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Abstract: The skin microbiome is crucial in maintaining skin health, and its disruption is associated
with various skin diseases. Prebiotics are non-digestible fibers and compounds found in certain foods
that promote the activity and growth of beneficial bacteria in the gut or skin. On the other hand, live
microorganisms, known as probiotics, benefit in sustaining healthy conditions when consumed in
reasonable quantities. They differ from postbiotics, which are by-product compounds from bacteria
that release the same effects as their parent bacteria. The human skin microbiome is vital when
it comes to maintaining skin health and preventing a variety of dermatological conditions. This
review explores novel strategies that use microbiome-targeted treatments to maintain and enhance
overall skin health while managing various skin disorders. It is important to understand the dynamic
relationship between these beneficial microorganisms and the diverse microbial communities present
on the skin to create effective strategies for using probiotics on the skin. This understanding can help
optimize formulations and treatment regimens for improved outcomes in skincare, particularly in
developing solutions for various skin problems.
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1. Introduction

The skin microbiome is a complex and dynamic ecology that resides in the skin, which
is the largest organ of the human body. This varied group of microbes, which includes
bacteria, fungi, and viruses, is essential to the homeostasis and health of the skin. A variety
of skin diseases and disorders have been connected to disruptions of this critical microbial
balance [1], such as psoriasis, vitiligo, and atopic dermatitis (AD) [2]. Promising new
opportunities in the field of dermatology have recently arisen with the development of
nanotechnology. Scientists and researchers have been investigating the development of
innovative nanotechnology that provides efficacy in the restoration and control of the
skin microbiome [3,4]. Nanoparticles can generally be utilized for delivering drugs in a
way that improves their resistance to enzymatic degradation, targets specific locations,
increases bioavailability, solubilizes them for intravascular transport, and maintains their
effects [5]. These nanosystems or microbiome-targeted nanotherapeutics provide a novel
approach that targets the related causes of skin disorders while reducing the adverse effects
associated with traditional therapies.

The field of microbiome-targeted nanotherapeutics has been growing rapidly, and
many nanosystems are being investigated for the regeneration and maintenance of the mi-
crobiota [6,7]. The nanostructures can be engineered to interact with the microbiome, either
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by modulating the microbial composition or delivering therapeutic agents that influence the
microbiome, which affects the progression of certain skin conditions [8]. However, careful
consideration of unexpected effects, biocompatibility, regulatory challenges, and long-term
impacts is essential to ensuring the safety and efficacy of these innovative treatments [9].
Nanoparticles and nanoemulsions are the most popular nanosystems for targeting micro-
biomes because of their small size, modified properties, and efficient delivery capabilities.
Their unique characteristics enable precise interactions with microbial communities and
facilitate effective, customized interventions for improved dermatological treatments [3,10].
Nanoparticles typically range in size from 1 to 100 nanometers and are solid, colloidal
particles. They can be made from a variety of materials, such as metals, polymers, and
lipids. They include lipid nanoparticles (liposomes and solid lipid nanoparticles), poly-
meric micelles, metal nanoparticles, and polymeric nanoparticles (Figure 1). They are
utilized in drug delivery since they may protect and deliver drugs to particular target
locations within the body, enhancing medication effectiveness and minimizing adverse
effects.
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Furthermore, nanoparticles are employed to improve the performance of sunscreens,
lotions, and other skincare products [11–13]. On the other hand, nanoemulsions are small
oil droplets, typically ranging in size from 20 to 200 nanometers, distributed in an aque-
ous phase and frequently stabilized by surfactants in a process known as nanoemulsions
formulations. They are either oil-in-water (O/W) or water-in-oil (W/O) nanoemulsions.
The solubility and bioavailability of poorly water-soluble drugs can be enhanced by using
nanoemulsions. In addition, they are used to improve the stability of some products as
well as to encapsulate flavors, vitamins, and other bioactive components. In cosmetics, na-
noemulsions are utilized in order to enhance the texture and stability of lotions and skincare
items [14,15]. When creating medications in nanoform to increase absorption and effec-
tiveness, three main variables need to be considered. These include FDA quality-related
standards, drug transport, degradation mechanisms, and the stability of the manufactured
drug. The pharmaceutical industry has limitations while utilizing nanoformulations be-
cause of this. The primary cause of the low therapeutic efficacy of nano-formulations is
their propensity to self-aggregate at low drug concentrations, which compromises the
formulation’s stability and increases the variability of drug entrapment because of poly-
dispersity. Unformulated liposomes are more stable, but when a medicine is built into
them, the stability decreases as the ionic strength grows. Starting with smaller nanoparti-
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cles (<20 nm) for the formulation could solve this issue such that even after loading the
drug, it remains below 100 nm [16,17]. Although around 100 nm-sized nanoparticles have
increased surface reactivity, they can have adverse biological effects like protein unfolding,
membrane impairment, DNA damage, and inflammatory reactions. Additionally, several
size-dependent processes, such as clathrin-mediated entry and caveolae-mediated path-
ways, allow particles in the 10–500 nm range, including those about 100 nm, to be absorbed
into cells. Particle size preferences vary throughout cells; endothelial cells prefer particles
that are around 100 nm in size, while professional phagocytes prefer larger particles [18,19].

