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Statistical analysis of data from surface water samples 

Presence–absence by taxon: We fit a Bayesian logistic generalized linear mixed model (GLMM) to 

the presence–absence data for five different microbial taxa (AR E. coli, Salmonella, Enterococcus, ESBL-

producing Enterobacteriaceae, and CRE) from the surface water samples. The response variable in the model 

was a binary variable indicating the presence of a given taxon in each surface water sample. Fixed 

predictors included temperature, pH, conductivity, turbidity, total E. coli counts, and season (categorical 

with four levels). Interaction terms between a taxon and the six main effects were also included. Random 

intercepts were fitted to each sampling site and to each combination of taxon and site, to reflect differences 

in baseline probability of presence among taxa. Before fitting the statistical models, the predictor variables 

conductivity, turbidity, and total E. coli counts were subjected to a log(n+1) transformation, then all 

continuous predictors were z-transformed to place them all on a common scale. For all fixed effects, normal 

prior distributions with mean 0 and standard deviation 3 were assigned. We sampled from the posterior 

distribution using Hamiltonian Monte Carlo (HMC), with four chains, each for 2000 warmup iterations and 

1000 sampling iterations, assessing model convergence using the R-hat statistic and model fit with a 

posterior predictive check. 

We estimated marginal trends for each continuous predictor variable separately by taxon, holding 

all other predictor variables constant at their mean value. We obtained a posterior distribution for the slope 

of each marginal trend and found the median and the 66%, 90%, 95%, and 99% quantile credible intervals 

(QCIs) of the distributions. For the season predictor variable, we estimated the posterior marginal mean 

probability of the presence for each combination of season and taxon, again calculating the median and 

QCIs of each marginal mean. In addition, we took contrasts (odds ratios) between the posterior mean 



probabilities of presence for each pair of seasons within each taxon and calculated the median and QCIs of 

those ratios as well. 

Presence–absence of β-lactamase-containing taxa: In addition, we fitted a separate logistic GLMM 

to the presence–absence data for bacterial taxa containing the β-lactamase gene. Due to sparse presence 

data for many of the individual taxa, we pooled all five observed taxa (E. cloacae complex, E. coli, K. oxytoca, 

K. pneumoniae, and S. fonticola) to a single presence value. We used the same six fixed effects as described 

in the previous model, fitting random intercepts to each sampling site. We used the same fixed-effect prior 

distributions, HMC sampling options, and model fit checks as above. We also generated posterior 

distributions of the marginal trends for each continuous predictor variable, the marginal means for each 

level of the categorical predictor variable season, and pairwise contrasts between the marginal means for 

each season. In all cases, we found the median and QCIs of the posterior distributions of the estimates.  

Copy numbers of ARGs: To determine whether copy numbers of ARGs differed between surface 

water samples as a function of environmental conditions, we fitted a Bayesian GLMM with an absolute 

copy number as the response variable. Because many of the individual ARGs had relatively low copy 

numbers, the response variable was the sum of copy numbers across all ARGs. We included the six 

predictor variables listed above as fixed effects, and sampling sites were each given a random intercept. 

We fitted models with hurdle–gamma and hurdle–lognormal response distributions because the ARG copy 

number data contained many zero values and was otherwise positive and right skewed. In each model, we 

used the same fixed-effect prior distributions, HMC sampling options, and model fit checks as above. We 

fitted two different models for each of the two response distributions: one where the hurdle parameter 

(probability of observing exactly zero copy numbers) was allowed to vary as a function of the fixed effects, 

and another where the hurdle parameter was assumed to be constant across sites. We used leave-one-out 

cross-validation to compare among these four models. As the hurdle–gamma model with constant hurdle 

performed best, we present results from only that model. As above, we generated posterior distributions 



of the marginal trends for each continuous predictor variable, the marginal means for each level of the 

categorical predictor variable season, and pairwise contrasts (ratios) between the marginal means for each 

season, with medians and QCIs in all cases. 

