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Abstract: Antibiotic resistance is a major global healthcare issue. Antibiotic compounds cross the
bacterial cell membrane via membrane transporters, and a major mechanism of antibiotic resistance
is through modification of the membrane transporters to increase the efflux or reduce the influx of
antibiotics. Targeting these transporters is a potential avenue to combat antibiotic resistance. In this
study, we used an automated screening pipeline to evaluate the growth of a library of 447 Escherichia
coli transporter knockout strains exposed to sub-inhibitory concentrations of 18 diverse antimicrobials.
We found numerous knockout strains that showed more resistant or sensitive phenotypes to specific
antimicrobials, suggestive of transport pathways. We highlight several specific drug-transporter
interactions that we identified and provide the full dataset, which will be a useful resource in further
research on antimicrobial transport pathways. Overall, we determined that transporters are involved
in modulating the efficacy of almost all the antimicrobial compounds tested and can, thus, play a
major role in the development of antimicrobial resistance.
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1. Introduction

Antibiotic resistance is a major global healthcare burden, with over 1 million deaths
attributable to antibiotic resistance in 2019, and with the World Health Organization
listing antimicrobial resistance as one of the top 10 global public health threats facing
humanity [1,2]. Despite a pressing need for novel antibiotics that can overcome resistance,
few novel drugs have been developed and approved in the last 20 years, with a general
downward trend in new approvals since 1983 [3], albeit the last decade has seen some
increase in new approvals [4]. While systems have been proposed to overcome the economic
obstacles to incentivize antibiotic development [5], other solutions are needed.

In order to exert their effects, most antibiotics must first cross the bacterial cell mem-
brane. There is now strong evidence to suggest that in order to enter cells, nearly all
compounds must pass through membrane transporters and that “passive bilayer diffusion
is negligible” [6–8]. The importance of transporters is further highlighted by the well-
established fact that a major mechanism of antibiotic resistance is through adaptations in
transport systems. These adaptations reduce the intracellular concentration of antibiotics
through either the increased efflux or the decreased influx of antibiotics through membrane
transporters [9–11]. Antibiotic adjuncts that inhibit the efflux of the active drug have been
proposed as a means to counteract resistance [12,13].

While modelling suggests that mutations that cause antibiotic resistance will predomi-
nantly be in exporters rather than importers [14], there are also examples where adaptations
that reduce the import of antibiotics confer resistance. This has been observed in the case
of fosfomycin [15], aminoglycosides [16] and chloramphenicol [17].

Of the ~4401 genes in the Escherichia coli K-12 chromosome, an estimated 598 encode
established or predicted membrane transporters [18]. Despite extensive research, around a
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quarter of these transporters are orphans (also known as y-genes), in that they have no as-
signed substrate. Recent studies have illustrated that accumulation of cationic fluorophores
involves multiple influx and efflux transporters, with a library of transporter knockouts
spanning a 30–70-fold difference in fluorescence level when exposed to the fluorophores
SYBR Green or diS-C3(5) [19]. We hypothesized that accumulation and excretion of an-
timicrobial agents may similarly involve numerous membrane transporters. Previously,
we have used a high-throughput screening method to identify a melatonin exporter [20].
In this, growth of a library of knockout transporters was measured in the presence of
melatonin, and inhibited growth was used as a proxy to identify when an exporter had
been knocked out (conversely, a resistant strain potentially has an importer knocked out).

In the present study, which forms part of an ongoing project to deorphanize all orphan
E. coli transporters, we investigated the previously developed library of 447 E. coli trans-
porter knockouts [19,20] for growth, in the presence of 18 structurally diverse antimicrobial
agents. We included novel and recently approved antibiotics, such as cefiderocol and
flumequine, as well as drugs not traditionally used against Gram-negative bacteria. We also
developed an automated workflow for the liquid-handing steps and data processing. The
full dataset encompasses approximately 8000 growth curves (in duplicate), and the entire
raw dataset and code used for processing are provided in the Supplementary Materials.
We identified several transporter knockout strains that showed resistance or sensitivity
to many of the antimicrobials tested, including previously unannotated transporters or
y-genes. Finally, we illustrate the potential utility of large-scale analysis of the dataset for
predicting substrates of orphan transporters.

