MIC 6.00 mg/mL) compared to ampicillin and streptomycin, which
were used as reference drugs. Moderate activity was also observed against E. coli and
P. aeruginosa for polymers from BO stems (MIC 1.00 mg/mL). On the other hand, the
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sugar-based catechol-containing biopolymers from SC and AI roots and CO stems did not
show any activity against the bacteria in this experiment except for AI roots against E. coli.
Thus, the order of activity can be presented as follows: SG stems > BO stems > SA roots.
The bacteria most sensitive to these biopolymers appeared to be E. coli, while S. aureus was
the most resistant.

Table 2. In vitro antibacterial evaluation of PDHPGA and PMDHPO from stems and roots of BO, AI,
CO, SA, SC, and SG (mg/mL).

Compounds S. a. MRSA E. coli Rez. E. coli P. a. Rez. P. a.

PDHPGA and PMDHPO of BO (stems)
MIC 1.50 1.50 1.00 1.50 1.00 0.75
MBC 3.00 3.00 1.50 3.00 1.50 1.50

PDHPGA and PMDHPO of AI (roots)
MIC - - 3.00 - - 3.00
MBC - - 6.00 - - 6.00

PDHPGA of CO (stems)
MIC - - - - - 3.00
MBC - - - - - 6.00

PDHPGA of SA (roots)
MIC 6.00 6.00 6.00 6.00 6.00 3.00
MBC 9.00 9.00 9.00 9.00 12.00 6.00

PDHPGA of
SC (roots)

MIC - - - - - 3.00
MBC - - - - - 6.00

PDHPGA and PMDHPO of SG (stems)
MIC 0.75 1.00 0.75 1.50 1.00 0.75
MBC 1.50 1.50 1.50 3.00 1.50 1.50

Ampicillin MIC 0.10 - 0.15 0.20 0.30 0.20
MBC 0.15 - 0.20 - 0.50 -

Streptomycin MIC 0.10 0.10 0.10 0.05 0.10 0.10
MBC 0.20 - 0.20 0.10 0.20 0.20

S. a.—S. aureus, MRSA—methicillin-resistant S. aureus, E. c.—E. coli, res. E. c.—resistant E. coli, P. a.—P. aeruginosa,
res. P. a.—resistant P. aeruginosa.

These biopolymers were tested against resistant strains of the mentioned bacteria. The
best activity was observed against res. P. aeruginosa, expressed by biopolymers from BO
and SG stems (MIC/MBC at 0.75 mg/mL). The latter showed better activity against MRSA
and res. E. coli, with MIC 1.00 mg/mL and 0.75 mg/mL, respectively, than the biopolymers
from the materials of the two other plants. The order of activity against resistant strains
can be presented as follows: MRSA > res. P. aeruginosa > res. E. coli.

2.2.2. Antifungal Activity Evaluation

These biopolymers were also evaluated for their antifungal activities against six fungal
species, and the results are presented in Table 3. The sugar-based catechol-containing
biopolymers exhibited better antifungal activities compared to antibacterial activities, with
MICs in the range of 0.37–6.00 mg/mL and MFCs of 0.75–9.00 mg/mL. The best activ-
ity was observed for biopolymers from BO stems, with MIC/MFC at 0.37–1.00 mg/mL
and 0.75–1.5 mg/L, respectively, followed by those from SG stems. It should be men-
tioned that biopolymers from SC and AI roots showed antifungal activities against all
six fungi, while those from CO stems and SA showed antifungal activities against four
fungi and one fungus, respectively, in contrast to the antibacterial activity. In general, the
order of activity can be presented as: BO stems > SG stems > SC roots > AI roots > CO
stems > SA roots. The best activity among all tested biopolymers was found for the biopoly-
mer from BO stems against Trichoderma viride, Penicillium funicolosum, Penicillium verrucosum
var. cyclopium, and Candida albicans (MIC 0.37 mg/mL). The same good activity was shown
by biopolymers from SG stems against Aspergillus fumigatus and T. viride, which was half
as active as ketoconazole, the reference drug. It should be mentioned that all sugar-based
catechol-containing biopolymers from all plant material except for CO stems were more
potent than ketoconazole against T. viride. The most sensitive fungus to these biopolymers
appeared to be T. viride, while P. funiculosum was the most resistant, followed by P. verruco-
sum var. cyclopium. It should be noticed that, in general, sugar-based catechol-containing
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biopolymers demonstrated quite good activity against C. albicans in comparison to other
strains except T. viride.

