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Abstract: Many new antimicrobials are analogs of existing drugs, sharing the same targets and
mechanisms of action. New antibiotic targets are critically needed to combat the growing threat of
antimicrobial-resistant bacteria. Phage-related ribosomal proteases (Prps) are a recently structurally
characterized antibiotic target found in pathogens such as Staphylococcus aureus, Clostridioides difficile,
and Streptococcus pneumoniae. These bacteria encode an N-terminal extension on their ribosomal
protein L27 that is not present in other bacteria. The cleavage of this N-terminal extension from L27
by Prp is necessary to create a functional ribosome. Thus, Prp inhibition may serve as an alternative
to direct binding and inhibition of the ribosome. This bioinformatic and structural analysis covers the
discovery, function, and structural characteristics of known Prps. This information will be helpful in
future endeavors to design selective therapeutics targeting the Prps of important pathogens.

Keywords: phage-related ribosomal protease; bioinformatics; X-ray crystal structure; antimicrobials;
new targets

1. Introduction

Antibiotic resistance is a continuously worsening global health threat. The prevalence
of antibiotic-resistant pathogens continues to increase. The number of novel antibiotics
approved by the FDA has decreased over the past 30 years [1]. This imbalance is demon-
strated by the CDC’s estimated >2.8 million cases of antibiotic-resistant infections annually
in the United States. Out of these infections, over 35,000 result in death [2]. This is a
40% increase in antibiotic-resistant infections compared to 6 years ago [2].

Rather than targeting only pathogenic bacteria, many common antibiotics kill much
of the host’s microbiome in addition to the pathogen. Under normal circumstances, these
commensal bacteria help keep opportunistic pathogens under control. However, when
commensals are depleted, it can increase the risk of secondary infection from opportunistic
pathogens. For example, antibiotics patients are at increased risk for Clostridioides difficile
infections, a bacterium that can cause deadly diarrhea if growth is not controlled [2].
C. difficile secondary infections caused 223,900 hospitalizations throughout 2017 in the USA,
including 12,800 deaths [2]. These staggering numbers have caused the CDC to classify
C. difficile as an urgent threat. Other species considered serious threats by the CDC include
Staphylococcus aureus and Streptococcus pneumoniae, with 900,000 and 323,000 cases in the
USA annually [2]. Between the number of species that have developed antibiotic resistance
and the risk of secondary infections, antibiotic resistance poses a major threat to human
health. New mechanisms and targets for treating these infections must be developed that
adopt more selective approaches to targeting pathogenic bacteria.

The ribosome is an essential organelle involved in protein translation and has served
as one of the most commercially successful antibiotic targets in history [3]. Several classes
of antibiotics utilize different mechanisms to target the bacterial ribosome, including
tetracyclines [4], oxazolidinones [5,6], macrolides [7,8], and aminoglycosides [9,10]. The
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goal of these antibiotics is to interfere with the synthesis of proteins essential for the
bacteria’s survival. Given the size and complexity of the ribosome, there are likely many
additional undiscovered ways to target it, and it remains a fruitful antibiotic target.

An essential component of the ribosome in bacteria such as S. aureus, C. difficile, and
S. pneumoniae is ribosomal protein L27. Some species of bacteria, such as these Firmicute
pathogens, have a slightly different L27 compared to other species, such as the Proteobac-
teria Escherichia coli [11]. The L27 present in Firmicutes, Tenericutes, and Fusobacteria
(long L27) have an N-terminal extension that must be cleaved during ribosomal assembly
to produce a functional ribosome [12]. The enzyme that performs this cleavage was dis-
covered to be a part of a new class of cysteine proteases named phage-related ribosomal
protease (Prp). Since only a specific subset of bacteria contain Prp, targeting this enzyme
could spare many commensal bacteria that do not use it. Sparing commensal bacteria
should also reduce selective pressure, slow antibiotic resistance rates, and reduce negative
health outcomes associated with microbiome depletion [13]. Thus, Prp may represent a
promising narrow-spectrum antibiotic target, and the information provided in this article
will be helpful in future endeavors to design selective therapeutics targeting the Prps of
important pathogens.

1.1. Discovery of Prp & Phage Relation

The discovery of Prp’s function first occurred in a study examining capsid assembly
in Staphylococcal phage 80α. Gp46 and gp47 are the major capsid and scaffold proteins,
respectively, that assist in assembling the capsid of 80α. The successful incorporation of
gp46 and gp47 into the capsid is dependent on a posttranslational cleavage. Some phages
encode for “prohead” proteases that will conduct cleavage of structural proteins; however,
no such protease is found in 80α [14,15]. This suggests that the protease used to cleave
the scaffold proteins originated within the Staphylococcal genome. To test this hypothesis,
gp46 and gp47 were expressed in both S. aureus and E. coli. Cleavage of both capsid and
scaffold was observed in S. aureus but not E. coli, suggesting that this hypothetical protease
was endogenous and specific to S. aureus [16]. The gp46 and gp47 were then compared to
the S. aureus proteome to identify similar cleavage sequences and the protease responsible
for their cleavage within S. aureus (Table 1). The N-termini of gp46 and gp47 were highly
similar to that of ribosomal protein L27 [16,17].

