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Abstract: Bacteria are identified in only 22% of critically ill children with respiratory infections
treated with antimicrobial therapy. Once an organism is isolated, antimicrobial susceptibility results
(phenotypic testing) can take another day. A rapid diagnostic test identifying antimicrobial resistance
(AMR) genes could help clinicians make earlier, informed antimicrobial decisions. Here we aimed
to validate a custom AMR gene TaqMan Array Card (AMR-TAC) for the first time and assess
its feasibility as a screening tool in critically ill children. An AMR-TAC was developed using a
combination of commercial and bespoke targets capable of detecting 23 AMR genes. This was
validated using isolates with known phenotypic resistance. The card was then tested on lower
respiratory tract and faecal samples obtained from mechanically ventilated children in a single-centre
observational study of respiratory infection. There were 82 children with samples available, with a
median age of 1.2 years. Major comorbidity was present in 29 (35%) children. A bacterial respiratory
pathogen was identified in 13/82 (16%) of children, of which 4/13 (31%) had phenotypic AMR. One
AMR gene was detected in 49/82 (60%), and multiple AMR genes were detected in 14/82 (17%)
children. Most AMR gene detections were not associated with the identification of phenotypic AMR.
AMR genes are commonly detected in samples collected from mechanically ventilated children with
suspected respiratory infections. AMR-TAC may have a role as an adjunct test in selected children in
whom there is a high suspicion of antimicrobial treatment failure.

Keywords: rapid diagnostic tests; antibacterial agents; critical illness; child; respiratory system;
antimicrobial resistance

1. Introduction

Antimicrobial-resistant lower respiratory tract infection (AMR-LRTI) was the leading
cause of AMR-related deaths in 2019, responsible for >1.5 million deaths worldwide [1].
AMR-LRTI appears to be uncommon in critically ill children in high-income countries [2,3];
however, this may be due to under-detection. Microbiological cultures are low-yield in
critically ill children, likely due to the early administration of broad-spectrum antimicrobial
therapy [4]. Traditionally, antimicrobial susceptibility testing is performed by isolating
an organism followed by phenotypic tests such as determining the minimum inhibitory
concentration (MIC) against antimicrobials. Molecular methods are an alternative that can
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provide diagnostic information in the absence of a cultured organism. Rapid detection
of AMR genes has the potential to provide earlier data to support the rationalisation of
antimicrobial therapy, which is vital in preventing AMR.

Here we describe the validation and potential utility of a custom AMR-TAC that
can detect up to 25 AMR genes which can confer β-lactam, carbapenem, fluoroquinolone,
glycopeptide, and macrolide resistance. This is broader than the range of AMR genes
incorporated in commercially available syndromic diagnostic tests for respiratory infection
(Table 1) [5,6]. In addition, we report AMR gene carriage in mechanically ventilated
children with suspected respiratory infections using this method for the first time using
samples from a previously published cohort study [7]. Two body compartments were
utilised to survey AMR gene carriage—the gastrointestinal tract and the lung. The gut
has the greatest diversity and population of bacteria in the body, followed by the oral
cavity [8,9]. Therefore, this provides the potential to obtain biomass-enriched samples.
The gut is also a known reservoir for Gram-negative bacteria, particularly those with
multi-drug resistance genes [10]. For these reasons, faecal samples are frequently used for
AMR surveillance studies [9]. In contrast, lung samples have a lower biomass [11], and it is
unclear whether this compartment could have a role in AMR surveillance and identification
in mechanically ventilated children. A two-compartment approach was taken given the
potential of horizontal gene transfer, which is the ability of bacterial species to transfer or
acquire DNA allowing them to survive in hostile environments [12]. If the resistome of the
gut is reflective of that of the respiratory tract, stool samples could be a non-invasive test
for screening children for AMR. This is plausible given the respiratory tract of ICU patients
can be colonised with gut bacteria given the presence of endotracheal tubes, translocation
of bacteria via the bloodstream, and environmental cross-contamination.

Table 1. Antimicrobial resistance genes incorporated in a custom TaqMan array card compared to
commercially available tests.

Antimicrobial
Class Resistance Target

BioFire
Pneumonia

Panel
N = 7

Unyvero
Pneumonia
Cartridge

N = 17

Custom
AMR-TAC

N = 25

β-lactamase

AmpC (FOX)
√

blaCTX-M
√ √ √

blaCTX-M-1
√

blaCTX-M-2
√

blaCTX-M-8/25
√

blaCTX-M-9
√

blaOXA-1
√

mecA
√ √

mecC
√ √

mecA/mecC/MREJ
√

blaPER-1
√

blaSHV
√

blaTEM
√

blaVEB
√

blaVIM
√ √ √
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Table 1. Cont.