Table 3. In vitro antifungal evaluation of PDHPGA and PMDHPO from stems and roots of BO, AI,
CO, SA, SC, and SG (mg/mL).

Compounds A. fu. A. n. T. v. P. f. P. v. c. C. a.

PDHPGA and PMDHPO of BO (stems)
MIC 0.75 1.00 0.37 0.37 0.37 0.37
MFC 1.50 1.50 0.75 0.75 0.75 0.75

PDHPGA and PMDHPO of AI
(roots)

MIC 1.50 2.25 0.37 0.75 1.10 0.19
MFC 3.00 3.00 0.75 1.50 3.00 0.37

PDHPGA of CO (stems)
MIC 0.75 0.56 0.19 0.37 0.75 0.37
MFC 1.50 0.75 0.37 0.75 1.50 0.75

PDHPGA of SA
(roots)

MIC 3.00 - 0.75 2.25 2.25 0.09
MFC 4.50 - 1.50 4.50 4.50 0.19

PDHPGA of SC (roots)
MIC 0.37 0.37 0.19 0.75 0.75 0.19
MFC 0.75 0.75 0.37 1.50 1.50 0.37

PDHPGA and PMDHPO of SG
(stems)

MIC 0.37 0.56 0.09 0.56 0.75 0.14
MFC 0.75 0.75 0.19 0.75 1.50 0.19

Ketoconazole
MIC 0.20 0.20 1.00 0.20 0.20 1.00
MFC 0.50 0.50 1.50 0.50 0.30 2.00

Bifonazole
MIC 0.15 0.15 0.15 0.20 0.10 0.20
MFC 0.20 0.20 0.20 0.25 0.20 0.30

A. f.—A. fumigatus, A. n.—A. niger, T. v.—T. viride, P. f.—P. funiculosum, P. v. c.—P. cyclpoium var verucosum, C.
a.—Candida albicans.

Antimicrobial studies revealed that PDHPGA from BO and SG stems showed the
best antibacterial as well antifungal activities. The reason of this difference compared
to PDHPGA from SA, SC and CO may be the methylation of the carboxylic moieties of
these polymers. As we reported in our previous studies, the same tendency was observed
regarding the synthetic oligomeric analogue of PMDHPO, which was the only polymer
showing antimicrobial activities against some pathogenic strains at the concentrations that
were used [27].

It should be mentioned that, despite there being some references in the literature
regarding the antimicrobial activities of catechol-based polymers [7,29], there are no publi-
cations concerning sugar-based catechol-containing biopolymers.

2.3. Docking Studies
2.3.1. Docking to Antibacterial Targets

Docking studies of several antibacterial targets, such as E. coli DNA gyrase, S. aureus
thymidylate kinase, E. coli primase, and E. coli MurB, were performed to give a structural
insight into their mechanism of action. The docking studies showed that the assessments
of the binding free energy to E. coli DNA gyrase, thymidylate kinase, E. coli primase, and
E. coli MurA were higher than that to E. coli MurB. Therefore, it may be resolved that the
inhibition of the E. coli MurB enzyme is the most probable mechanism of action of the
molecules (Table 4).

Docking studies of the MurB enzyme revealed that the dimers of molecules 1 and
2 have close free energy of binding values, as do the trimers (Figures 3 and 4). The best
docking score was achieved by the trimer of molecule 1. This molecule showed four
favorable hydrogen bond interactions between the hydroxyl substituents and the residues
Ser50 (O···H, 2.54Å), Ser116 (O···H, 2.67Å), Ser229 (O···H, 2.98Å), and Ala227 (O···H,
3.21Å). Moreover, hydrophobic interactions were detected between the molecule and the
residues Leu218, Ile122, and Val291 (Figure 2). These interactions stabilize the compound–
enzyme complex and play a crucial role to the activity of the molecule. Furthermore, the
hydrogen bond formation with the residue Ser229 is crucial for the inhibitory activity
because this residue takes part in the proton transfer at the second stage of peptidoglycan
synthesis [30].
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Table 4. Molecular docking binding affinities to antibacterial targets.