2. Results
2.1. Antimicrobial Selection

We selected a range of compounds that were available and readily soluble in our LB
media. We endeavored to include compounds from several major antibiotic classes as well
as compounds with activity that have previously not been tested extensively against Gram-
negative bacteria (ornidazole and paraquat). Cefiderocol was very recently approved, so
was included due to novelty.

2.2. Determination of Antibiotic Concentrations for High-Throughput Screening

The workflow for the screening of each compound (Supplementary Figure S1) initially
required identifying a sub-inhibitory concentration of the antibiotic in the wild-type strain
BW1556 (WT, parent strain for the Keio collection). Minimum inhibitory concentrations
(MICs) were determined by measurement of E. coli growth in a two-fold serial dilution of
the relevant antibiotic in LB. We defined MIC values as those with OD levels at 48 h less
than 10% of the antibiotic-free media condition. For screening of the transporter library, we
selected concentrations that showed some inhibition of growth in the WT strain without
causing full inhibition. Generally, this was a concentration half that of the MIC; however,
when effects on growth (reduction in maximum OD, increased lag time, decreased growth
rate, or some combination thereof) could be clearly seen at concentrations significantly
lower than that, then these concentrations were used. The 18 antimicrobial compounds
included in this study, as well as the MIC and screening concentrations, are listed in Table 1,
and chemical structures of the antibiotics used are shown in Supplementary Figure S2.

2.3. Baseline Characteristics of Transporter Library

Generally, the growth of nearly all transporter knockout strains in LB without supple-
mentation was similar. The empirical area under the curve (AUC) (a general measure of
growth) had a mean of 30.0 and an interquartile range (IQR) of 1.90, while the maximum
growth rate had a mean of 1.19 and an IQR of 0.14 h−1. The WT growth rate was slightly
higher than the mean growth rate, possibly due to the burden of expression of the con-
stitutively active kanamycin cassette present in all knockout strains [21,22]. Histograms
illustrating the distribution of the AUC and growth rate are shown in Figure 1A,B. We
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also observed good correlation between replicates with regards to growth rate and AUC
(Figure 1C,D). It should be noted that the automated inoculation step occasionally did not
dispense a droplet into the well. In cases where this was clearly the case (i.e., where we
observed growth in one but not another replicate), the replicate missing growth was filtered
from the results.

Table 1. Antibiotics and antimicrobials used in this study, with minimum inhibitory concentration
(MIC) in the wild-type (WT) strain, and the concentrations used for high-throughput screening
experiments are shown.

Antibiotic WT MIC (mg/L) Screening Concentration (mg/L)

Azithromycin 30 7.5
Cefiderocol 1 0.25

Cefoperazone 0.5 0.25
Chloramphenicol 2.5 1.25

Ceftriaxone 2.5 1
D-Cycloserine 12.5 6.25
Flumequine >1.5 * 1.5
Gentamycin 4 2
Levofloxacin 0.25 0.125
Meropenem 0.0625 0.03125

Ofloxaxin 0.125 0.0625
Ornidazole 800 400
Paraquat >268 * 67

Phosphomycin 50 25
Rifampicin 25 12.5

Streptomycin 25 6.25
Trimethoprim 2.3 0.25
Zidovudine >100 * 100

* For these compounds, growth was detected at the highest concentration tested, despite clear inhibition at lower
concentrations.

Antibiotics 2022, 11, x FOR PEER REVIEW 4 of 18 
 

 
Figure 1. Histograms illustrating distributions of (A) growth rate and (B) area under the curve 
(AUC) for transporter library growth in LB in the absence of antibiotics. Scatter plots showing cor-
relation between replicates for (C) growth rates and (D) AUC for transporter library growth in LB 
alone. 
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of antibiotics, the rank-order curves show a much wider spread of values. Figure 3 shows 
a box and whisker plot illustrating the distribution of AUC values for all compounds 
tested. 