Oxidative stress affects mitochondrial function and promotes the production of reac-
tive oxygen species (ROS) and pro-inflammatory cytokines [20]. Increased ROS in the skin
destroys melanocytes by damaging their DNA and associated cellular structures [21]. In
addition, ROS causes a variety of oxidation products, including oxidized protein products
and glycation products, that alter the structure of melanocytes [22]. It has been suggested
that the main cause of melanocyte loss is mitochondrial malfunction driven by oxidative
stress. Increased carbonylation in vitiligo melanocytes causes mitochondrial dysregulation,
which could lead to severe mitochondrial dysfunction and melanocyte apoptosis [23]. The
microbiome may influence the skin’s general durability and response to oxidative stress or
contribute to the modulation of oxidative stress and inflammation [24].

In the exploration of skin health, emerging research underscores the role of the skin
microbiome in various dermatological conditions. Among these conditions, vitiligo is an
autoimmune condition characterized by depigmented macules and patches of various
forms, which is caused by the death of melanocytes or the loss of their activity to produce
natural skin pigments [25]. Consequently, discolored white spots appear on the skin, hair,
and mucous membranes in various parts of the body. The prevalence of vitiligo in the gen-
eral population of the world ranges from 0.06% to 2.28% [26]. Vitiligo can be classified into
different types based on the characteristics of the lesions. Acrofacial vitiligo is characterized
by lesions occasionally appearing on the extremities and face. Mixed vitiligo involves
a combination of non-segmental and segmental patterns. Focal vitiligo is distinguished
by small and isolated lesions. Mucosal vitiligo occurs in or around mucosal membranes.
Universal vitiligo is a type where lesions develop and spread over the entire body [27,28].
Numerous mechanisms have been connected to the degeneration of melanocytes and
the emergence of white patches in vitiligo. These mechanisms include neuronal, genetic,
autoimmune, oxidative stress, environmental triggers, and the creation of inflammatory
mediators [29]. The most prevalent and well-established explanation proposes that a defect
in the immune response results in the destruction of melanocytes by autoimmune effector
mechanisms, either memory cytotoxic T cells or autoantibodies directed against melanocyte
surface antigens. Numerous studies have demonstrated a link between vitiligo and other
autoimmune diseases such as Addison’s disease, pernicious anemia, diabetes, systemic
lupus erythematosus, rheumatoid arthritis, psoriasis, and alopecia areata [30,31]. Topical
corticosteroids (TCSs) and Topical calcineurin inhibitors (TCIs) are often used and recog-
nized as a common treatment for many types of vitiligo [32]. When concerns regarding
the reported adverse effects of prolonged usage of potent TCSs and TCIs arise, both have
demonstrated a high degree of repigmentation but are not safe treatment options. TCIs of-
ten result in erythema, pruritus, and burning sensations as side effects, while TCSs increase
the possibility of skin atrophy, striae, and telangiectasia [33,34]. Alternative treatments
and outcomes have improved as a result of the introduction of numerous therapeutic
approaches, such as phototherapy, excimer laser, vitamin D, and epidermal grafts [35,36].
However, there is occasionally hesitancy to suggest treatment because, historically, vitiligo
was thought to respond to treatment quite poorly and infrequently [37]. Another common
pathogenic trigger for melanocyte destruction in vitiligo patients is oxidative stress, which
is also a key element in the onset and progression of the disease [38].

Psoriasis is a chronic inflammatory skin disease developed by the influence of a genetic
predisposition and external variables. It has several different kinds; however, they are all
identified by erythematous plaques that are frequently itchy [39]. The cutaneous immune
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system’s improper activation against a presumed infection is the main theory regarding the
development of psoriasis. The innate and adaptive immune systems are both implicated in
the pathogenesis of the disease, which also involves abnormal keratinocyte development
and immune cell infiltration in the dermis and epidermis, with dendritic cells and T cells
performing significant roles [40].

AD is the most prevalent inflammatory skin disorder worldwide. It affects a substan-
tial portion of the global population, impacting around 15% to 20% of children and 1% to 3%
of adults [41]. This chronic inflammatory skin condition is characterized by itchy and dry
inflamed lesions. It stems from a range of hereditary mutations in skin barrier proteins and
immunological defects specific to allergens. Individuals with AD often exhibit symptoms
such as skin dryness, redness, and the development of erythematous lesions. Moreover,
AD frequently presents with related issues like eczema, skin scaling, and persistent itching.
Additionally, it can be associated with comorbidities such as allergic rhinoconjunctivitis
and asthma [42].