No

Est. Binding Energy (kcal/mol)
Residues Involved in

Hydrogen Bonds
Residues Involved in

Hydrophobic InteractionsE. coli Gyrase
1KZN

S. aureus Thymidylate
Kinase
4QGG

E. coli Primase
1DDE E. coli MurB 2Q85

1 −4.55 −2.56 −2.41 −5.16 Ser229 (O···H, 2.65Å) Leu218, Ala227, Val291

1 (dimer) −4.31 −2.67 - −7.80 Ser229 (O···H, 2.78Å),
Glu325 (O···H, 2.82Å)

Ile110, Leu218, Ile122

1 (trimer) −2.16 − − −9.81

Ser50 (O···H, 2.54Å),
Ser116 (O···H, 2.67Å),
Ser229 (O···H, 2.98Å),
Ala227 (O···H, 3.21Å)

Leu218, Ile122, Val291

2 −4.12 −2.46 −2.57 −5.89 Ser229 (O···H, 2.55Å) Leu218, Ile122

2 (dimer) −3.57 −1.28 −1.06 −6.73 Pro219 (O···H, 2.71Å),
Glu325 (O···H, 2.56Å)

Leu218

2 (trimer) −1.67 - - −9.16
Ser229 (O···H, 3.15Å),
Ser229 (O···H, 3.59Å),
Ser229 (O···H, 3.24Å)

Leu218, Ile122, Ala227,
Val291
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Hydrogen bond interactions with the residue Ser229 were also observed for the trimers
of both compounds.

2.3.2. Docking to Antifungal Targets

All the molecules as dimers and trimers, as well as the reference drug ketoconazole,
were docked to the lanosterol 14a-demethylase of C. albicans and DNA topoisomerase IV,
and the results are presented in Table 5.
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Table 5. Molecular docking binding affinities to antifungal targets.

N/N
Est. Binding Energy (kcal/mol)

Residues Involved in
Hydrogen Bonds

Residues
Involved in Hydrophobic

Interactions

Interactions with
HEM601DNA TopoIV

1S16
CYP51 of C. albicans

5V5Z

1 −1.52 −7.96 Tyr132 (O···H, 2.64Å)
Tyr118, Ile131, Tyr132,

Leu300, Leu376
Negative ionizable,

Hydrophobic

1 (dimer) - −9.55 Tyr132 (O···H, 2.64Å),
Tyr118, Ile131, Tyr132,

Leu300, Leu304,
Leu376, Ile407

Negative ionizable,
Hydrophobic,

Fe-binding

1 (trimer) - −9.13

Tyr132 (O···H, 2.65Å),
Gly307 (O···H, 3.10Å),
Thr311 (O···H, 3.24Å),
Met508 (O···H, 3.52Å)

Ile131, Thr122, Phe126,
Phe380, Phe233, Phe228,
Leu376, Val509, Met508

Negative ionizable,
Hydrophobic

2 −1.78 −9.26 Tyr132 (O···H, 2.67Å)
Tyr118, Leu121, Tyr122,

Tyr132, Phe233,
Thr311, Leu376

Negative ionizable,
Hydrophobic

2 (dimer) −1.78 −11.35

Thr311 (O···H, 2.73Å),
Met508 (O···H, 3.93Å),
Met508 (O···H, 3.11Å),
Hem601 (O···H, 2.25Å)

Tyr118, Leu121, Tyr122,
Tyr132, Phe233,
Thr311, Leu376

Hydrophobic,
H-Bond, Fe-binding

2 (trimer) - −11.10

Tyr132 (O···H, 2.31Å),
His377 (O···H, 3.12Å),
His377 (O···H, 3.52Å),
Tyr505 (O···H, 2.47Å)