Antimicrobial
Class Resistance Target

BioFire
Pneumonia

Panel
N = 7

Unyvero
Pneumonia
Cartridge

N = 17

Custom
AMR-TAC

N = 25

Carbapenemase

blaNDM
√ √ √

blaNDM-1
√

blaGES
√

blaIMP
√ √ √

blaIMP-1
√

blaIMP-2
√

blaKPC
√ √ √

blaOXA-23
√

blaOXA-24/40
√

blaOXA-48- like
√

blaOXA-48
√ √

blaOXA-58
√

Fluoroquinolone

gyrA83
√

gyrA87
√

qnrA
√

qnrS
√

Glycopeptide
vanA

√

vanB
√

Macrolide ermB
√ √

Sulphonamide sul1
√

AMR-TAC: antimicrobial resistance gene TaqMan array card.

The primary objectives of this study were as follows:

1. Validate a custom AMR-TAC using isolates with known phenotypic and genotypic AMR.
2. Identify the prevalence of AMR genes found in critically ill children with suspected LRTIs.

The secondary objectives of this study were as follows:

1. Identify the correlation between the gastrointestinal and respiratory resistomes in
critically ill children with suspected LRTIs.

2. Describe the AMR genes found in critically ill children with suspected LRTIs who had
AMR identified using conventional antimicrobial susceptibility testing.

2. Results
2.1. Antimicrobial Resistance Gene TaqMan Array Card Validation

All AMR gene assays passed validation with plasmid controls except for blaCTX-M #2
(assay 23), which was negative despite VAP plasmid 2 containing this gene (Table S2). The
median standard deviation of Ct values on assays obtained across multiple AMR-TACs was
1.2 (range 0.3–2.3) (Table S3); hence, there was a high degree of inter-assay reproducibility.
The blaCTX-M #2 gene (assay 23) was again not detected in these samples, and there was no
detection of blaCTX-M-2 and blaCTX-M-8/25; however, these genes were unlikely to have been
present in the original sample.

AMR-TAC had a 58/59 (98%) positive percentage agreement in detecting AMR genes
incorporated in the AMR-TAC (Table S4). Of the clinical samples used for validation, the
presence of AMR genes or the phenotypic AMR profile was known in 59/60 samples.
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TAC fully corresponded to the known resistance of 39/59 (66%) of samples and partially
corresponded to 20/59 (34%). Partial correspondence was due to the detection of additional
AMR genes of uncertain significance and one missed detection of blaOXA-1. Two samples
(3%) were known to be phenotypically resistant (samples 39 and 40); however, no AMR
genes were identified. This may have been due to the presence of AMR genes, which did
not have corresponding assays on the AMR-TAC or other resistance mechanisms.

2.2. Demographics

There were 82/100 children in the cohort that had a mini-BAL and/or faecal sample
available for analysis. These children had a median age of 1.2 years (IQR 0.3–4.9 years),
with the majority admitted to PICU for a primary respiratory problem (Table 2). There
was 79/82 (96%) PICU survival, with longer lengths of stay in children with suspected
HAP/VAP (p = 0.020).

Table 2. Demographics of mechanically ventilated children screened for antimicrobial resistance.

Variable
Total Suspected CAP Suspected HAP/VAP p-Value

N = 82 N = 66 N = 16

Demographics

Age (years)—median (IQR) 1.2 (0.3–4.9) 1.0 (0.2–4.2) 2.8 (0.6–9.8) 0.124 a

Sex (male)—n (%) 52 (63) 39 (59) 13 (82) 0.148 b

Weight (kilograms)—median (IQR) 10.2 (5.3–18.0) 9.5 (5.0–17.3) 12.8 (6.6–26.7) 0.139 a

Significant comorbidity—n (%) 29 (35) 21 (32) 8 (50) 0.172 b

PIM3 score—median (IQR) 2.2 (0.5–4.6) 0.8 (0.5–4.6) 3.6 (2.1–5.0) 0.041 a

Primary diagnostic category—n (%)

Respiratory 52 (63) 47 (71) 5 (31) 0.003 b

Neurological 9 (11) 8 (12) 1 (6) 0.094 b

Cardiovascular 4 (5) 2 (3) 2 (13) 0.115 b

Trauma 4 (5) 3 (5) 1 (6) 0.776 b

Post-operative care 6 (7) 1 (2) 5 (31) <0.001 b

Other 7 (9) 5 (8) 2 (13) 0.527 b

Risk factors for AMR—n (%)