Recently, evidence showed that altered skin microbiomes (dysbiosis) contribute to
the pathogenesis of vitiligo by influencing immunological homeostasis, oxidative stress,
and skin barrier [43,44]. Further, research on the skin lesions of psoriasis patients has
revealed an imbalance in the skin microbiome. The authors report that inflammation results
from a dysbiosis disruption of the skin’s immunological responses. Streptococcus bacte-
ria are frequently overabundant, while Cutibacterium is less present in these lesions [39].
Studies are increasingly focusing on combining probiotics and nanotechnology to treat
skin infections. Improved drug delivery, moisture retention, controlling the release of
active compounds, and anti-infective properties have been demonstrated by nanotech-
nology, especially nanoparticle-based methods [45]. Some research suggests that topical
probiotics emollient and bacteria-derived formulations may be an effective alternative
for the treatment of AD [46]. Due to their capacity to have a favorable effect on the skin
microbiome, these formulations can decrease inflammation and enhance the general health
of the skin barrier by creating a balance in the microbial communities on the skin. [47].
Additionally, the controlled probiotic release offered by nanoparticles and nanotechnology
delivers enormous potential for treating human infections. Although beneficial results
have been observed, further human research is required to investigate their effectiveness
in dermatological applications and to address the problem of bacterial resistance [48,49].
Therefore, in this review, we aim to provide a comprehensive evaluation of the use of
topical probiotics, prebiotics, and postbiotics in treating skin disorders due to the increasing
popularity of these topical treatments and the lack of clinical trials or efficacy studies to
support their therapeutic value. Also, examine innovative approaches involving the use
of microbiome-targeted techniques to maintain and improve overall skin health while
addressing the management of different skin diseases.

2. Prebiotics, Probiotics and Postbiotics

Prebiotics are specific fermented substances or dietary supplements that are not di-
gested, enhancing intestinal health by encouraging the growth of commensal bacteria [50].
On the other hand, probiotics are non-pathogenic live microorganisms, frequently yeast
or bacteria, that, when administered in sufficient amounts, confer a health benefit to the
host [51,52]. Probiotics from the first generation are commonly available products to treat
microecological disorders. The next level of development is the production of “metabi-
otics”, which are small molecules or chemicals obtained from probiotic microorganisms.
The bioactive compounds produced by symbiotic microorganisms (a combination of probi-
otics and prebiotics) from naturally occurring probiotic strains, or natural sources can be
used to synthesize or semi-synthesize these metabiotics. They are known as “metabolic
probiotics”, “postbiotics”, “biological drugs”, or “pharmacobiotics”. These compounds
have the potential to impact the microbiota, human metabolic processes, signaling path-
ways, and physiological activities related to the host. Postbiotics have recognized chemical
structures that may improve the composition and functionality of the host’s native mi-
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crobiota as well as components involved in immunology, neurohormone biology, and
metabolic and behavioral responses [53]. For instance, many commensal bacteria produce
butyrate, a postbiotic that is a major source of energy for the colon and is essential for
intestinal growth, differentiation, and inflammation control [54,55]. Moreover, postbiotics
are probiotic-derived effector chemicals secreted by bacteria or released after lysis and
capable of exerting qualities identical to those of the original probiotics [56,57] (Figure 2).
They attempt to imitate the benefits of probiotics without taking the risk of administering
live bacteria. While these probiotics, prebiotics, and postbiotics are commonly associated
with dietary supplements targeting the gut microbiome, their application extends beyond
the digestive system to various body parts, including the skin. In dermatology, particularly
in addressing skin conditions, these concepts find relevance as researchers explore their
potential in topical formulations and skincare products.
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3. Skin Microbiome

The connection between microbial communities and the host tissue is symbiotic in
the skin. The importance of resident microbial communities in maintaining the skin’s and
immune system’s normal, healthy function has been demonstrated recently [58,59]. A
diverse group of microorganisms known as the skin microbiome work together to maintain
a complicated connection on the skin [1]. A large and diverse community of bacteria,
viruses, and eukaryotes, including fungi and arthropods, comprise the human skin micro-
biota [60,61]. The heterogeneity of the skin microbiota, both in terms of its composition and
prevalence, can be demonstrated in the significant variances between individuals and be-
tween different skin regions. These differences can be attributable to a complex interaction
of elements, including genetic predisposition, dietary habits, choice of lifestyle, gender, age,
ethnic background, and environmental circumstances [62,63]. The skin provides essential
nutrients to establish its microbiota, including amino acids, fatty acids, and lactic acids from
various sources like proteins, the stratum corneum, sweat, lipid hydrolysis, and sebum [64].
This relationship between the host and commensal microorganisms is vital for various
physiological processes. To maintain this symbiotic relationship, commensal-specific T cells
play a role in distinguishing between resident microorganisms and potential pathogens,
thereby promoting tolerance towards the commensal microbiota [65]. The skin microbiome
is made up of several different bacterial species. Microorganism imbalances can lead to
skin diseases such as acne, AD, psoriasis, and rosacea [66]. Probiotic bacteria have been
used to make a variety of treatments, nutritional items, and additives that support human
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health [67]. They provide several functions, one of which is serving as the first line of
defense against invasive diseases and are also used to prevent both acute and chronic
disorders or prophylaxis [68]. This shows that probiotics are used as an avoidance strat-
egy for some disorders. In addition, specific health conditions, such as acute or chronic
diarrhea and intestinal inflammation that can cause allergies, atherosclerosis, and cancer,
are also treated with probiotic medications [69]. Coagulation-negative Staphylococci are
also prevalent on human skin, and they act via a number of mechanisms including the
epidermal barrier environment and the innate and adaptive immune systems found in
the epidermis and dermis [70]. Further, the bacteriocins produced by this species have
anti-inflammatory, and antibacterial characteristics that reduce the survival of harmful
bacteria on the skin surface [41]. Endogenous urocanic acid found in the stratum corneum
of the skin acts similarly to sunscreens in preventing damaging Ultraviolet (UV) radiation
from penetrating the epidermis [67,71].

