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Abstract: Periprosthetic joint infections (PJI) are difficult to treat due to biofilm formation on implant
surfaces, often requiring removal or exchange of prostheses along with long-lasting antibiotic treat-
ment. This in vitro study investigated the effect of methylene blue photodynamic therapy (MB-PDT)
on PJI-causing biofilms on different implant materials. MB-PDT (664 nm LED, 15 J/cm2) was tested
on different Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Cutibacterium acnes
strains in both planktonic form and grown in early and mature biofilms on prosthetic materials
(polyethylene, titanium alloys, cobalt–chrome-based alloys, and bone cement). The minimum bac-
tericidal concentration with 100% killing (MBC100%) was determined. Chemical and topographical
alterations were investigated on the prosthesis surfaces after MB-PDT. Results showed a MBC100%

of 0.5–5 µg/mL for planktonic bacteria and 50–100 µg/mL for bacteria in biofilms—independent of
the tested strain, the orthopedic material, or the maturity of the biofilm. Material testing showed
no relevant surface modification. MB-PDT effectively eradicated common PJI pathogens on arthro-
plasty materials without damage to the materials, suggesting that MB-PDT could be used as a novel
treatment method, replacing current, more invasive approaches and potentially shortening the antibi-
otic treatment in PJI. This would improve quality of life and reduce morbidity, mortality, and high
health-care costs.

Keywords: photodynamic therapy; methylene blue; biofilm; orthopedic implants; periprosthetic
joint infection; in vitro

1. Introduction

The increasing use of orthopedic implants has led to a rise in periprosthetic joint
infections (PJI) [1]. The same bacteria that colonize the skin surface can contaminate the
orthopedic implant and lead to PJI, with the most commonly culprits being staphylococci,
streptococci and anaerobic bacteria [2]. Being one of the feared complications after im-
planting an orthopedic device, PJI occur despite standard preoperative skin antisepsis
with alcohol-based solutions and antibiotic prophylaxis [3,4]. Hence, current preventions
strategies are ineffective. Treatment of PJI is challenging due to biofilm formation on the
implant surface and in the periprosthetic tissue. In biofilms, the bacteria are embedded in a
matrix of extracellular polymeric substances—at least partially produced by the bacteria
themselves—which helps protect them against the body’s immune system and antibiotic
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treatments [5]. Biofilms are defined as sessile communities of microbial cells whose forma-
tion is a cyclic process of attachment, maturation, and dispersal involving various genes [6].
The degree and rate of bacterial attachment to various materials depends on the bacterial
cell surface as well as on the roughness, physiochemical properties, and hydrophobicity of
the material [7]. In experimental settings, as few as 100–1000 bacteria were able to form
a new biofilm on implants [8]. Therefore, high killing efficacy is required, i.e., fewer than
100 residual actively replicating planktonic bacteria, as well as bacteria within a mature
(late stage) biofilm. In addition, an extensive surgical debridement of the infected tissue
and a prolonged antibiotic treatment of 6 to 12 weeks is needed for clinical success in
patients with an infection [9,10]. Novel treatment strategies that allow the prosthesis to be
preserved and reduce the length of antibiotic treatment would be highly advantageous.

Photodynamic therapy (PDT) is a well known technique that is successfully used in
dermatology and oncology and is gaining interest for the prevention and treatment of drug-
resistant bacterial infections [11]. PDT, which destroys pathogens via several mechanisms,
uses a light-active substance, called a photosensitizer, that is activated by light of a spectral
wavelength. In the presence of oxygen, the excited photosensitizer transfers electrons to
organic substrates, producing reactive oxygen species (type I reactions) or transfers energy
to molecular oxygen, leading to singlet oxygen production (type II reactions), both of which
cause oxidative stress on bacterial cells [12,13]. Additionally, a type III reaction mechanism
is possible by which the excited photosensitizer directly targets nucleic acids, proteins, or
other bio-macromolecules, independent of oxygen [14]. PDT offers several advantages
over antibiotics, including the non-pharmacological effect of the photosensitizer unless it is
excited with light of a specific wavelength, multi-target ability of the generated reactive
oxygen species (singlet oxygen reacts with proteins, nucleotides and lipids), immediate
microbiological effect, and lack of resistance generation following repeated exposures to the
therapy [15–20]. Microorganisms are more susceptible to PDT than mammalian cells [21,22].
Given the major global threat of antibiotic resistance, PDT is especially interesting as a
method of killing pathogens, including biofilm bacteria that are tolerant to antibiotics,
without increasing antibiotic resistance [23,24].