Home respiratory support (any) 6 (7) 6 (9) 0 0.210 b

Tracheostomy 1 (1) 0 1 (6) 0.041 b

NG feeding/gastrostomy 10 (12) 8 (12) 2 (13) 0.967 b

Hospital admission
within the last three months 40 (49) 35 (53) 5 (31) 0.118 b

PICU admission
within the last three months 15 (18) 11 (17) 4 (25) 0.036 b

Previous mechanical ventilation 30 (37) 23 (35) 7 (44) 0.507 b

Regular steroids 4 (5) 4 (6) 0 0.313 b

Neutropaenia 1 (1) 1 (2) 0 0.620 b

Malignancy 2 (2) 2 (3) 0 0.481 b

Asplenia 1 (1) 1 (2) 0 0.620 b
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Table 2. Cont.

Variable
Total Suspected CAP Suspected HAP/VAP p-Value

N = 82 N = 66 N = 16

Known AMR—n (%)

CPE 1 (1) 1 (2) 0 0.620 b

ESBL 2 (2) 0 2 (13) 0.004 b

None 79 (96) 65 (98) 14 (88) 0.036 b

Days free of treatment at 28 days—mean (SD)

Antimicrobial therapy 20.0 (7.4) 20.1 (7.3) 16.1 (8.2) 0.056 c

Mechanical ventilation 19.3 (6.6) 19.8 (6.6) 15.8 (7.6) 0.064 c

Inotropes 26.5 (4.3) 26.4 (4.7) 26.9 (1.5) 0.442 c

PICU admission 17.4 (7.5) 18.1 (7.7) 13.3 (6.8) 0.020 c

Survival to hospital discharge—n (%) 78 (95) 64 (97) 14 (88) 0.115 b

a = Mann–Whitney U test; b = chi-square test for independence; c = Student’s t-test for equality of means;
AMR: antimicrobial resistance; CAP: community-acquired pneumonia; CPE: Carbapenemase-Producing En-
terobacteriaceae; ESBL: extended-spectrum β-lactamase; HAP: hospital-acquired pneumonia; IQR: interquartile
range; LRTI: lower respiratory tract infection; NG: nasogastric; PICU: paediatric intensive care unit; SD: standard
deviation; VAP: ventilator-associated pneumonia.

At least one AMR gene was detected in 49/82 (60%) of children, and multiple AMR
genes were detected in 14/82 (17%) of children (Figure 1). The most detected AMR gene
was the erythromycin resistance methylase B (ermB) gene (n = 45; 54% children), followed
by mecA (n = 14; 17%) and mecC (n = 2; 2%). There were single detections of blaCTX-M-1,
blaCTX-M-9, vanA, and vanB.

There was a significantly greater proportion of AMR genes detected in faecal samples
than mini-BAL samples (37/68 (54%) faecal samples, 22/81 (27%) mini-BAL samples,
p < 0.001). There was a slight agreement between respiratory and faecal specimens in the
67 patients in which both samples were available for testing on the AMR-TAC (14% positive
concordance, 87% negative concordance, κ = 0.187, CI95 0.051–0.323) (Table S5).

2.3. Respiratory Microbiology Results Compared to an Antimicrobial Resistance Gene TaqMan
Array Card

A bacterial isolate was identified in 13/82 (16%) of lower respiratory (ETA or mini-
BAL) cultures. Of these, 4/13 (31%) were phenotypically resistant to antimicrobials (Table 3).
Although the ermB gene was detected in two of these patients’ respiratory secretions,
bacterial isolates grown from these samples had no phenotypic macrolide resistance.

Table 3. Antimicrobial resistance identified on culture compared to antimicrobial resistance gene
TaqMan array card.

Study ID Lower Respiratory Culture
Result

Phenotypic Resistance
AMR-TAC Result, Ct Value(s)

Respiratory Faecal

C008 Pseudomonas aeruginosa Ciprofloxacin Nil N/A

C046 Staphylococcus aureus Fusidic acid Nil N/A

C048 Morganella morganii Amoxicillin/clavulanate
Ampicillin/amoxicillin ermB 28/28 Nil

C067 Stenotrophomonas maltophilia Amoxicillin/clavulanate
Ampicillin/amoxicillin Nil ermB 33/33

AMR-TAC: antimicrobial resistance gene TaqMan array card; Ct: cycle threshold; N/A: no sample available.
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2.4. Antimicrobial Resistance Gene TaqMan Array Card Detections Correlating to Clinical Cases

There were two instances in which there was no growth on the first respiratory culture
obtained as per protocol, but phenotypic AMR was detected in subsequent microbiology
investigations correlating with AMR-TAC (Table 4).