The microorganisms that make up the skin microbiome cooperate to keep the skin
safe. However, due to many factors, such as external ones, commensal microorganisms
may transform into pathogenic microbes, causing inflammation, itching, scaling, and other
medical symptoms that point to an imbalance between our skin and its microbiome [72].
The word “dysbiosis” is used to describe how the microbiome of the skin has changed.
Functional dysbiosis disturbs the interactions between bacteria and hosts and causes skin
issues. Age, sex, hygiene, the use of particular pharmaceuticals, skin pH, sweating propen-
sity, hair development on the skin, sebum production, usage of skin cosmetics, and lifestyle
are only a few of the host factors that have an impact on the microbiome host interac-
tion [73]. The potential of oral probiotics as a treatment for skin conditions has increased as
research has revealed a connection between disrupted gut microbiota and inflammatory
skin conditions [74]. Researchers are actively investigating the relationships among changes
in the gut microbiota, immune system dysregulation, and the development or aggravation
of autoimmune skin disorders, aiming to identify biomarkers and molecular pathways for
potential therapeutic targeting [75–77]. Studies on probiotics have been performed using
a concept known as the gut–brain–skin axis idea. These studies have demonstrated the
efficacy of probiotics in the management of some dermatological conditions, including
psoriasis, acne, vitiligo, and AD [2,78]. For example, AD is characterized by cutaneous
dysbiosis and a greater presence of Staphylococci like S. aureus and Malassezia spp. These
microorganisms release toxic chemicals and nanovesicles that trigger cytokines, which
contribute to the persistence and aggravation of AD symptoms.

Transplanting specific strains of S. epidermidis and S. hominis that produce antimicrobial
peptides resulted in significant decreases in the levels of S. aureus in individuals with AD.
This implies a promising therapeutic strategy for addressing AD by influencing the skin’s
microbiome to regulate and reduce the overgrowth of S. aureus [79]. The local skin micro-
biome plays a role in psoriasis pathogens. Psoriasis patients have a similar major species of
bacteria in their skin flora compared to non-psoriasis individuals but with reduced diversity
and changes in the relative abundance of certain bacteria. Specifically, lower concentrations
of Cutibacterium acnes (formerly Propionibacterium) and Actinobacteria species are found in
psoriasis patients, while higher concentrations of Firmicutes, Proteobacteria, Acidobacteria,
Schlegelella, Streptococcaceae, Rhodobacteraceae, Campylobacteraceae, and Moraxellaceae species
are observed when compared to controls. This suggests that alterations in the skin micro-
biome may contribute to psoriasis alongside immune system dysfunction [80,81]. As a
result, these skin disorders present greater opportunities for probiotic research regarding
topical benefits. In general, the gut microbiota is responsible for the body’s appropriate
immunity and defense against harmful microbes. Therefore, alterations that are considered
harmful at the intestinal microbiota level may result in infections and autoimmune diseases
in a variety of organs outside of the colon, including the skin [82]. A recent study [83] shows
that patients with vitiligo have a different microbial composition from healthy people, with
a considerably lower Bacteroidetes to Firmicutes ratio. They also differ significantly from
healthy people in 23 blood metabolites, and these metabolites are linked to particular
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microbial indicators. Commensal bacteria are vital components of the skin microbiome and
play a crucial role in skin health. Another study [84] highlights that vitiligo-affected skin
exhibits a dysbiosis in microbial community diversity, with lesional areas showing reduced
taxonomic richness and evenness. Notably, Actinobacterial species are dominant in normal
skin, while Firmicutes species dominate in vitiligo lesions, suggesting that these microbial
changes could influence the development and severity of vitiligo.

4. Mechanisms of Action for Topical Prebiotics, Postbiotics and Probiotics

Many low-molecular-weight (LMW) bioactive substances, such as bacteriocins and
other antimicrobial compounds, short-chain fatty acids, various fatty and organic acids,
biosurfactants, polysaccharides, peptidoglycans, teichoic acids, lipo- and glycoproteins, vi-
tamins, antioxidants, nucleic acids, amino acids, and different proteins, including enzymes
and lectins, can be derived from different probiotic strains [85,86]. The applicable agents of
these groups of LMW compounds isolated from symbiotic microorganisms or their cultural
liquids may be used to produce functional foods, drugs for the prophylaxis and treatment
of chronic human diseases, as well as sports and anti-aging foods [87,88]. The application
of the probiotics concept in biotechnology has made it possible to include several thousand
additional strains from the human-dominant intestinal phyla (Bacteroides, Firmicutes,
Proteobacteria, Actinobacteria, and Archae) for nutritional and therapeutic purposes in
addition to Bifidobacteria, Lactobacilli, Escherichia, and Enterococci sp. [89,90].