Methylene blue (MB), a well known cationic phenothiazinium dye that has been
on the market for a long time, is one of the most widely used and well characterized
photosensitizers. It has the maximum absorption at 664 nm and can react by both type
I and type II reaction mechanisms [25]. MB-PDT has shown high effectivity in nasal
decolonization of Staphylococcus aureus, leading to significant reduction of surgical site
infections [26] and recently also against SARS-CoV-2 [27,28]. It is further used in many
clinical procedures, with low risk to patients [29]. MB-PDT studies on biofilms formed on
commonly used orthopedic materials, such as polyethylene, titanium alloys, and cobalt–
chrome-based alloys or bone cement, remain scarce, with only few studies reporting results
on titanium discs [30,31] and none reporting effects on Cutibacterium biofilms.

This study aimed to investigate the killing effect of MB-PDT on common PJI-causing
bacteria, first in their actively replicating planktonic form and then in biofilms formed
on different orthopedic materials. We sought to not only achieve a bactericidal effect,
i.e., 3 log10 reduction of viable bacteria, but rather to kill 100% bacteria with PDT to avoid
regrowth and the risk of persisting infection. Thus, we defined minimum bactericidal
concentrations with 100% killing (MBC100%) that result in no regrowth after reincubating
the treated sample in fresh medium. We further investigated chemical and topograph-
ical alterations after PDT on the prosthesis surface of the most common used materials
in arthroplasty.

2. Results
2.1. Planktonic Assays

We first tested our experimental setting with MB-PDT on a S. aureus clinical iso-
late in planktonic form using different MB concentrations and determined the MBC100%
without regrowth at 5 µg/mL with a 6 log10 reduction (Supplementary Figure S1, Table
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S1). For Escherichia coli, Staphylococcus epidermidis and Cutibacterium acnes clinical isolates,
0.5–1 µg/mL MB was required to reach the MBC100% in planktonic assays. Light only or
MB only (dark toxicity) was not bactericidal. By further comparing the results of S. aureus
and E. coli ATCC strains, we found no strain dependence (Supplementary Figure S2a,b).

2.2. Biofilm Assays
2.2.1. Biofilm Visualization

To validate the experimental biofilms, we used scanning electron microscopy to visu-
ally confirm the growth of early (2-day-old) and mature (6-day-old) S. aureus biofilms on
polyethylene (PE) discs (Figure 1). As expected, we observed that the biofilms were hetero-
geneously distributed on the surface and that the bacteria of the six-day-old biofilms were
embedded and hidden in a thick extracellular matrix. To estimate the biofilm thickness, the
difference between the top of the biofilm and the bottom of the implant disc surface was
calculated. Median values showed about 20 times thicker biofilms after 6-days as compared
to the 2-days (Supplementary Figure S3).
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Figure 1. Example scanning electron micrographs of 2-day-old (a,b) and 6-day-old (c,d) Staphylococcus
aureus biofilms grown on polyethylene discs. Red Bar = 3 µm.