Table 4. Antimicrobial resistance gene detections on TaqMan array card correlating to pheno-
typic resistance.

Study ID
Organisms Identified on TAC

(Ct Value(s)) Microbiological Culture Results
AMR-TAC Results (Ct)

Respiratory Faecal

C060 Nil *

ETA: E. faecium
Ampicillin/amoxicillin (R)

Teicoplanin (R)
Vancomycin (R)

Peritoneal fluid: E. faecium
Ampicillin/amoxicillin (R)

Daptomycin (R) 2 mg/L
Teicoplanin (R)
Vancomycin (R)

ermB 25/25
vanA 27 N/A

C094 Streptococcus spp.: 29/27 ESBL screening: positive
(multiple time points) Nil

ermB 22/22
blaCTX-M-1 26/26

blaCTX-M 30
mecA 27/29

AMR-TAC: antimicrobial resistance gene TaqMan array card; Ct: cycle threshold ESBL: Extended-spectrum
β-lactamase; ETA: endotracheal tube aspirate; R: full resistance; * there was no target for E. faecium on diagnostic
TAC at the time this sample was tested.

Patient C060 was an 11-year-old with suspected VAP on a background of peritonitis
secondary to a ruptured appendix. He received seven days of treatment with fluconazole
and meropenem and one day of tigecycline. In the PICU, a multi-drug-resistant E. faecium
was identified in ETA. The initial treatment was tigecycline and fluconazole. The vanA gene
was detected in the respiratory sample.

Patient C094 was an 11-year-old with suspected HAP following orthopaedic surgery.
She was at high risk of AMR due to recent hospitalisation and antimicrobial therapy in ad-
dition to a background of global developmental delay, a seizure disorder, and gastrostomy
feeding. She needed mechanical ventilation due to acute respiratory distress syndrome and
was treated with meropenem. Whilst her respiratory cultures did not identify a pathogen,
extended-spectrum β-lactamase (ESBL) screening swabs were positive. Consistent with
this finding, blaCTX-M-1 and blaCTX-M were detected in stool.

3. Materials and Methods
3.1. Study Design and Population

This observational cohort study was designed to evaluate the use of an AMR-TAC
in children with suspected respiratory infections. Details of the ethical approval and
consent process have been previously published [13]. Patients were enrolled in the study
between April 2020 and January 2022 in a 13-bed general PICU at Addenbrooke’s Hospital,
Cambridge, England.

3.2. Eligibility Criteria

The inclusion criteria were as follows:

i. The child was aged <18 years old;
ii. The child was receiving mechanical ventilation at the time of enrolment;
iii. The child was commencing or already receiving antimicrobial therapy to treat a

suspected or confirmed LRTI.

The exclusion criteria were as follows:



Antibiotics 2023, 12, 1701 8 of 16

i. The patient had a non-survivable illness and was no longer on an active treat-
ment pathway;

ii. The child was aged <37 weeks corrected gestation.

3.3. Non-Bronchoscopic Bronchoalveolar Lavage Sampling

Deep respiratory samples were obtained at the time of enrolment via non-bronchoscopic
bronchoalveolar lavage (Mini-BAL). This is a technique in which saline is instilled at the
level of the carina via the endotracheal tube and then aspirated into a sterile sputum trap.
The saline lavage volume instilled was 1 mL/kg of patient weight to a maximum of 10 mL.
Once aliquots of the sample had been obtained for clinical investigations, the remaining
sample was stored at −80 ◦C until batch processing.

3.4. Faecal Sampling

Faecal samples were obtained by swabbing stool in the child’s nappy or via rectal
swab. The swab was inserted into the anus to the end of the cotton tip. Swabs were then
placed in a sterile container containing 1 mL DNA/RNA shield (Zymo Research, Irvine,
CA, USA) and stored in a −20 ◦C freezer.

3.5. Nucleic Acid Extraction from Non-Bronchoscopic Bronchoalveolar Lavage Samples

Up to 750 µL of sample was added to a 2 mL microtube containing a mixture of 1.4 mm
ceramic beads (Cat No. 13113-325, Qiagen, Hilden, Germany) with 750 µL of L6 buffer
(50% guanidine thiocyanate, 20 mM EDTA, 1.3% Triton-X-100, Tris pH 7.25). A minimum
of 100 µL was required for extraction and brought up to 750 µL with nuclease-free water in
the case of low volume. The sample was then vortexed at 7000 rpm for one minute using a
MagNA lyser (Roche, Basel, Switzerland) and spun at 13,000 rpm for one minute. Then,
400 µL of the sample was taken for extraction.