Microbiome development and changes are influenced by various factors such as child-
birth, diet, drugs, and diseases [91]. The skin microbiota varies significantly across different
body regions due to the presence of unique glands and hair follicles, creating distinct
conditions for microbial growth. Specific bacterial and fungal species dominate various
areas, such as lipophilic bacteria in sebaceous regions and fungal communities on the feet.
Additionally, the facial skin microbiota is mainly composed of Proteobacteria, Firmicutes,
Actinobacteria, and Bacteroidetes, with variations linked to age, and diversity differs by
facial location, with cheek sites having the highest richness scores. Postbiotics like acetate,
propionate, and butyrate play a crucial role in intestinal health by providing energy, en-
hancing the epithelial barrier, regulating immunity, and preventing pathogen invasion [92].
Immune diseases, inflammation, and gut dysbiosis can result from a dysregulation of this
balance [93]. The gut–skin axis is proposed as a connection between emotional states, gut
health, and skin conditions. Increased intestinal permeability can activate T cells, disrupt
immunosuppressive factors, and lead to systemic inflammation, potentially affecting skin
homeostasis [94]. Gut microbes can also communicate with other organs through neuro-
transmitter production. Therefore, changes in the gut microbiome may directly impact
systemic inflammation [92]. In the last century, the ability to identify microorganisms based
on their appearance or biochemical traits and improvements in cell culture techniques have
allowed for the expansion of study into the microbial variety of human skin. Researchers
have identified numerous genera of bacteria that are typically found on healthy skin using
culture-dependent methods. These genera include Staphylococci, Micrococci, Corynebacteria,
Brevibacteria, Propionibacteria, and Acinetobacter [95]. Staphylococcus aureus, Streptococcus
pyogenes, and Pseudomonas aeruginosa were identified at the species level using culture
techniques, such as colonizers in unusual conditions [96]. The skin microbiome is primarily
made up of two main types of bacteria: the resident and transient microbiota types. The
resident microbiota is the most significant and persistent group and may regenerate after
any disturbances [97]. In contrast, the transitory microbiome is environment-dependent
and only stays on the skin for a few hours or days [98]. Both of these microbiota types
are harmless in healthy skin. Actinobacteria, Firmicutes, Proteobacteria, and Bacteroides
are some of the most prevalent phyla on the skin, while the most common genera are
Corynebacterium, Propionibacterium, and Staphylococci [66,99].
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5. Clinical Verification and Effectiveness

The effectiveness of probiotic products used topically has received very little inves-
tigation. However, in the past ten years, the number of commercially available topical
probiotics has dramatically increased [100], and probiotics have been applied topically
and orally to treat various skin disorders [53] Table 1. The gut microbiota significantly
affects the immune system, and many studies [2,101,102] have shown the importance of
dysregulations in the skin and gut microbiome in immune-related diseases. Immune dys-
regulation driven by imbalances in the gut microbiota may involve an excessive immune
response that targets melanocytes and contributes to their destruction in vitiligo [103]. It is
thought that both genetic and environmental factors play a role in the vitiligo development
process. Recent research indicates that vitiligo patients have altered immune responses
and increased stress-induced production of Interferon-gamma (IFN-γ), which leads to
melanocyte apoptosis [104]. Dysbiosis in the gut microbiome is observed in vitiligo pa-
tients, with reduced Bacteroides populations and changes in microbiota diversity, which are
associated with mitochondrial damage and peripheral changes in innate immunity [105].
Skin microbiota composition also differs between vitiligo patients and healthy controls,
particularly in vitiligo lesions, where there is a reduction in Staphylococcus and Cutibacterium
and an increase in Proteobacteria associated with inflammation [103].

Table 1. Examples of Probiotic-Containing Commercial Products.

Probiotics Oral Topical Benefits Claimed

Lactobacillus

Lactobacillus Ferment Essence
A skincare brand containing
Lactobacillus ferment for skin

nourishment

Probiotic Complex with Lactobacillus
Acidophilus

a health brand promoting overall
well-being, including potential

benefits for the skin

Bifidobacterium

BifidoBalance Cream
A skincare company formulated with

Bifidobacterium to support skin
microbiome balance

Gut Health Probiotic Blend with
Bifidobacterium

A nutritional supplement brand
aimed at promoting gut health with

potential skin benefits

Streptococcus thermophilus

Thermal Probiotic Cream
Skincare line featuring Streptococcus

thermophilus for enhancing the
diversity of the skin microbiome

Saccharomyces boulardii

Saccharomyces boulardii Probiotic
Capsules

A wellness brand specifically
designed to support gut health and
potentially improve skin conditions