Met508, Leu121, Tyr118,
Phe228, Thr122, Phe233

Hydrophobic,
aromatic, Fe-binding

ketoconazole - −8.23 Tyr64 (O···H, 2.51Å)
Tyr118, Ile131, Tyr132,

Leu300, Ile304,
Leu376, Met508

Hydrophobic,
aromatic

The docking results showed that molecules 1 and 2, whether are dimers or trimers,
take place inside the active site of the enzyme interacting with the heme group of CYP51Ca.
A detailed analysis of their binding showed that molecule 1, in the form of a dimer or trimer,
interacts in the same way with the heme group, forming negative ionizable interactions
throughout its carboxyl group (Figures 5–7). It is noteworthy to mention that, in the case of
the dimer of molecule 1, it interacts with the iron of the heme, making the molecule–enzyme
complex more stable and justifying the increased free energy of binding of the trimer.

In the case of molecule 2, again the dimer suppresses the trimer because it interacts
with the heme group, forming a stable hydrogen bond throughout its hydroxyl substituent
(Figures 5–7). The dimer form of molecule 2 also exhibited the best free energy of binding,
with four hydrogen bonds between the hydroxyl substituents and the residues Thr311
(O···H, 2.73Å), Met508 (O···H, 3.93Å), Met508 (O···H, 3.11Å), and the heme group (O···H,
2.25Å). Hydrophobic interactions were also detected with the residues Tyr118, Leu121,
Tyr122, Tyr132, Phe233, Thr311, and Leu376. An interaction was also observed between the
heme group and the benzene ring of ketoconazole, which formed hydrophobic and aromatic
interactions. However, molecule 2 in the dimer forms more and stronger interactions than
ketoconazole and a more stable complex of ligand with enzyme. This is probably the reason
why this molecule has better antifungal activity than ketoconazole.
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2.4. Prediction of Toxicity

A prediction of the toxicity profile of the biopolymers was performed using the
webserver ProTox-II.

This is a more rapid and less expensive process compared with in vitro testing in
animals as well as in vitro testing in cell lines. On the other hand, it allows researchers to
greatly reduce the number of animals used in experiments. Several online programs that
use in silico methods to access toxicity are available. They predict the average lethal dose,
carcinogenicity, mutagenicity, etc.

The PROTOX II program [31] predicts the average lethal dose (LD50) in rodents, classi-
fying all chemical compounds into six GHS (Globally Harmonized System of Classification
and Labeling of Chemicals) categories [32], depending on the toxicities of the compounds
and the LD50 values. The LD50 values, given in mg/mL, are as follows:

• Class I: fatal if swallowed (LD50 ≤ 5)
• Class II: fatal if swallowed (5 < LD50 ≤ 50)
• Class III: toxic if swallowed (50 < LD50 ≤ 300)
• Class IV: harmful if swallowed (300 < LD50 ≤ 2000)
• Class V: may be harmful if swallowed (2000 < LD50 ≤ 5000)
• Class VI: non-toxic (LD50 > 5000)

The results of the prediction are presented in Table 6. It is worth noting that that the
accuracy of the prediction increases as the confidence values increase. In particular, reliable
estimates are considered to be more than 0.025.
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Table 6. Prediction of toxicity.

No
Predicted

LD50
(mg/kg)

Predicted
Toxicity

Class
Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity

1 2000 IV Inactive (0.6) Inactive (0.56) Inactive (0.54) Inactive (0.94) Inactive (0.95)

2 2000 IV Inactive (0.57) Inactive (0.56) Inactive (0.62) Inactive (0.91) Inactive (0.92)

1 (dimer) 3500 V Inactive (0.79) Inactive (0.73) Inactive (0.58) Inactive (0.77) Inactive (0.86)

2 (dimer) 3500 V Inactive (0.80) Inactive (0.74) Inactive (0.50) Inactive (0.78) Inactive (0.84)

Numbers in brackets indicate possibilities.

According to the prediction using the Pro-Tox II webserver, the compounds were
found to belong to categories IV and V, with LD50 values ranging from 2000 to 3500 mg/kg
and 1000 mg/kg. They are safe to use (Table 6).