Samples were processed using an EZ1 virus mini kit (v 2.0) using an EZ1 advanced XL
(Qiagen, Hilden, Germany) following standard methods to produce a 150 µL elution [14].
This could be completed with up to 14 samples per run, including an L6 buffer and RNase-
free water negative control [14].

3.6. Nucleic Acid Extraction from Faecal Samples

The stored faecal specimens were thawed in batches and processed using a DNeasy®

PowerSoil® Kit (Qiagen, Hilden, Germany) using standard methods. Here this protocol
is briefly summarised. All the described reagents were included in the commercial kit.
The sample was added to the PowerBead tube and vortexed. Then, 60 µL of solution C1
was added, and the tube was vortexed for 10 min. Tubes were then vortexed at 10,000× g
for 30 s. The supernatant was transferred to a clean 2 mL collection tube to which 250 µL
of solution C2 was added, and the sample was vortexed for 5 s. It was then incubated
for 5 min at 2–8 ◦C. The tubes were vortexed for 1 min at 10,000× g, and 600 µL of the
supernatant was transferred to a clean 2 mL collection tube. Then, 200 µL of solution C3
was added, and the tube was vortexed and then incubated for 5 min at 2–8 ◦C. Tubes were
then vortexed for 1 min at 10,000× g. Avoiding the pellet, 750 µL was transferred to a clean
2 mL collection tube. Solution C4 was shaken, and 1200 µL was added to the supernatant.
The tube was vortexed for 5 s. Then, 675 µL was loaded onto an MB spin column and
centrifuged at 10,000× g for one minute. The spin column was then placed in a clean 2 mL
collection tube, and 100 µL of Solution C6 was added to the centre of the filter membrane.
The tube was then centrifuged for 30 s at 10,000× g. Extracted samples were then stored
at −80 ◦C.

3.7. Nucleic Acid Extraction from Raw Sewage Samples

Sewage samples were extracted according to a validated protocol [15], briefly sum-
marised here. Sample bags were sprayed with 80% ethanol inside a class II microbiological
safety cabinet. The sample bag was then opened, and the tube was sprayed with 80%
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ethanol. Then, 500 µL of 100% ethanol was added to the sample and incubated for 10 min.
Then, 400 µL lysis buffer was added, and 600 µL of the sample was added to a silica spin
column. This was centrifuged at 15,000 rpm for 30 s. The follow-through was discarded, the
remaining 600 µL of the sample was added to the spin column, and the tube was centrifuged
at 15,000 rpm for 30 s. The follow-through was discarded. After the addition of 500 µL of
wash buffer one (1 M guanidine thiocyanate in 25 mM Tris-HCl, with 10% ethanol), the
column was centrifuged for 30 s at 15,000 rpm. The follow-through was discarded. Then,
500 µL of wash buffer two (25 mM Tris-HCl buffer with 70% ethanol) was added to the
spin column and centrifuged for 30 s at 15,000 rpm. The follow-through was discarded.
Then, 500 µL of wash buffer two was added to the spin column and centrifuged for 2 min
at 15,000 rpm. In a new collection tube, the sample was spun for 1 min at 15,000 rpm. Then,
100 µL of nuclease-free water was added to the spin column filter and left for 1 min. The
sample was then spun for 15,000 rpm. The spin column was discarded, and the elution was
stored at −80 ◦C.

3.8. Antimicrobial Resistance Gene TaqMan Array Card

A custom AMR-TAC was designed using a combination of commercial and in-house
sequences to detect up to 25 AMR genes (Figure 2). The genes were selected to identify
resistance to a wide range of antimicrobials. One lane of the array was required per sample.
Most AMR gene assays were in duplicate to help identify potential false positives. An
18S rRNA gene target was included for quality control. There were ten custom assays on
the card in addition to a custom MS2 bacteriophage control; names are provided for the
commercial assays in which the primer sequences are not disclosed (Table S1). The MecC
assay detected both mecA and mecC; therefore, it was necessary to review it in conjunction
with the MecA assay to determine which gene was present.
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Figure 2. Configuration of a custom antimicrobial resistance gene TaqMan array card. This figure
represents one lane of the antimicrobial resistance gene TaqMan array card (AMR-TAC). The card
contains eight lanes with each configuration. The assays can detect genes conferring resistance to
β-lactams, carbapenems, fluoroquinolones, glycopeptides, and macrolides.
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For each sample, 25 µL of total nucleic acid was added to 25 µL of TaqMan Fast Virus
1-step master mix (ThermoFisher, Foster City, CA, USA) and 50 µL of RNase-free water. A
total of 50 µL was then added to the array. The RT-qPCR was completed on a QuantStudio
7 Flex (ThermoFisher) according to the following validated protocol: 50 ◦C for 5 min, 95 ◦C
for 20 s, 45 cycles of 95 ◦C for 1 s, 60 ◦C for 20 s [16]. qPCR Ct values with clear amplification
curves were reported.