2.2.2. Biofilm In Vitro Assays with S. aureus on Different Orthopedic Materials

After confirming biofilm growth on the implant discs, the MB-PDT effect was tested
on early (2-day-old) and mature (6-day-old) S. aureus biofilms formed on different im-
plant materials (i.e., PE, titanium alloy (TAV), cobalt-chromium-molybdenum (CCM) and
polymethyl methacrylate (PMMA) based bone cement). A MBC100% of 100 µg/mL MB
was determined on all tested materials, with up to 5.9 log10 reductions independent
of the biofilm thickness (Figure 2, Supplementary Table S2). Light only had no effect,
while MB only at 100 µg/mL showed log10 reductions up to 3.4. When comparing to an
early S. aureus biofilm of an ATCC strain, we found a lower MBC100% of 50 µg/mL MB
(Supplementary Figure S2c).
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Figure 2. Photodynamic inactivation of Staphylococcus aureus biofilms formed on polyethylene (PE),
titanium alloy (TAV), cobalt-chromium-molybdenum (CCM), and polymethyl methacrylate (PMMA)
based bone cement discs using different concentrations of methylene blue (MB). Panels (a–d) show
two-day-old biofilms, panels (e–h) show six-day-old biofilms. The bars show the average log10

reduction with the standard deviation from two or three independent biological replicates. The
dotted line signals a bactericidal effect (3 log10 reductions). The stars (*) above the bars indicate
100% killing, i.e., no regrowth. MB only controls were performed with the determined minimum
bactericidal concentration without regrowth (MBC100%).

2.2.3. Biofilm In Vitro Assays with Different Bacterial Species

Since the PDT killing efficacy on early and mature biofilms and biofilms on different
implant materials was consistent for S. aureus, the MB-PDT effect was further evaluated
only on PE with mature biofilms of other bacteria involved in PJI, i.e., methicillin resistant
S. aureus (MRSA), E. coli, S. epidermidis and C. acnes. We found the same MBC100% of
100 µg/mL MB for MRSA and E. coli eradication, while 50 µg/mL was enough for complete
S. epidermidis and C. acnes eradication. Light only showed no effect, and MB only showed
log10 reductions of up to 3.6 (Figure 3, Supplementary Table S3).

2.3. Interaction of PDT with Orthopedic Implants

None of the material testing experiments showed any alterations or damage to the
materials after PDT. The attenuated total reflection infrared spectra of the different albumin-
coated implant materials treated with MB-PDT with light doses from 7.5 to 75 J/cm2

revealed no differences between the reference and the treated samples, suggesting no signs
of oxidation of the materials due to the treatment (Supplementary Figure S4). Likewise, the
roughness values were comparable to the untreated reference materials for all applied light
doses (Supplementary Figure S5). The confocal laser scanning microscopy (CLSM) pictures
showed no visual cracks or damages on the materials after MB-PDT with the light dose of
15 J/cm2 (Supplementary Figure S6).
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Figure 3. Photodynamic inactivation of six-day-old biofilms of methicillin resistant Staphylococcus
aureus (a), Escherichia coli (b), Staphylococcus epidermidis (c), and Cutibacterium acnes (d) formed on
polyethylene (PE) discs using different concentrations of methylene blue (MB). The bars show the
average log10 reduction with the standard deviation from two or three independent biological
replicates. The dotted line signals a bactericidal effect (3 log10 reductions). The stars (*) above the
bars indicate 100% killing, i.e., no regrowth. MB only controls were performed with the determined
minimum bactericidal concentration without regrowth (MBC100%).

3. Discussion

Improved treatment outcomes in PJI may avoid the exchange of the prosthesis, leading
to lower morbidity, lower mortality, and lower health-care costs. We used MB-PDT with a
red-light LED at 664 nm and determined the lowest photosensitizer concentration needed
for 100% killing without regrowth, i.e., the MBC100%. A 100% killing of bacteria in both
planktonic state and in biofilms without regrowth was achieved using 0.5–5 µg/mL MB for
planktonic or 50–100 µg/mL MB for early and mature biofilms of both Gram-positive and
Gram-negative bacteria. PDT did not cause any relevant surface modification on different
prosthesis materials suggesting that the therapy does not harm the material and is safe to
use in vivo. This study demonstrates, for the first time, the eradication potential of MB-PDT
on biofilms grown on different implant materials for treatment of PJI.