3. Materials and Methods
3.1. Plant Material

Plants were collected from various parts of Georgia province, namely Adjara, Kartli,
the surroundings of Tbilisi, from June to September (2010–2020), depending on the climate.
Each specimen was labeled, numbered, and annotated with the date of collection and
the locality. The plants were identified by the TSMU I. Kutateladze Institute of Pharma-
cochemistry. Voucher specimens (whole plants) were deposited in the herbarium of the
Department of Pharmacobotany of the TSMU Institute of Pharmacochemistry.

3.2. Methods

For extraction and isolation, plant material (roots or stems) was cut into small pieces,
air-dried, and ground in a mill. Lipids, pigments, and low-molecular-weight compounds
(monosaccharides, phenolics, etc.) were removed using Soxhlet extractions with chloroform,
methanol, and acetone. The hot-water extraction of pretreated material was followed by
dialysis, afforded by crude water-soluble polysaccharides. Further fractionation in a model
8200 stirred ultrafiltration cell (Millipore Corporation, Billerica, MA, USA) on a Biomax-500
ultrafiltration disc (500,000 NMWL) or a Filtron omega series membrane (1 M NMWL), as
reported in [33], yielded water-soluble, high-molecular-weight (>500 kDa) preparations.
The characterization of PDHPGA performed byUV, IR and NMR spectra of PDHPGA and
are given in Supplementary materials Figures S1–S8.

3.3. Biological Evaluation
3.3.1. Evaluation of Antimicrobial Activity

Gram-negative bacteria (Escherichia coli (ATCC 35210) and Pseudomonas aeruginosa
(ATCC 27853)) as well as Gram-positive bacteria (Staphylococcus aureus (ATCC 6538)) were
used. The resistant strains used were methicillin-resistant S. aureus (IBRS MRSA 011),
resistant E. coli (IBRS E003), and resistant P. aeruginosa (IBRS P001), which were obtained as
described in Kartsev et al. [34]. The organisms were obtained from the Mycological Labora-
tory, Department of Plant Physiology, Institute for Biological Research ‘Siniša Stanković’,
National Institute of Republic of Serbia, Belgrade, Serbia.

3.3.2. Evaluation of Antifungal Activity

The antifungal activities of all investigated samples were tested on strains obtained
from the Mycological Laboratory, Department of Plant Physiology, Institute for Biologi-
cal Research ‘Siniša Stanković’, National Institute of Republic of Serbia, Belgrade, Serbia.
Aspergillus fumigatus (ATCC 1022), Aspergillus niger (ATCC 6275), Trichoderma viride (IAM
5061), Penicillium funiculosum (ATCC 36839), P. verrucosum var. cyclopium (P. v. c.) (food
isolates), and Candida albicans (ATCC 10231) were used. The MIC and MBC/MFC con-
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centrations were determined using the modified microdilution method, as previously
reported [35,36]. The bacterial/fungal suspensions were adjusted with sterile saline to a
concentration of 1.0 × 105 CFU mL−1. The compounds were dissolved in a 30% EtOH
solution (10 mg mL−1) and immediately added into a tryptic soy broth/malt broth medium
(100 µL) with a bacterial/fungal inoculum. The microplates were incubated for 24 h at
37 ± 2 ◦C for bacterial species and for 72 h at 25 ± 2 ◦C (UE 500, Memmert) for fungi. The
results are presented as MICs, MBCs, and MFCs. The MICs obtained from the susceptibility
testing of various bacteria/fungi to the tested compounds were also determined using a col-
orimetric microbial viability assay based on the reduction in INT (p-iodonitrotetrazolium
violet) [2-(4-iodophenyl)-3-(4-nitrphenyl)-5-phenyltetrazolium chloride], Merck KGaA,
Darmstadt, Germany) color compared with a positive control for each microorganism
strain. The MBCs and MFCs were determined using serial sub-cultivations of 2 µL into
microtiter plates containing 100 µL of broth per well and further incubation for 24 h. The
lowest concentration with no visible growth was defined as the MBC/MFC, indicating
99.5% killing of the original inoculum. The commercial antibiotics ampicillin and strepto-
mycin and the fungicides bifonazole and ketoconazole were used as positive controls, while
30% EtOH was used as a negative control. All experiments were performed in duplicate.