A positive detection on the TAC was defined as follows:

i. For AMR genes with one target on the TAC, Ct value ≤ 32;
ii. For AMR genes with ≥2 targets on the TAC, either of the following:

(a) At least one target, Ct ≤ 32;
(b) At least two targets had Ct < 34.

The Ct cut-offs were selected based on a study of the use of AMR-TAC configured
for E. coli isolates and stool specimens in which Ct ≤ 32 was optimal in positive/negative
characterisation of samples compared to routine investigations through analysis with
receiver operating curves (ROCs) [17]. A slightly higher Ct < 34 was permitted if present
in at least two targets, given the low quantity of bacterial DNA expected to be present in
mini-BAL samples.

The AMR-TAC used in this study was validated in three stages. Firstly, three synthetic
positive control plasmids containing sequences for the in-house assays were tested in
addition to a NATrol Pneumonia Verification Panel (NPVP) (NATPPQ-Bio and NATPPA-
Bio, ZeptoMetrix, Buffalo, NY, USA). The plasmids were diluted tenfold to a range of
10−6. Testing was undertaken on raw sewage samples to determine the reproducibility
of results between different AMR-TACs. Extracted samples were then tested on seven
AMR-TACs undertaken at different times. Finally, extracted nucleic acid samples from
60 microbiology isolates with a range of AMR profiles were tested on the AMR-TAC.
This included samples that had whole genome sequence data available, those that had
undergone PCR for specific AMR genes, and those that had phenotypic resistance. FastQ
files of sequenced National Collection of Type Cultures (NCTC) strains were downloaded
from the European Nucleotide Archive (ENA). These files were then read in ResFinder
4.0 [18], with all identified AMR genes compared to AMR-TAC.

3.9. Conventional Respiratory Pathogen Testing

All routine microbiology testing was completed by qualified UK Health Security
Agency (UKHSA) biomedical scientists according to laboratory standard operating proce-
dures. For patients that were not immunocompromised, standard media were used. The
sample was inoculated on chocolate agar and incubated at 35–37 ◦C supplemented with
5–10% CO2 [19]. If the patient was immunocompromised, MacConkey agar and Manni-
tol salt/chromogenic agar were used with the sample incubated in air [19]. Significant
growth constituted >104 cfu/mL on Mini-BAL samples or >105 cfu/mL on ETA. Bacterial
organisms were identified to the species or genus level using matrix-assisted laser desorp-
tion/ionisation time-of-flight (MALDI-TOF) mass spectrometry (Bruker Daltonics, Coven-
try, UK). Antimicrobial susceptibility testing was performed using disc diffusion following
European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines [20].

3.10. Data Collection

Data were obtained from the electronic medical record and recorded in an electronic
research database, RedCAP, hosted by the University of Cambridge [21]. Demographic
information (age at admission, admission source, diagnosis and comorbidities, AMR risk
factors, days of therapy, and duration of admission), all routine microbiology investiga-
tions, antimicrobial prescription data, and Paediatric Index of Mortality 3 scores [22] were
collected. Treatments and duration of stay are reported as days free of treatment 28 days
following admission to PICU. This is a standard composite measure that captures the
impact of mortality, with days following death considered unliberated from treatment for
the purposes of the calculation [23].
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3.11. Statistical Analysis

Statistical analysis was undertaken in R [24]. Demographic data were reported with
mean and standard deviation, unless the distribution of data was skewed, in which case
median and interquartile range were used. Demographic features were compared using
the Mann–Whitney U test for non-parametric data and the Student’s t-test for normally
distributed data. Proportions were compared using the chi-square test for independence.
Concordance of AMR gene detections on faecal and respiratory specimens was reported
both with concordance (%) and Cohen’s kappa. This was categorised using Altman’s
description of the agreement [25]. Figures were created using BioRender.com, accessed
13 February 2023.