Figure 1. Histograms illustrating distributions of (A) growth rate and (B) area under the curve (AUC)
for transporter library growth in LB in the absence of antibiotics. Scatter plots showing correlation
between replicates for (C) growth rates and (D) AUC for transporter library growth in LB alone.
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Compared to growth in LB, we saw a much larger degree of variation in growth in the
presence of the antimicrobial compounds, consistent with multiple transporter knockouts
influencing the level of intracellular antibiotic accumulation. Figure 2A shows rank-order
curves for the mean AUC for growth of the transporter library in LB, while Figure 2B–D
shows the same information for growth in the indicated antibiotics. In the presence of
antibiotics, the rank-order curves show a much wider spread of values. Figure 3 shows a
box and whisker plot illustrating the distribution of AUC values for all compounds tested.
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Figure 2. Transporter knockout library ordered by the mean area under the curve (AUC). Data shown
for growth in LB (A) and subinhibitory concentrations of antibiotics/antimicrobials indicated (B–D).
Y-genes are shown in blue, and annotated transporters are shown in red, while the arrow indicates
the position of the WT strain.
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2.4. Resistant and Sensitive Transporter Results

We observed that many transporter knockouts had effects on the sensitivity to the
compounds tested. Due to the large volume of data generated, detailed descriptions of
all relevant results are beyond the scope of this paper. As we intend to perform targeted
follow-up validation experiments, given that this is an initial exploratory study, we are
hesitant to define specific criteria for sensitivity or resistance. Indeed, one advantage of our
study over previous high-throughput growth assays is the generation of full growth curves
rather than the reduction in growth of a single metric, as we elaborate on in the discussion.

Selected specific results are discussed below. Generally, when searching for novel
results, we looked at strains ranked highest or lowest in normalized growth rate or AUC
and then manually inspected the growth curves. We selected those highlighted in this paper
based on interactions with y-genes or where we felt there were plausible and interesting
mechanisms for discussion.

Our study replicated some previously established drug–transporter interactions. First,
we observed that knockout of acrB, a promiscuous drug-efflux protein well-known to play
a role in export of many xenobiotics [23], caused increased sensitivity to 10 out of the
18 antimicrobial compounds tested. Interestingly we saw the increased inhibition caused
by knockout of acrB take different forms: growth rate decreases including increased lag
time, decreased max OD and AUC and complete inhibition (Figure 4). Fosphomycin has
been shown to gain access to the cell via the hexose-6-phosphate:phosphate antiporter
uhpT and the glutamate/aspartate: H+ symporter gltP [15,24,25]. In our phosphomycin
experiment, knockouts of each of these transporters were among the most resistant of the
transporter knockout strains tested, consistent with these knockouts causing reduction
in influx (Supplementary Materials). MacAB-Tolc has been reported to efflux macrolide
antibiotics, and expression of this complex in a strain hypersensitive to antibiotics conferred
resistance to macrolides including azithromycin [26]. In our study, the macB knockout
strain (∆macB) did not result in azithromycin sensitivity, and we also could not see evidence
of increased sensitivity to azithromycin in a previously published dataset [27].
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Ornidazole is a nitroimidazole generally used to treat protozoan infections, and, in this
study, we found it to have an MIC in E. coli BW1556 of 800 mg/L (Table 1). The transporter
nimT (previously yeaN) has been shown to function as an exporter of 2-nitroimidazole,
a compound structurally similar to ornidazole [28]. We saw only a modest increase in
ornidazole sensitivity in ∆nimT compared to WT (Figure 5A). We did, however, observe
a clear increased sensitivity to ornidazole in ∆argO (Figure 5B), a strain with a probable
arginine exporter knocked out [29]. Some strains also showed an ornidazole-resistant phe-
notype. These included ∆narU, a nitrite/nitrate exchanger knockout (Figure 5C). Possibly,
this transporter is interacting in some way with the nitro-group on ornidazole, and the
knockout of this reduces influx into the cell. We also saw a resistant phenotype in ∆ygaH
(Figure 5D), an uncharacterized orphan transporter. The other most resistant and most
sensitive strains (by normalized AUC) are shown in Table 2.
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Figure 5. Growth curves for WT (black) and knockout strains (red) in 400 mg/L ornidazole. ∆nimT (A),
∆argO (B), ∆narU (C) and ∆ygaH (D) are shown. Shaded areas represent the standard deviation for the
WT growth curve.