We found a species-dependent effect of MB-PDT in our study. In planktonic assays,
the S. aureus MBC100% was five to ten times higher compared to the other tested species—
independent of the strain. Strain dependence in photodynamic inactivation efficacy has
been described for clinical isolates of S. aureus with MB and other photosensitizers [32–36].
Therefore, we initially tested different strains of the same species, but since our results
with ATCC strains and clinical isolates showed identical MBC100%, we then focused on the
generally more difficult to treat clinical isolates.

Our results showed that biofilm eradication compared to planktonic killing required 20–
100 times higher MB concentrations, depending on the bacterial species. This is not unlike
antibiotics, where up to 1000 times higher concentrations are required for biofilms [37,38]
in order to kill commonly present bacteria tolerant to antibiotics [39,40]. In biofilm assays,
S. aureus and E. coli required double the concentration compared to S. epidermidis or C. acnes
isolates. However, we achieved complete eradication of all species.

Overall, the MB-PDT concentrations that we determined as MBC100% to kill planktonic
and biofilm bacteria were lower as compared to previous studies [30,41]. This might be due
to the composition of the MB-based photosensitizer containing 0.25% chlorhexidine glu-
conate, which provides a booster effect on MB. Chlorhexidine is a slow release compound
commonly used at 4% concentration as a skin antiseptic prior to surgery [42].

Our results confirm the high killing potential of MB-PDT on both Gram-positive and
Gram-negative bacteria involved in PJI, unlike previous studies that stated difficulty killing
Gram-negatives [43,44]. We achieved full eradication (up to 6 log10 reductions) of early
and mature biofilms independent of the implant material and biofilm thickness, suggesting
that MB-PDT can effectively kill PJI-causing biofilms, i.e., S. aureus, S. epidermidis, E. coli
and C. acnes biofilms, on various orthopedic implant materials despite different cell surface
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characteristics. Few studies so far have reported eradication on titanium alloy discs [30,31]
or bactericidal effects on acrylic resin discs [45].

The main limitations of this study are that the PDT experiments were only performed
on static biofilms in vitro and that the toxicity of MB on human cell lines was not inves-
tigated. However, there are insufficient free-radical defence and repair mechanisms in
monolayers in cell-culture assays as compared to intact tissue in vivo, hence toxicity is
expected when MB is activated in monolayers. Several in vivo studies showed that MB
was safe and remained without adverse events even when used in higher concentrations of
10 mg/mL [26,46–48]. Clinical studies report no adverse events when using MB-PDT for
treatment of onychomycosis, oral candidiasis, infectious diabetic foot ulcers [48], infected
wounds [49], or when used for nasal decolonization to prevent surgical site infections [26].
As a strength of this study, we used biofilm-forming clinical isolates derived from PJI
patients to better mimic the in vivo situation.

To conclude, we proved in vitro the potential of MB-PDT by showing 100% killing of the
most PJI-causing bacteria without harm to the prosthetic materials, independent of the ortho-
pedic material or the maturity of the biofilm. PDT offers many advantages—i.e., immediate,
broad-spectrum action after light activation of the photosensitizer, that it can be repeatedly
performed, and that resistance is less likely since various biomolecules are targeted [24,50]—
and a number of potential opportunities. MB-PDT in clinical practice could improve the
cure rate in patients with a chronic PJI with a less invasive surgical treatment compared to
patients without PDT. Besides, PDT as a novel treatment method to kill biofilm-forming
bacteria in PJIs would obviate the exchange of the prosthesis and shorten the antibiotic
treatment duration.

In a next step, we plan a clinical study investigating the safety of the treatment. This
study may have an impact as a model for applications in other implant-associated infections.
Future studies will have to show whether PDT could be added to the treatment regimen
or included in a prevention strategy in which PDT is intraoperatively applied at the time
of implantation to eradicate bacterial contaminants. Finally, within the discussions of
antimicrobial resistance, we are convinced that further research in the field of PDT is very
important to save antibiotics and thus prevent further rise of antibiotic resistance.