4. Discussion

Here we report the use of a custom AMR-TAC in critically ill children for the first time.
All assays, except for one of the two for blaCTX-M, were reliable. During validation, the

AMR-TAC had 98% positive percentage agreement in identifying genes corresponding to
the phenotypic resistance identified in microbiological culture susceptibility testing. We
found that 60% of mechanically ventilated children with suspected LRTIs had at least one
AMR gene present in mini-BAL and/or faecal swab samples.

The most prevalent gene identified in children with suspected LRTIs was ermB, which
can confer macrolide–lincosamide–streptogramin B (MLSB) resistance, similar to a pre-
vious study that used the Unyvero P50 pneumonia cartridge (Curetis, Holzgerlingen,
Germany) [5]. This may be explained by its high rates of carriage by common bacterial res-
piratory pathogens, including S. pneumoniae [26,27], S. aureus [28,29], and H. influenzae [30].
Children with erythromycin-resistant S. pneumoniae have significantly higher rates of car-
riage of ermB than those with erythromycin-sensitive S. pneumoniae (83.8% carriage of ermB
in erythromycin-resistant isolates versus 17.8% carriage in sensitive isolates, p < 0.001) [26].
Macrolides are recommended in combination with β-lactams for the treatment of severe
pneumonia in children or if there is suspicion of Mycoplasma or Chlamydia pneumonia [31].
The rates of macrolide-resistant S. pneumoniae are increasing, and macrolide-resistant S.
pneumoniae is found in up to 40% of isolates obtained from adults in the United States [32].
It is, therefore, a potential concern that this treatment has the potential to be rendered
ineffective. The ermB gene was recently ranked among the most concerning AMR genes,
given it is present in a broad range of known pathogens, is found enriched in the human en-
vironment, and is contained in genetic material easily transferred between bacteria [33]. It is
of note that we found this to be a highly prevalent gene in mechanically ventilated children.

ESBL genes were only found in 2/82 (2%) of our cohort. This is similar to the rate
(2.8%) of ESBL found in faecal specimens of children admitted to the Johns Hopkins
PICU, Baltimore, MD; of these ESBL cases, 23/24 (96%) had blaCTX-M genes identified [34].
Genes linked with ESBLs and carbapenemases, including blaCTX-M-15, blaNDM, blaKPC, and
blaOXA-48, have been found in up to 56.1% of neonates with suspected sepsis in low- and
middle-income countries [35]. This is likely due to broad-spectrum antimicrobials being
frequently prescribed in these infants in the setting of local infection control practices and a
high rate of AMR in the local population. The AMR-TAC may have the greatest utility in
populations with a high prevalence of AMR colonisation or infection but limited resources
to screen for a broad range of causes of AMR. There is a greater abundance of AMR genes
at six weeks of age than in young children and adults, which may be related to the shift in
the microbiome composition [36]. This highlights that the local epidemiology, antimicrobial
use, and the age of patients must be considered in AMR gene detection studies.

During AMR-TAC validation, a broad range of AMR genes were detected in hospital
sewage. The genes present could confer resistance to all five classes of antimicrobials to
which resistance genes are sought by the AMR-TAC. Previous studies have shown that AMR
in wastewater has a high level of agreement with AMR in human populations, confirmed
with genotypic and phenotypic testing (0.85 concordance, CI95 0.80–0.89) [37]. The AMR-
TAC could be used as a population-level AMR surveillance tool, with the advantage that
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the method would not depend on the ability to culture all the isolates that may grow from
the sample [38].

The AMR-TAC had a more comprehensive range of AMR genes than those incorpo-
rated in commercial LRTI diagnostic assays. In critically ill adults, the Unyvero HPN/P55
pneumonia cartridge has a sensitivity of 18.8% and a specificity of 94.4% for the detection
of AMR [39]. The former P50 cartridge, which incorporated 18 resistance markers, iden-
tified at least one AMR gene in 64/90 (71%) respiratory specimens obtained from adults
hospitalised with pneumonia [40]. Concordance between phenotypic resistance and AMR
genes found on BioFire FilmArray Pneumonia Panel (FPP) has been highly variable in adult
pneumonia studies [41–45]. Given difficulties interpreting the significance of these genes
and discrepancies with microbiological culture susceptibility data, there was no guidance
provided to clinicians in the prescribing protocol of the recent INHALE trial [46]. This is
despite the FPP only reporting AMR genes known to be present in bacteria it co-detects [47].
We identified a higher prevalence of AMR gene detection compared to a study of the FPP
undertaken on BAL samples of hospitalised patients. In that investigation, mecA/mecC and
MREJ were found in 43/666 (6.5%) of samples, blaCTX-M in 7/666 (1.1%), blaKPC in 2 (0.3%),
and blaNDM in 1 (0.2%) [47].