Azithromycin is a macrolide antibiotic, widely used in the treatment of clinical in-
fections. We saw several transporter knockout strains that had dramatically decreased
growth in the presence of 7.5 mg/L azithromycin compared to WT. These included the
choline transporter knockout ∆betT and a tyrosine symporter knockout ∆tyrP (Figure 6A,B).
Near-complete inhibition was also seen in the multidrug exporter knockout strain ∆mdtN.
We also observed resistant phenotypes, specifically in the orphan knockout strains ∆yhdW
and ∆ydfJ (Figure 6C,D). Growth parameters for the most resistant and sensitive strains are
shown in Table 3.
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Table 2. Growth parameters for the 15 most sensitive and most resistant strains in Ornidazole by
normalized AUC. Normalized values show the value in ornidazole/value in LB for the given strain.

Strain Max OD Rate AUC Normalized
Max OD

Normalized
Rate

Normalized
AUC

argO 0.74 0.35 6.36 0.29 0.45 0.23
ydjE 0.58 0.71 6.55 0.71 0.37 0.26
tolQ 0.60 1.05 7.98 1.16 0.38 0.29
glvB 0.75 0.57 9.78 0.54 0.44 0.34
sapB 0.64 0.73 9.05 0.74 0.41 0.35
yebQ 0.83 0.59 8.96 0.89 0.53 0.36
ddpF 0.76 0.80 11.43 0.64 0.44 0.37
uup 0.72 0.85 10.07 0.81 0.45 0.37

cysW 0.64 1.62 10.22 1.40 0.41 0.38
ydcS 0.65 0.54 9.25 0.70 0.39 0.38
ydeE 0.78 0.89 11.00 0.74 0.48 0.39
yicJ 0.81 0.84 11.78 0.64 0.49 0.39

guaB 0.69 1.08 11.22 1.18 0.42 0.40
gntU 0.87 1.04 12.13 0.83 0.52 0.40
ynfA 0.77 0.93 9.97 1.31 0.52 0.41
ybhF 1.15 0.95 19.30 0.96 0.66 0.65
arnE 1.14 1.03 17.97 1.14 0.70 0.66
sapC 1.11 0.74 17.12 0.77 0.67 0.66
cycA 1.17 1.07 19.65 0.83 0.69 0.66
narU 1.14 0.86 19.88 0.67 0.67 0.66
lacY 1.19 0.87 20.61 0.71 0.68 0.67
kup 1.16 0.90 18.67 0.68 0.70 0.67

mdtH 1.24 0.80 18.59 0.89 0.75 0.67
pitA 1.25 1.01 18.19 0.78 0.77 0.67
yadG 1.09 0.84 17.65 0.66 0.66 0.67
clcB 1.14 0.86 18.96 0.67 0.69 0.68
trkH 1.20 0.76 18.90 0.56 0.74 0.68
exbD 1.22 0.92 20.52 0.79 0.70 0.70

wt 1.04 1.10 21.76 0.77 0.58 0.70
dhaM 1.34 0.79 23.18 0.63 0.80 0.78
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Table 3. Growth parameters for the 15 most sensitive and most resistant strains in ornidazole.
Normalized values represent the value in ornidazole/value in LB for the given strain and values for
the maximum OD, rate and area under the curve are shown.