4. Materials and Methods
4.1. Bacterial Strains and Cultivation

The following clinical isolates from patients suffering from PJI were used for PDT
experiments: Staphylococcus aureus (CI175), Staphylococcus epidermidis (CI195), Escherichia
coli (BCI0413, provided by the Institute of Medical Microbiology, Zurich, Switzerland),
Cutibacterium acnes (Y105). To show strain independence in treating S. aureus, we tested two
sequenced strains—a methicillin resistant Staphylococcus aureus (MRSA) strain JE2 and a
methicillin susceptible reference strain (ATCC 29213). For E. coli, the reference strain ATCC
25922 was used. The bacterial biobank was approved by the institutional review board in
Zurich, Switzerland (KEK Nr 2016-00145, KEK Nr 2017-01458).

To obtain fresh cultures, S. aureus, S. epidermidis, and E. coli strains were grown from
frozen cultures on brain—heart infusion (BHI, Becton Dickinson, Heidelberg, Germany)
agar plates for 24 h at 37 ◦C under aerobic conditions, and C. acnes was grown on BHI for
3–5 days at 37 ◦C under anaerobic conditions (GENbags, bioMérieux, Mary-l’Etoile, France).
Liquid cultures from colonies on agar plates were performed in 10 mL BHI broth at 37 ◦C
with shaking overnight for S. aureus, S. epidermidis and E. coli under aerobic conditions
and for three days for C. acnes under anaerobic conditions. Then, 1:10 dilutions in fresh
media were performed and incubated for 2 h (S. aureus, S. epidermidis and E. coli) to obtain
bacteria in their exponential growth phase. Finally, the optical density at 600 nm (OD600)
was adjusted to 0.4 for E. coli or 0.5 for S. aureus, S. epidermidis and C. acnes to reach 108

colony forming units (CFU) per milliliter as start inoculum for PDT experiments.
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4.2. Photosensitizer and PDT Conditions

Methylene blue-based photosensitizer NF-031 was provided by Ondine Biomedical
Inc. (Vancouver, Canada) with a concentration of 100 µg/mL. Dilutions were prepared
in dH2O and kept in the dark at all times. MB was tested in concentrations from 0.25 to
100 µg/mL. The incubation time with bacteria was 10 min. Afterwards, light treatment was
performed using an LED light source—provided by Ondine Biomedical Inc. (Vancouver, BC,
Canada)—with a wavelength of 664 nm and a radiant fluence of 15 J/cm2. The homogeneity
of the light source was confirmed with planktonic assays and varied 19% throughout a
24-well plate.

4.3. Planktonic Assays

For planktonic assays, 1 mL of the start inoculum was transferred into the wells of
a 24-well plate. The cells were centrifuged (4000 rpm, 10 min) and resuspended in 1 mL
photosensitizer solutions. After 10 min incubation, the cells were centrifuged and washed
in dH2O and light treatment was performed. After PDT, the number of remaining bacteria,
i.e., colony forming units (CFU), was evaluated using the colony counting method. Ten-fold
serial dilutions were prepared and 10 µL thereof were spotted in triplicates on BHI agar
plates and incubated for 24 h under aerobic conditions for S. aureus, S. epidermidis and
E. coli or for 3 days at 37 ◦C under anaerobic conditions for C. acnes. The bacterial killing
effect was determined as log10 reduction relative to the non-treated growth control. A log10
reduction >3 is defined as bactericidal, meaning that >99.9% of the total number of bacteria
has been killed [51]. In order to determine the minimum bactericidal concentration with
100% killing (MBC100%), i.e., no regrowth, 50 µl of the treated samples were incubated in
5 mL fresh BHI broth at 37 ◦C for 2 days (S. aureus, S. epidermidis, E. coli) or 3 days
(C. acnes) and subsequently subcultured on BHI agar plates for 2 days (S. aureus, S. epider-
midis, E. coli) or 6 days (C. acnes). Bacteria without PDT treatment served as growth control
in each experiment. As sterility controls, BHI medium and BHI medium treated with PDT
were used in each experiment. Additionally, the dark toxicity of the photosensitizer (MB
only) and light only controls were tested.