Probiotic Blends

Probiotic Power Serum

A skincare brand incorporating a
blend of Lactobacillus, Bifidobacterium,
and Streptococcus thermophilus for a

comprehensive skin health approach

Daily Probiotic Blend Capsules

A health and wellness company
offering a mix of various probiotic
strains for overall health, including

potential benefits for the skin

The topical application of probiotic bacteria may help enhance the skin’s natural barrier
by directly affecting the site of application. This may be performed by the resident bacteria
and the probiotic bacteria that produce certain antimicrobial amino peptides that benefit the
immune responses in the skin and help eliminate pathogens [106]. The administration of
probiotic species that are not native to a particular ecosystem can potentially cause adverse
effects [107]. They are commonly included in over-the-counter cosmeceutical products, but
their effectiveness may be compromised by their high bacterial load and the preservatives
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used, which can impact the skin’s microbiota [108]. Probiotics have been utilized in a
variety of cosmetic items, including lotions, intimate hygiene products, shampoos, and
toothpaste. These strains include Bacillus subtilis, Lactobacillus acidophilus, Lactobacillus
casei, and Lactobacillus plantarum. These probiotics provide several benefits for skin health,
including moisturizing effects, reducing toxic metabolites, enhancing antibody production,
restoring immune system balance, and regulating cytokine synthesis [109,110]. In addition,
topically applied probiotics can serve as a protective barrier on the skin by competing with
and inhibiting the binding of potential pathogens to skin sites. This competitive inhibition
helps prevent the colonization of harmful microorganisms on the skin, further contributing
to skin health and protection [100].

Postbiotics, formed from microbial growth by-products or inactive dead strains, posi-
tively benefit skin health because they contain bioactive substances such as bacteriocins,
lipoteichoic acids, and organic acids [111]. Species of Lactobacillus, including those found
in cosmetics, create lactic acid, which aids in moisturization and anti-aging [112]. Strepto-
coccus and Bifidobacterium strains have also been demonstrated to increase skin hydration
and elasticity, with Bifidobacterium contributing to the production of hyaluronic acid for
improved skin appearance [113,114].

Novel strategies in the field of dermatology employ nanocarriers to improve the
topical applications of probiotics and prebiotics [4,6]. These nanocarriers, often in the form
of nanoparticles or nanoemulsions, serve as efficient vehicles for loading and delivering
probiotic strains to the skin. This advanced delivery system not only protects the viability of
probiotics during formulation but also enhances their penetration into the skin, maximizing
their potential to establish a protective barrier.

6. Formulations and Delivery Methods

Skin microbiota can be preserved and restored by probiotics, prebiotics, or combination
supplements (symbiotic) [106] Table 2. In other words, probiotics, prebiotics, and symbiotics
are the three treatment modalities currently employed to maintain and restore the gut
microbial ecology [90,115]. In cosmetic formulations, prebiotics can selectively increase
the activity and growth of beneficial skin probiotics [116]. Some cosmetic formulations
may help foster the normal skin microbiome by being selective in their activity [106]. It has
recently been demonstrated that incorporating antioxidants and probiotics in combination
with other therapies can accelerate repigmentation. One study on AD skin showed that
topical formulations with particular probiotic strains helped reduce skin lesions [117].
Another study conducted by Chaudhry et al. [118] combined TCI with an antioxidant
and probiotic diet as an adjuvant. They demonstrated that full repigmentation could be
achieved in just six weeks and that no relapses were noted for 52 weeks following the
treatment. Certain lactic acid bacteria, specifically Streptococcus thermophiles, have been
found to enhance ceramide production in the skin when topically applied as a cream.
Ceramides are lipids that play a crucial role in maintaining the skin’s barrier function and
hydration levels, and this is particularly beneficial for individuals with acne-prone skin
because acne treatments can sometimes lead to dryness and irritation. Additionally, it
shows antimicrobial activity against Cutibacterium acnes, a bacterium associated with the
development of acne [119].
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Table 2. Overview of Formulations and Delivery Methods in Skin Microbiota Preservation.

Treatment Modality Delivery Method Key Components Results and Applications

Probiotics Topical application Live bacteria (Probiotics) Reduction of skin lesions in AD;
potential for repigmentation

Prebiotics Oral administration
Substances promoting beneficial

bacteria growth (e.g.,
fructooligosaccharides)

Improved psoriasis scores when
combined with topical hydrocortisone;

positive effects on gut microbiota
linked to AD

Symbiotics Oral administration
Combination of probiotics and

prebiotics (e.g., Lactocare®)
Improved psoriasis scores when used

alongside topical hydrocortisone

Postbiotics Topical application Cell-free supernatants, lysates,
bioactive peptides

Acceleration of epithelization,
reduction of skin inflammation,
antioxidant capabilities against
UVB-induced damage; multiple

positive effects on skin health

Incorporating live bacteria, such as probiotics, into cosmetic products is a complex
process that requires significant adjustments in production, storage, and distribution proce-
dures [120]. These adjustments are necessary because formulation processes can potentially
deactivate probiotics and alter their intended functions. Different dehydration techniques
are frequently employed in probiotic manufacture to overcome this [121]. In contrast to oral
probiotic formulations, topical probiotic products often need reconstitution in a vehicle,
such as creams, gels, and emulsions, before use, allowing them to be applied to the skin and
integrated into specific pharmaceutical bases [122,123] Figure 3. Additionally, many factors
can influence the probiotic quality during storage or delivery because of their susceptibility
to temperature, humidity, and cooling conditions [124]. Prebiotics and postbiotics have
recently been proposed as alternative options to address these concerns.