Strain Max OD Rate AUC Normalized
Max tOD

Normalized
Rate

Normalized
AUC

betT 0.06 0.02 0.30 0.02 0.04 0.01
glvB 0.11 0.03 0.32 0.03 0.07 0.01
glnP 0.11 0.02 0.33 0.02 0.06 0.01
citT 0.06 0.04 0.37 0.04 0.04 0.01
tyrP 0.24 0.01 0.56 0.01 0.15 0.02
corA 0.14 0.03 0.62 0.02 0.08 0.02
tolR 0.11 1.69 0.67 1.46 0.07 0.02

mdtN 0.67 0.50 0.70 0.40 0.40 0.02
ydjN 0.34 0.44 0.76 0.38 0.20 0.03
yibH 0.20 0.01 0.77 0.00 0.12 0.03
torT 0.18 0.04 0.80 0.03 0.11 0.03
acrB 0.09 0.66 1.35 0.54 0.05 0.05
kdgT 2.16 0.92 1.48 0.75 1.33 0.05
tolQ 0.74 1.04 1.76 1.16 0.47 0.06
ydcS 0.31 0.28 1.61 0.36 0.18 0.07
ddpD 1.51 0.39 19.71 0.30 0.92 0.71
ydiN 1.53 0.44 20.19 0.36 0.96 0.71
ydjX 1.58 0.43 20.37 0.35 0.96 0.72
yddB 1.59 0.40 19.66 0.28 1.00 0.72
atpB 1.57 0.44 21.09 0.35 0.96 0.73
yccA 1.54 0.43 19.30 0.37 0.99 0.73
ygaZ 1.50 0.58 18.50 0.56 1.09 0.73
cmtA 1.54 0.41 20.84 0.36 0.95 0.74
kgtP 1.52 0.47 21.29 0.38 0.88 0.74
pitA 1.51 0.46 20.38 0.36 0.93 0.75
ydfJ 1.58 0.55 23.16 0.41 0.93 0.76

yhdW 1.58 0.48 22.07 0.34 0.95 0.76
yraQ 2.07 0.81 24.46 0.75 1.23 0.87
yiaM 2.51 0.51 26.88 0.42 1.50 0.90
argO 1.92 0.94 27.30 0.78 1.17 0.97

We also included compounds not traditionally used as antibiotics, which have an-
timicrobial activity. Paraquat (also known as methyl viologen) is a widely used herbicide,
which exerts toxic effects, after conversion to a superoxide radical, once inside the cell [30].
We found that concentrations up to 257 mg/L did not cause full inhibition of E. coli growth;
however, there was evidence of growth inhibition at concentrations of 32 mg/L (Figure 7A).
We screened the growth of the transporter knockout library at 67 mg/L and observed
several strains that had increased sensitivity including the y-gene knockout ∆ydcZ and
in two metal cation exporter knockouts ∆cusA (Figure 7B) and ∆fieF, suggestive of the
ability of these transporters to export paraquat, which notably is also a cation. We also
observed strains with resistance; interestingly, these included ∆aroP, an aromatic amino
acid permease knockout. Given the aromatic structure of paraquat, it is very plausible
that one of the means of its entry into the cell is via this aromatic amino acid permease
(Figure 7C). The most sensitive and resistant strains in paraquat are shown in Table 4.
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yfdV 0.78 0.60 8.42 0.64 0.47 0.30 
uhpC 2.15 0.55 9.50 0.48 1.27 0.32 
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atoS 1.47 0.26 11.42 0.25 0.84 0.38 
yihN 1.11 0.64 11.91 0.55 0.65 0.41 
ygjI 0.97 0.53 11.79 0.41 0.58 0.42 

ygaH 1.41 1.01 13.21 0.85 0.82 0.42 
mdtN 0.96 0.46 12.28 0.37 0.57 0.43 

Figure 7. Growth features of paraquat. (A) Concentration inhibition data for growth of WT E. coli
in the indicated concentration of paraquat. Shaded areas represent the standard deviation, n = 3.
Growth curves for WT (black) and knockout strains (red) in 32 mg/L paraquat. ∆cusB (B) and ∆aroP
(C) are shown.