4.4. Biofilm Assays

For biofilm assays, static biofilms were grown on sterilized orthopedic implant ma-
terials (round discs of 10 mm in diameter and 1 mm in thickness) as attachment surfaces,
i.e., ultra-high molecular weight polyethylene (PE), titanium alloy Ti-6Al-4V (TAV), cobalt-
chromium-molybdenum (CCM) (provided by Synthes GmbH, Zuchwil, Switzerland),
and polymethyl methacrylate (PMMA)-based bone cement (provided by Heraeus Group,
Hanau, Germany). An amount of 2 mL of the starting inoculum were incubated with
the discs in a 24-well plate and incubated at 37 ◦C for 2 days for early and 6 days for
mature biofilm formation (S. aureus, S. epidermidis, E. coli), and 8 days for mature biofilm
formation of C. acnes. The medium was regularly changed for growth of mature biofilms.
Then, discs were washed three times with PBS to remove any planktonic bacteria before
adding 1 mL of photosensitizer solution. After 10 min incubation, the photosensitizer was
removed, and light treatment was performed on both sides of the discs with conditions as
described above. The implant discs were sonicated to dissolve the biofilm bacteria using
an ultrasound bath for one minute at 40 Hertz [52,53]. The colony counting and regrowth
method was performed as outlined for planktonic bacteria. Biofilm bacteria grown on discs
without PDT were used as growth control. As sterility controls, BHI medium only, BHI
medium with discs, and BHI medium with discs and PDT, all without bacteria, were used
in each experiment.

The clinical isolate S. aureus CI175 was used to establish the PDT protocol and was
tested on all materials. Other bacteria were only tested as mature biofilms on PE. All PDT
experiments were performed in biological triplicates (for S. aureus) or duplicates (for all
other tested bacteria).
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4.5. Biofilm Imaging

Biofilm images were performed to ensure early and mature biofilm formation on
the used orthopedic materials. Biofilms were grown on PE discs for 2 days and 6 days
as outlined above, washed, and immediately fixed with 2.5% glutaraldehyde in 0.1 M
cacodylate buffer for 2 h (solutions provided by the Center for Microscopy and Image
Analysis at the University of Zurich, Zurich, Switzerland). The samples were delivered to
the Center for Microscopy and Image Analysis at the University of Zurich, Switzerland for
further processing. The samples were rinsed 3 times with PBS, postfixed with 1% osmium
tetroxide/ PBS (1:2) for 30 min, rinsed again 3 times with PBS, then dehydrated in 70%
and 100% ethanol and hexamethyldilisazane for 1 h each prior to air drying. The samples
were mounted on aluminium stubs using double-sided conductive tape and/or conductive
carbon before sputter coating in a CCU-10 HV (Safematic GmbH, Zizers, Switzerland) with
4 nm of platinum (working distance 5 cm, argon pressure 0.1 mbar, sputter current 30 mA)
and imaged using a GeminiSEM 450 scanning electron microscope (Zeiss, Oberkochen,
Germany). Additionally, the thickness of the biofilm was estimated using working distances.
Therefore, the difference between the top of the biofilm and the surface of the implant discs
was calculated.