Antibiotics 2023, 12, x FOR PEER REVIEW 11 of 18 
 

 
Figure 3. Probiotics Application During Skin Infection. Created with Biorender.com. 

Postbiotics produced from several probiotic strains have demonstrated potential 
therapeutic advantages for various skin issues and disorders. Cell-free supernatants, ly-
sates, and bioactive peptides are some examples of postbiotics that have been examined 
for their effects on skin health and have shown a variety of beneficial results [132]. Postbi-
otics from Lactobacillus fermentum, Lactobacillus reuteri, and Lactobacillus subtilis natto are 
being investigated as a novel method to promote earlier full epithelization and decrease 
skin inflammation when applied topically with a cold cream [133]. A cell-free supernatant 
of fermented milk from the L. helveticus strain demonstrated substantial antioxidant capa-
bilities against UVB-induced skin damage, including decreasing lipid peroxidation and 
inhibiting melanin formation [132]. A customized blend of probiotic strains (Lactobacillus 
plantarum, Lactobacillus casei, and S. thermophilus) has shown promise in reducing pore size 
and wrinkle depth, as well as maintaining hydration and skin smoothness [134]. S. ther-
mophiles lysate with sphingomyelinase has been demonstrated to strengthen the lipid bar-
rier of the skin, elevate stratum corneum ceramide levels, and lower water loss [135]. In 
order to stimulate the expression of moisturizing factors in the skin, L. plantarum ferment 
lysate and L. plantarum K8 strain lysate have been proposed as functional ingredients for 
moisturizing cosmetics [136]. Improvements in acne lesions have been seen, along with 
decreases in transepidermal water loss and sebum production, when using L. plantarum 
ferment lysate [137]. Multiple positive effects of Vitreoscilla filiformis lysate on skin health 
have been observed, including modulation of skin immunity, inflammation reduction, 
and skin barrier enhancement [138]. LactoSporin® formulation, containing cell-free super-
natants of Bacillus coagulans and inactivated cells of Bacillus longum, has been effective in 
managing mild-to-moderate acne lesions and seborrheic conditions, surpassing benzoyl 
peroxide in some cases [139]. A skincare cream containing fermented lysate derived from 
Lactobacillus plantarum can effectively and safely cure mild-to-moderate acne vulgaris 
after four weeks of topical treatment [140]. By potentially enhancing the skin barrier and 
regulating the skin’s immune system, a postbiotic derived from Bifidobacterium lactis has 
shown effectiveness in reducing dandruff [141]. A topical formulation containing plantari-
cin A bioactive peptides, postbiotics, and Lactobacillus kunkeei isolated from bee bread, 
along with Tropaeolum majus flower/leaf/stem extract, has shown significant improvement 
in patients with alopecia areata [142] Error! Reference source not found.. 

Figure 3. Probiotics Application During Skin Infection. Created with Biorender.com.

Prebiotics or symbiotics have been demonstrated to improve skin health significantly.
For instance, Lactocare®, a symbiotic composition, combined with topical hydrocortisone
improved psoriasis scores when administered orally [125]. A different study showed
that giving mice with AD olive-derived antioxidant dietary fiber caused enhancements
in the gut microbiota’s composition, cytokine profiles, and butyrate synthesis, which
improved the immune system response linked to AD [126]. Prebiotic polysaccharides such
as fructo-oligosaccharides, galacto-oligosaccharides, and milk-derived oligosaccharides
are fermented by bacteria (probiotics) in the human colon, resulting in the production of
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short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate [127–129]. These
SCFAs increase blood flow in the colon, improve fluid and electrolyte absorption in the
gut, promote the growth of intestinal cells, decrease bowel inflammation, influence enzyme
activity, and reduce the risk of cancer and pathogen colonization [130,131]. Intestinal cells
use butyrate as an energy source, which stimulates proliferation, increases the production
of protective mucin, strengthens the intestinal barrier, and enhances immune system
performance [129,131]. The human gut contains a variety of strains from the Lactobacillus
and Bifidobacterium genera, which have a range of advantageous benefits. Additionally,
these bacteria are used to generate probiotics [127].