Antibiotic concentration: We fitted a hurdle–gamma model identical to the one described above 

for copy numbers of ARGs to the antibiotic concentration data from surface water samples. As we 

performed for the ARG model, we summed the concentrations across all measured drugs due to the 

sparsity of nonzero measurements for many of the individual drugs. We estimated the same posterior 

marginal means and contrasts as above. 

 

Statistical analysis of data from wastewater samples 

Presence–absence by taxon: Due to the relatively low number of wastewater samples with sparse 

presences observed for any given taxon, as well as for β-lactamase-containing taxa as a whole, we 

determined that the presence–absence data were insufficient to fit a formal statistical model. We present 

the presence–absence data for qualitative comparisons only. 

Copy numbers of ARGs: To explore the question of whether ARG copy numbers differed between 

wastewater treatment plants’ influent and effluent, we fitted a hurdle–gamma GLMM. However, in this 

case, we included a separate term for each ARG instead of pooling the copy numbers across genes. We also 

included a fixed effect for season, a binary fixed effect for sample type (influent vs. effluent), an interaction 

between gene and type, and an interaction between season and type. A random intercept was fitted to each 

combination of season and sampling site. We assumed a constant hurdle parameter across sites. We 

repeated this model fit for both absolute and relative copy numbers. Fixed-effect prior distributions, HMC 

options, and model fit checks were as above. We estimated posterior distributions of the marginal means 

for each ARG separately for influent and effluent, and for influent and effluent averaged across ARGs. In 

addition, we estimated marginal means for each season separately for influent and effluent, averaged 



across ARGs. In each case, we also calculated the posterior distribution of the copy number ratio between 

effluent and influent, to obtain a model prediction of the efficiency of wastewater treatment in reducing 

the concentration of ARGs. We further took a contrast of the efficiency ratio between pairs of seasons. As 

above, we calculated the median and QCIs for all the posterior distributions. 

Antibiotic concentration: We fitted a model identical to the one described above for copy numbers 

of ARGs to the antibiotic concentration data from wastewater treatment plants’ influent and effluent and 

estimated the same posterior marginal means and contrasts between influent and effluent. 

Relative effectiveness of WWTPs: We fit an additional hurdle–gamma GLMM to the wastewater 

ARG absolute copy number data to compare the effectiveness of the three WWTPs in reducing the 

concentrations of ARGs in wastewater. This model was the same as described above but also included 

WWTP as an additional fixed effect, and the interaction between WWTP and sample type (influent vs. 

effluent). We estimated marginal means by WWTP separately for influent and effluent but averaged across 

all ARGs and seasons. We measured the contrast (ratio) between effluent and influent marginal means for 

each WWTP, then performed pairwise comparisons (also ratios) of these removal efficiency ratios for each 

pair of WWTPs. We fitted an identically structured model to the antibiotic concentration data and 

calculated the same set of marginal means and ratio contrasts. 

Comparison of surface water upstream and downstream of WWTP: We additionally compared 

ARG copy numbers (total across all genes) and antibiotic concentrations (total across all drugs) at sampling 

sites upstream and downstream of the North Oconee WWTP. This was the only plant with an adequate 

number of both upstream and downstream sites for a quantitative comparison. We fitted another hurdle–

gamma GLMM with season, location (a binary variable indicating upstream vs. downstream), and the 

interaction of season and location as fixed effects. Sampling sites each were assigned a random intercept. 

Model fitting details were as above. We estimated posterior marginal means of predicted ARG copy 



numbers upstream and downstream and measured the ratio of upstream:downstream. We fitted an 

identical model to the total antibiotic concentration data as we performed for ARG copy numbers. 

Statistical analysis was carried out using R software version 4.1.2 [95] and Stan software version 

2.28 [96], including the packages cmdstanr [97], brms [98], emmeans [99], tidybayes [100], and brmsmargins 

[101]. 
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