4.6. Investigation of Possible Impact of PDT on Orthopedic Implants Material

Implant material discs (as used for PDT experiments) were used for all material testing
experiments. To mimic the situation in vivo, the discs were coated with bovine serum
albumin from bovine serum (≥95%, Fluka, Buchs, Switzerland). They were rinsed with
distilled water and incubated in 1 mL of 10 mg/mL bovine serum albumin solution for
24 h at 4 ◦C. The discs were then washed three times with distilled water. Next, the albumin-
coated platelets were incubated in 100 µg/mL MB solution (methylene blue hydrate, purum
≥ 97%, Sigma, Buchs, Switzerland) for 10 min and subsequently washed once with water.
The discs were placed under a 660 nm LED (L660N-66-16100, Ushio, Steinhöring, Germany)
and illuminated with doses of 7.5, 15, 30 or 75 J/cm2 on both sides. The treated discs were
investigated for signs of oxidation with attenuated total reflection infrared spectroscopy
using a Ge crystal (Nicolet iD7 ATR, Thermo Scientific, Basel, Switzerland) and their
surfaces were examined for cracks or damages in a confocal laser scanning microscope
(CLSM) (VKX1100, Keyence, Urdorf, Switzerland). Their line roughness value as roughness
average (Ra) was determined from CLSM images taken at a magnification of 5×.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics12010118/s1, Table S1: Photodynamic inactivation
of planktonic Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis and Cutibacterium
acnes using different concentrations of methylene blue (MB) as average log10 reduction of two or
three independent biological replicates. The stars indicate 100% killing, i.e., no regrowth. MB
only controls were performed with the determined minimum bactericidal concentration without
regrowth (MBC100%); Table S2: Photodynamic inactivation of early (2-day-old) and mature (6-day-old)
Staphylococcus aureus biofilms formed on polyethylene (PE), titanium alloy (TAV), cobalt-chromium-
molybdenum (CCM) and polymethyl methacrylate (PMMA) based bone cement discs. The average
log10 reductions of two or three independent biological replicates using different methylene blue (MB)
concentrations are presented. The stars indicate 100% killing, i.e., no regrowth. MB only controls were
performed with the determined minimum bactericidal concentration without regrowth (MBC100%);
Table S3: Photodynamic inactivation of mature biofilms of methicillin resistant Staphylococcus aureus
(6d), Escherichia coli (6d), Staphylococcus epidermidis (6d) and Cutibacterium acnes (8d) formed on
polyethylene (PE) discs. The average log10 reductions of two or three independent biological replicates
using different methylene blue (MB) concentrations are presented. The stars indicate 100% killing,
i.e., no regrowth. MB only controls were performed with the determined minimum bactericidal
concentration without regrowth (MBC100%); Figure S1: Photodynamic inactivation of planktonic
Staphylococcus aureus (a), Escherichia coli (b), Staphylococcus epidermidis (c) and Cutibacterium acnes (d)
using different concentrations of methylene blue (MB). The bars show the average log10 reduction with
the standard deviation from two or three independent biological replicates. The dotted line signals a
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bactericidal effect (3 log10 reductions). The stars above the bars indicate 100% killing, i.e., no regrowth.
MB only controls were performed with the determined minimum bactericidal concentration without
regrowth (MBC100%); Figure S2: Photodynamic inactivation of planktonic ATCC Staphylococcus aureus
(a), planktonic ATCC Escherichia coli (b) and 2-day-old ATCC Staphylococcus aureus biofilm formed
on polyethylene (PE) (c) using different concentrations of methylene blue (MB). The bars show the
average log10 reduction with the standard deviation from two independent biological replicates. The
dotted line signals a bactericidal effect (3 log10 reductions). The stars above the bars indicate 100%
killing, i.e., no regrowth. Photosensitizer only (PS only) controls were performed with the determined
minimum bactericidal concentration without regrowth (MBC100%); Figure S3: Biofilm thickness of
2-day-old and 6-day-old Staphylococcus aureus biofilm’ Figure S4: Attenuated total reflection infrared
spectroscopy spectra of four different albumin-coated implant materials (PE, polyethylene; PMMA,
polymethyl methacrylate; TAV, titanium alloy; CCM, cobalt-chromium-molybdenum) treated with
MB-PDT using light doses ranging from 7.5 to 75 J/cm2. No differences between the reference
and the treated samples are visible. Adsorption of albumin was only measured on the PMMA
cement materials; Figure S5: Roughness average (Ra) values of four different albumin-coated implant
materials (PE, polyethylene; PMMA, polymethyl methacrylate; TAV, titanium alloy; CCM, cobalt-
chromium-molybdenum) treated with PDT using methylene blue as a photosensitizer and light
doses ranging from 7.5 to 75 J/cm2 and the untreated (0 J/cm2) reference materials; Figure S6:
Example CLSM pictures of implant discs (top: TAV, titanium alloy; bottom: CCM, cobalt-chromium-
molybdenum) before PDT (left) and after PDT (right). Scale bar = 1000 µm. No cracks or damages are
seen after PDT.
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