Postbiotics produced from several probiotic strains have demonstrated potential ther-
apeutic advantages for various skin issues and disorders. Cell-free supernatants, lysates,
and bioactive peptides are some examples of postbiotics that have been examined for their
effects on skin health and have shown a variety of beneficial results [132]. Postbiotics
from Lactobacillus fermentum, Lactobacillus reuteri, and Lactobacillus subtilis natto are being
investigated as a novel method to promote earlier full epithelization and decrease skin
inflammation when applied topically with a cold cream [133]. A cell-free supernatant of
fermented milk from the L. helveticus strain demonstrated substantial antioxidant capa-
bilities against UVB-induced skin damage, including decreasing lipid peroxidation and
inhibiting melanin formation [132]. A customized blend of probiotic strains (Lactobacillus
plantarum, Lactobacillus casei, and S. thermophilus) has shown promise in reducing pore
size and wrinkle depth, as well as maintaining hydration and skin smoothness [134]. S.
thermophiles lysate with sphingomyelinase has been demonstrated to strengthen the lipid
barrier of the skin, elevate stratum corneum ceramide levels, and lower water loss [135]. In
order to stimulate the expression of moisturizing factors in the skin, L. plantarum ferment
lysate and L. plantarum K8 strain lysate have been proposed as functional ingredients for
moisturizing cosmetics [136]. Improvements in acne lesions have been seen, along with
decreases in transepidermal water loss and sebum production, when using L. plantarum
ferment lysate [137]. Multiple positive effects of Vitreoscilla filiformis lysate on skin health
have been observed, including modulation of skin immunity, inflammation reduction,
and skin barrier enhancement [138]. LactoSporin® formulation, containing cell-free super-
natants of Bacillus coagulans and inactivated cells of Bacillus longum, has been effective in
managing mild-to-moderate acne lesions and seborrheic conditions, surpassing benzoyl
peroxide in some cases [139]. A skincare cream containing fermented lysate derived from
Lactobacillus plantarum can effectively and safely cure mild-to-moderate acne vulgaris
after four weeks of topical treatment [140]. By potentially enhancing the skin barrier and
regulating the skin’s immune system, a postbiotic derived from Bifidobacterium lactis has
shown effectiveness in reducing dandruff [141]. A topical formulation containing plan-
taricin A bioactive peptides, postbiotics, and Lactobacillus kunkeei isolated from bee bread,
along with Tropaeolum majus flower/leaf/stem extract, has shown significant improvement
in patients with alopecia areata [142] Figure 4.
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7. Challenges in Maintaining Probiotic and Prebiotic Viability and Stability

Microbiomes can directly protect the host against pathogens, manage inflammation,
and modify the functions of the adaptive immune system [143]. Microbial populations
within the human body differ across various body sites. These variations can be influ-
enced by the immune system, environment, and interactions between various microbial
species [144]. The potential health benefits of probiotics have sparked interest in developing
dermo-cosmetics derived from them. However, there are significant technological and legal
challenges in using live microbes on the skin [145].

Furthermore, given that many people use cosmetics daily, these products can influence
the skin microbiota. While cosmetics do not need to be completely sterile, they must adhere
to current regulatory standards to ensure they do not carry harmful bacteria. Nevertheless,
the inclusion of antimicrobial preservatives in formulations may affect the skin microbiome,
potentially leading to long-term consequences such as the emergence of antibiotic-resistant
bacteria [146]. In recent research, biomolecules such as polysaccharides (chitosan, xanthan,
dextrin, and carrageenan) and milk proteins have been used to microencapsulate probiotics
and other bioactive components. Sodium alginate is used more because of its cheapness and
easy availability [147]. Therefore, it is important to keep in mind that it can be challenging
to create and maintain the stability of probiotics in skincare products. Probiotics’ viability
and efficacy can be affected by variables such as pH, temperature, and exposure to air
and light. Thus, while developing a formulation for topical treatment, it is crucial to
ensure that the selected probiotic strains can maintain their viability and activity within the
formulation.

8. Conclusions

The significance of microbiome restoration as a potential therapeutic strategy is high-
lighted by the skin microbiome’s role in preserving skin homeostasis and its connections
to numerous skin disorders. The possible use of probiotics, prebiotics, and postbiotics
in topical preparations for many skin disorders is now the subject of investigation and
study. Prebiotics contribute to improved gastrointestinal well-being by exhibiting anti-
inflammatory and immunomodulating effects. They prevent the colonization of harmful
microorganisms, support the integrity of the intestinal barrier, and enhance overall immune
function, which can be considered a novel alternative therapy for many immune-related
skin diseases. Postbiotics derived from probiotic strains and bacterial lysates have shown
promise in various aspects of skin health, including moisturization and inflammation
reduction. New techniques may employ nanocarriers to improve probiotic and prebiotic
topical administration by protecting their viability, enabling effective loading, and enhanc-
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ing skin penetration. These findings suggest the potential for postbiotic-based skincare
products and treatments in addressing a wide range of dermatological concerns. However,
it is essential to acknowledge the challenges ahead. Regulatory considerations and safety
concerns surrounding the use of microbiome in skincare require careful attention. While
oral probiotics have a clear legal definition tied to bacteria and yeast, the lack of such a
definition for skin probiotics underscores a regulatory gap, signaling a pressing need for
guidelines in this rapidly advancing field. Further research is also needed to understand
their long-term effects and optimal formulations.
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