3.4. Docking Studies

AutoDock 4.2® software (The Scripps Research Institute, La Jolla, CA, USA) was
used for the docking simulation [37]. The binding energies (∆G) of E. coli DNA GyrB,
thymidylate kinase, E. coli primase, E. coli MurB, DNA topoIV, and CYP51 of C. albicans
in complex with the inhibitors were generated using this molecular docking program.
The X-ray crystal structure data of all enzymes that were used were obtained from the
Protein Data Bank (PDB ID: 1KZN, AQGG, 1DDE, 2Q85, 1S16, and 5V5Z, respectively). All
procedures were performed according to our previous paper [35].

4. Conclusions

In this work, six plants were collected from various parts of Georgia province, namely
Adjara, Kartli, and the surroundings of Tbilisi, from June to September (2010–2020), depending
on the climates from which the sugar-based catechol-containing biopolymers from SA, SC, SG,
CO, BO, and AI were extracted. The antimicrobial activities of these biopolymers were evaluated.
The study revealed that the antibacterial activities were moderate, and only biopolymers from
three plants showed activities against all tested bacteria. Biopolymers from CO stems as well
as SC and AI did not show any activities, except low activities against a resistant P. aeruginosa
strain, which was the most resistant among the three resistant strains.

On the other hand, the antifungal activities were better compared to the antibacterial
activities. Biopolymers from BO stems exhibited the best activities, with MIC/MFC values of
0.37–1.00 mg/mL and 0.75–1.5 mg/L, respectively, followed by those from SG stems. Biopoly-
mers from SC and AI roots showed antifungal activities against all six fungi, in contrast to
the antibacterial activities, while biopolymers from CO stems and SA roots showed antifungal
activities against four fungi and one fungus, respectively. The sugar-based catechol-containing
biopolymers from BO stems demonstrated the best activities among all tested biopolymers
against T. viride, P. funiculosum, P. cyclpoium var verucosum, and C. albicans (MIC 0.37 mg/mL).
In addition, biopolymers from SG stems were half as active against A. fumigatus and T. viride
as ketoconazole. It is interesting to notice that biopolymers from all plant materials except
for CO stems showed higher potency than ketoconazole against T. viride. The biopolymers
from all plant materials showed better activities against C. albicans, one of the most dreadful
fungi, compared to other fungal species. Thus, it can be concluded that plants from Georgia
province can be good sources for natural antifungal agents. It should be noticed that, according
to prediction results, these biopolymers are not toxic.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/antibiotics12020285/s1, Table S1. Signals assignments of the 13C and 1H NMR
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spectra of PDHPGA-SA, PDHPGA-SC, PDHPGA-CO, PDHPGA-SG, PDHPGA-AI and PDHPGA-BO;
Figure S1. UV spectra (H2O, λmax, nm) of PDHPGA-SA, PDHPGA-SC, PDHPGA-SG, PDHPGA-AI,
PDHPGA-CO and PDHPGA-BO; Figure S2. The IR spectra of PDHPGA-SA, PDHPGA-SC, PDHPGA-SG,
PDHPGA-AI, PDHPGA-CO and PDHPGA-BO; Figure S3. The 13C NMR spectrum of PDHPGA-SA,
PDHPGA-SC and PDHPGA-CO; Figure S4. The 1H NMR spectrum of PDHPGA-SA, PDHPGA-SC
and PDHPGA-CO; Figure S5. The HSQC spectrum of PDHPGA-SA, PDHPGA-SC and PDHPGA-CO;
Figure S6. The 13C NMR spectrum methylated in carboxylic groups of PDHPGA-SG, PDHPGA-AI and
PDHPGA-BO; Figure S7. The 1H NMR spectrum of methylated in carboxylic groups of PDHPGA-SG,
PDHPGA-AI and PDHPGA-BO; Figure S8. The 2D DOSY spectrum of PDHPGA (R=H) and methylated
in carboxylic groups of PDHPGA (R=CH3).
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