Table 4. Growth parameters for the 15 most sensitive and most resistant strains in paraquat. Nor-
malized values represent the value in paraquat/value in LB for the given strain and values for the
maximum OD, rate and area under the curve are shown.

Strain Max OD Rate AUC Normalized
Max OD

Normalized
Rate

Normalized
AUC

ydcZ 0.11 1.55 0.39 1.35 0.06 0.01
potH 0.74 0.57 1.79 0.50 0.44 0.06
fieF 1.46 1.20 7.66 0.92 0.85 0.26

yihO 1.35 1.07 8.11 0.88 0.79 0.29
kdgT 2.22 0.49 8.51 0.40 1.36 0.29
cusA 0.69 0.49 8.66 0.50 0.41 0.29
yfdV 0.78 0.60 8.42 0.64 0.47 0.30
uhpC 2.15 0.55 9.50 0.48 1.27 0.32
uacT 2.40 0.50 10.09 0.40 1.42 0.33
atoS 1.47 0.26 11.42 0.25 0.84 0.38
yihN 1.11 0.64 11.91 0.55 0.65 0.41
ygjI 0.97 0.53 11.79 0.41 0.58 0.42

ygaH 1.41 1.01 13.21 0.85 0.82 0.42
mdtN 0.96 0.46 12.28 0.37 0.57 0.43
yidK 1.03 1.04 12.84 0.75 0.60 0.43
aroP 2.15 0.60 28.71 0.51 1.30 1.03
gsiC 2.21 0.68 28.48 0.64 1.37 1.03
yaaU 2.15 0.55 28.40 0.47 1.33 1.03
copA 2.15 0.57 28.30 0.50 1.30 1.03
araJ 2.16 0.64 28.94 0.52 1.32 1.03
dinF 2.13 0.60 29.45 0.47 1.27 1.04
codB 2.14 0.58 29.43 0.47 1.27 1.04
sbp 2.01 0.67 27.00 0.53 1.27 1.04

amtB 2.29 0.60 29.30 0.53 1.41 1.05
kdpA 2.34 0.60 29.41 0.50 1.42 1.05
yfeO 2.01 0.64 28.17 0.49 1.22 1.06
uidB 2.25 0.55 30.25 0.44 1.36 1.06
caiT 2.34 0.57 30.46 0.45 1.41 1.06
acrB 2.15 0.52 29.25 0.43 1.28 1.07
focA 2.26 0.61 30.58 0.52 1.37 1.09
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2.5. Large-Scale Data Analysis

The generation of a dataset such as this one also allows the large-scale investigation of
relationships between transporters. The heat map of correlations between AUC values for
strains across growth conditions is shown in Figure 8A. We also extracted the p values for
the correlation and found a peak near zero (Figure 8B), indicating likely true positives in the
significant results. We found 35 correlations that met the conditions for significance at p < 0.05
after full Bonferroni correction [31] (with a corrected p value of 2.5 × 10−7). These are shown
in Table 2. One possible application of this type of large-scale data analysis is in predicting
substrates of unannotated transporters by their relationship to transporters with annotations (a
“guilt by association” methodology) (Table 5). For instance, the growth parameters of ∆sapB, a
putrescine exporter knockout, have a high correlation with the knockout of orphan transporter
knockout ∆ydjE (Figure 8C), suggesting transport of compounds similar to putrescine or at
least some overlap in substrate selectivity and function.
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Table 5. Transporters that are highly correlated.