In adults with LRTIs, metagenomic next-generation sequencing (mNGS) is associated
with 70% sensitivity (CI95 47–87%) and 95% specificity (CI95 85–99%) for the detection of
AMR in Gram-positive organisms and 100% sensitivity (CI95 87–100%) and 64% specificity
(CI95 48–78%) in Gram-negative organisms [48]. mNGS is less sensitive than qPCR in
measuring AMR gene abundances and requires a human DNA depletion step for most
sample types aside from faeces [49]. Whilst mNGS can identify an unlimited number of
AMR genes, so long as they are present in a reference database, it is currently not a practical
approach due to the processing involved and cost [49].

The strengths of this study were the integration of clinical and microbiological data
and the inclusion of a broad range of AMR genes on the AMR-TAC. The validation of
the array before testing the cohort of PICU patients demonstrated that, except for one of
the blaCTX-M assays, the array was highly sensitive for the detection of AMR genes. An
alternative probe could be selected for the blaCTX-M gene in future studies. The study design
was unique in that there have been no similar screening studies of a wide range of AMR
genes in PICUs, to our knowledge.

There were several limitations. Firstly, not all children enrolled in the project had a
mini-BAL and faecal sample obtained or a sufficient sample for undergoing AMR-TAC
testing after routine investigations. Secondly, it is not possible to be certain as to the
significance of detections in the validation of the AMR-TAC, where this was not associated
with phenotypic resistance. These genes may have been present but not expressed, or
they may have been present in other colonising bacteria not isolated on culture. Future
studies may therefore consider whole genome sequencing as an additional validation tool
to determine gene presence. Such a study should consider concurrently evaluating the
presence of regulatory genes, which can impact the MIC of bacteria [50]. Finally, the optimal
Ct value cut-offs for this array require further research. The Ct value obtained does not
necessarily correlate with the number of genes present in the original bacteria in which
they were found. Therefore, the degree of the potential resistance conferred by a low or
high Ct value is difficult to determine.

This institution’s PICU has a low incidence of AMR [3]. In the PICU, children at the
highest risk of multi-drug-resistant organisms (MDROs) are those who have coma, are
receiving parenteral nutrition, have two or more antimicrobials prescribed, and/or are
receiving five or more days of mechanical ventilation [51]. These children may be the
best target for an AMR screening study using the AMR-TAC. Importantly, the prevalence
of AMR may be much higher than previously identified in PICUs due to the limitations
of microbiological cultures. Although only thirteen children had a positive respiratory
microbiological culture in this cohort, 4/13 (31%) were phenotypically resistant to at least
one class of antimicrobials. The AMR-TAC may help reveal underlying AMR, given
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the limitations of routine investigations. Only two children were identified who had
AMR gene detections, confirmed on routine investigations, that may have impacted clinical
management. Given the cost–benefit of the investigation, we suggest future studies focus on
a subset of children with antimicrobial treatment failure. Testing across several geographical
locations could also help better understand the utility of the array, particularly in human
populations and environments with high AMR prevalence. These regions may need to
select alternative gene targets based on their localised patterns of resistance. Additional
healthy control patients would also serve as a helpful indicator of the baseline presence
of AMR genes, given the cohort had a high level of recent hospitalisation and major
comorbidity. An environmental surveillance study could also identify vectors for AMR in
the PICU environment.

5. Conclusions

AMR genes are commonly detected in samples collected from ventilated children
with suspected respiratory infections. The AMR-TAC does not have a role in replacing
antimicrobial susceptibility testing of microbiology isolates, given this method does not
identify the microorganism that contains the genes, determine if the genes are expressed,
or provide antimicrobial breakpoints. The AMR-TAC has a potential role as an adjunct test
in select children for whom there is a high level of suspicion of antimicrobial treatment
failure combined with an absence of antimicrobial culture and susceptibility data to direct
prescribing decisions.
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mdpi.com/article/10.3390/antibiotics12121701/s1, Table S1: Targets on the antimicrobial resistance
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plasmids and ZeptoMetrix NATtrol panel; Table S3: Inter-assay reproducibility of an antimicrobial
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identified on samples with phenotypic resistance; Table S5: Concordance of antimicrobial resistance
gene TaqMan array card results in faecal and respiratory samples obtained from children with
suspected lower respiratory tract infection.
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