Transporter 1 Transporter 2 Correlation p Value

yihP yhdX 0.91 2.46 × 10−7

ydjK mdtB 0.91 2.36 × 10−7

uup gsiC 0.91 2.36 × 10−7

yicL yhdX 0.91 2.26 × 10−7

btuC araJ 0.91 2.22 × 10−7

mdtG copA 0.91 2.04 × 10−7

rarD adeQ 0.91 2.02 × 10−7

mscK ccmC 0.91 1.98 × 10−7

cynX btuC 0.91 1.72 × 10−7

ybbA cynX 0.91 1.65 × 10−7

mdfA chaA 0.91 1.49 × 10−7

yjfF gdx 0.91 1.24 × 10−7

ynjB gdx 0.91 1.18 × 10−7

nhaB ddpB 0.91 1.16 × 10−7

ydjE sapB 0.91 1.14 × 10−7

yphD gudP 0.91 1.07 × 10−7

ybaT btuC 0.92 9.3 × 10−8

yjfF adeQ 0.92 8.62 × 10−8

ypjA fryA 0.92 5.86 × 10−8

rarD gdx 0.92 5.63 × 10−8

malX amtB 0.92 5 × 10−8

araJ acrB 0.92 4.29 × 10−8

gsiC fetA 0.93 3.67 × 10−8

yaaU sapA 0.93 3.54 × 10−8

uidB mdtG 0.93 3.53 × 10−8

yphD ascF 0.93 2.77 × 10−8

yegT frwC 0.93 2.61 × 10−8

ytfT kup 0.93 1.47 × 10−8

copA ccmC 0.93 1.46 × 10−8

yddB ddpD 0.94 7.5 × 10−9

ybbA mscK 0.95 2.46 × 10−9

mscK fetA 0.95 8.93 × 10−10

cynX araJ 0.96 3.92 × 10−10

gdx adeQ 0.97 5.67 × 10−11

yihP yicL 0.97 7.51 × 10−12

3. Discussion

Identifying substrates and describing the structure activity relationship of bacterial
transporters is a challenging task. Given the importance of transport systems in the function
of most antibiotics, understanding the influx and efflux pathways of antimicrobial agents
is highly relevant to mitigating problem of drug resistant bacteria. In this study, we have
sought to gain insights into the potential influx and efflux pathways of a set of compounds
with antimicrobial activity in E. coli. We have used an automated method to generate a
dataset of growth curves for 447 transporter knockout strains against subinhibitory concen-
trations of 18 structurally diverse compounds with antibacterial activity. Our data showed
results consistent with some previously reported pathways for antibiotic influx and efflux.
We also report on numerous novel specific observations of transporter knockouts that
reduce or enhance growth in the presence of antimicrobials as well as discuss potentially
novel observations from analysis of the full dataset. All data are provided as a resource in
the Supplementary Materials.

There were numerous novel transporter–compound interactions identified in this
study, which suggest the need for follow-up experiments. We have previously developed a
workflow for confirmatory work on the results that involves: (1) PCR to confirm the strain
is correctly labelled, and (2) MIC determination to validate the observed result [20]. Work
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to automate these processes is ongoing and will be detailed in future publications. Once a
specific transporter–compound interaction has been confirmed, the task of finding other,
potentially higher affinity substrates for the transporter is feasible, as often the identification
of an initial substrate is the most difficult step. Tools that can identify compounds “closest”
to the antimicrobial in chemical space [32] will allow detailed investigation of the structure
activity relationship of transporters.

A limitation to the approach described in this study for transporter pathway identifi-
cation is that growth is used as a proxy for transport with no direct measurement. While
the simplest mechanism by which a transporter knockout changes growth in the presence
of an antimicrobial is through the direct alteration of transport, there are other possible
mechanisms. Gene knockouts are well-known to cause pleiotropic effects, with knockouts
of a single gene often causing altered expression in many other genes that may affect
transporter sensitivity [33]. Further validation of predicted effects can be achieved by use
of the ‘ASKA’ overexpression collection [34], where, if the opposite effect is observed (e.g.,
resistance in an overexpression strain and sensitivity in a knockout strain), this could be
seen as providing further evidence that the compound is indeed a substrate of the given
transporter [19,35,36]. Given the large degree of redundancy in transporters (i.e., a given
substrates may be transported by several transporters), more robust follow-up results could
be achieved through investigation of double knockouts, as has recently been demonstrated
in yeast [37].

There are studies that have investigated the growth of the full Keio collection of E.
coli knockouts under different conditions (including numerous antibiotics) on solid me-
dia [27,38,39]. While the use of solid media and the application of advanced robotics allows
a much higher throughput (with all of the above studies run in a 1536-well format), this
does come with limitations. This high-density solid-media growth introduces a “neighbor
effect”, where crowding of the bacterial colonies causes growth inhibition that needs to
be corrected for [38]. Additionally, these studies report one metric or at most two metrics
for growth, which potentially obscures the relevant information only available from the
full growth curve. It should also be noted that while the authors of the above papers all
commendably shared their data, in two out of the above three publications, the provided
links for accessing data are no longer active [27,38], fitting with an observed trend of data
accessibility decreasing in the years following publication [40].

There is a large degree of homology found between transporters of different pathogenic
bacterial families. Given this, as well as the recent advances in prediction of protein
structure from sequence [41,42], we envision that the dataset generated in this paper will be
of use for understanding and predicting the interaction between antibiotics and membrane
transporters in other clinically relevant bacterial species.

4. Materials and Methods

Antibiotics were sourced from Sigma, apart from rifampicin, ceftriaxone and azithromycin,
which were purchased from Tokyo Chemical Industries (Zwijndrecht, Belgium).

Plates were prepared by first inoculating deep-well plates with 1 mL Lucia Broth (LB)
from glycerol stocks of the transporter library. The inoculated LB was grown overnight
under agitation at 37 ◦C. Following overnight growth, the cultures were mixed with 1 mL
50% glycerol. CR1496c polystyrene plates (Enzyscreen, NL, Heemstede, The Netherlands)
were prepared for growth assays, by dispensing a 3 µL droplet of the culture and glycerol
mixture into the bottom of the well. These loaded plates were then stored at −20 ◦C for up
to 3 weeks or −80 ◦C for longer storage.

The growth assays were initiated by adding 297 µL LB, containing the appropriate
dose of antibiotics to the pre-inoculated plates, and sealing with CR1396b Sandwich covers
(Enzyscreen, NL, Heemstede). Growth was assessed using the Growth Profiler 960 (En-
zyscreen, NL, Heemstede), which uses camera-based measurements to estimate growth
rates simultaneously in up to 10 96-well plates. As our library encompassed 5 plates, this
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allowed us to run the full library in duplicate. The Growth Profiler 960 was set to 37 ◦C
with 225 rpm shaking (recommended settings for E. coli), with pictures taken every 20 min.

Inoculation and media loading were performed using an Opentrons OT2 robot fitted
with a 20 µL multichannel pipette and a 300 µL multichannel pipette. Scripts used in
operation can be found at github.com/ljm176/TransporterScreening (11 August 2022).
Growth plates were sterilized between uses by washing and UV in accordance with the
instructions of the manufacturer.

G-values were obtained from the plate images using the manufacturer’s software.
G-values were converted to OD600 values using the formula:

OD600 = a ∗ (Gvalue − GBlank)
b

With the predetermined values a = 0.0158 and b = 0.9854, which were found by
measurement of a standard curve in accordance with the instructions of the manufacturer.

Data analysis and generation of figures was performed in R (version 4.1.2). Growth
rates were determined by using the R package Growthcurver [43]. Growthcurver fits
growth curves to the equation:

Nt =
K

1 +
(

K−N0
N0

)
e−rt

where Nt is total cell population, K is the carrying capacity, initial cell population is N0 and
r is the intrinsic growth rate. For strains that showed growth in only a single replicate, the
replicate without growth was filtered from analysis, as this was determined to be the result
of missed inoculation during automated loading.

Figures were generated using ggplot2 for R. The R script used in data analysis and figure
generation is available at github.com/ljm176/TransporterScreening (11 August 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics11081129/s1. Figure S1: Workflow for high throughput
screening of transporter knockout library against antibiotics. Figure S2: Structures of antibiotics used
in this study; Table S1: Growth Parameters.
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