Table 1. The amino acid sequence present in Staphylococcal phage 80α aligned with the sequence of
L27 in S. aureus.
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1.2. Ribosomal Protein L27

The bacterial ribosome is comprised of ribosomal RNA (rRNA), and ribosomal pro-
teins (RPs) organized into two subunits, the 50S and 30S (Figure 1) [18]. These proteins
assist in the structural stability of the ribosome, mRNA translation, and protein assem-
bly [19]. One source of confusion lies in the naming convention of these proteins. For
example, the eukaryotic RP L27 is homologous to RP L15 in bacteria, while the RP L27 in
bacteria has no known homolog in eukaryotes [20,21]. Of the 54 RPs found in the bacterial
ribosome, approximately 15 are always considered essential and 22 are considered non-
essential, although deletion of non-essential RPs typically results in significant issues such
as truncated protein production, protein aggregation, and severely stunted growth [20].
Of note, the number and composition of RPs considered essential differ slightly in each
bacterial species and is often highly dependent on growth conditions, such as temperature
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and nutrients. For example, L21, L27, L30, S9, S15, and S17 are essential in B. subtilis but
not E. coli, while the opposite is true for L22, L23, L28, and S1 [20].
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is made of rRNA (dark blue) and 34 RPs (light blue). The small subunit (30S, red) contains rRNA
(red) and about 21 RPs (salmon). L27 (green) is mainly located in the 50S ribosomal subunit (blue)
but has an N-terminal tail that reaches the peptidyltransferase center (PTC) at the interface between
the 50S and 30S (red) subunits. (B). Large subunit-associated RPs directly interacting with tRNA.
This includes L27’s N-terminus (green) stabilizing the 3′ ends of tRNA in both the A-site (orange)
and P-site (cyan). PDB code: 4V6F. All images produced with PyMOL Molecular Graphics System,
Version 2.0 Schrödinger, LLC.

In the case of RP L27 (Figure 1, green), its N-terminal tail stabilizes the 3′ end of
tRNA in the A- and P-site within the peptidyltransferase center (PTC) of the ribosome
(Figure 1B), allowing for efficient translation of mRNA [12,22,23]. The only other RP known
to interact directly at the PTC is L16, which acts mainly to stabilize A-site tRNA [20]. Non-
direct contributing RPs to PTC activity include L1 (exit gate for tRNA), L5 (stabilization
of P-site tRNA at elbow region), L9 (P-site tRNA stability), L11 (stringent response A-site
tRNA deacetylation sensing), and S12 (decoding codon of A-site tRNA) [20,24]. Some also
consider RPs L4, L17, L22, L23, L29, and L32 as indirect actors of the PTC, as they form
an exit tunnel to stabilize the peptide as it is produced and guide it out of the ribosomal
complex [20,25].

In S. aureus, L27 is considered an essential protein as knockouts result in non-viable
cells and complementation on a plasmid was able to restore function [16]. The essentiality
of L27 in Firmicutes other than B. subtilis and S. aureus has not been experimentally proven.
The direct interaction of L27 with the 3′ end of tRNA indicates an important role in
translation, supporting the notion of their essentiality [12,22,23]. Converse to this, Yutin et al.
showed that the gene for L27 does not duplicate in a phylogenetic study of over 50,000 RPs,
suggesting a lack of need, as proteins with paralogs are more likely to be essential [26].
While fundamentally important, the essentiality of L27 may not be a significant problem
in the context of infection treatment. Significant growth defects and increased protein
aggregation are seen when L27 is knocked out in bacteria that do not require L27 for
viability, such as E. coli [27]. These negative effects are also seen when the N-terminus is
truncated by three amino acids or when L27 is phosphorylated, emphasizing the importance
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of L27’s interaction with tRNA for reliable protein translation [28,29]. This stagnation in
growth may allow Prp inhibitors to act as nearly bacteriostatic agents for pathogens in
which L27 is not essential for growth and facilitate immune system clearance [30].

1.3. Prp as a Cleavage Enzyme

Some bacteria, including S. aureus, encode “long” L27 with a supernumerary cleavage
sequence on the N-terminus that is not seen in others such as E. coli. This grouping of
bacteria was initially thought to be limited to Gram-positive low GC species, but has since
been expanded to include Firmicutes, Fusobacteria, Synergistetes and some Thermotogae
and Tenericutes [16,26,31]. In the case of S. aureus, this sequence is 9 AAs (amino acids)
long (MLKLNLQFF’ASK . . . ), but sequences as long as 15 AAs have been observed
(Table 2) [11,32]. Prp is the protease responsible for this essential cleavage [11]. This
sequence must be cleaved from L27 before incorporation into the ribosome, or it will
prevent tRNA binding through steric hindrance (Figure 1B). This was shown, as S. aureus
encoding an L27 with an “uncleavable” sequence (MLKLNLQAAASK . . . ) was non-viable.
Additionally, E. coli expressing SaL27 without Prp was prone to extremely slow growth
after protein expression [16].

Most species’ long L27 cleavage sequences follow the following motif: MLxx(D/N)LQ
(F/L)F’A(S/H)KK, with xx being a variable domain (Table 2) [16]. However, each species en-
codes for an L27 with a cleavage sequence that is highly specific to that species’ Prp [12,32].
Purified SaPrp has been seen to cleave a fluorescently labeled SaL27-based peptide (FITC-
KLNLQFFASKK-Dnp) with a catalytic efficiency (Kcat/KM) of 74,000± 38,000 M−1 s−1 [32].
This cleavage was not inhibited by a library of common protease inhibitors, including many
broad-spectrum covalent cystine protease inhibitors, indicating Prp’s resistance to inhibi-
tion. Although the thiophilic compound mersalyl acid was used as a positive inhibition
control in this assay, its general toxicity and non-selective nature preclude it from clinical
consideration [32,33]. Additionally, the Prp of C. difficile was unable to cleave the SaL27-
based peptide, further indicating the specificity of Prp to its endogenous substrate [32].

Of note, the proteolytic activity of Prp has not been directly experimentally observed
in cellulo for any species other than S. aureus and B. subtilis [16,34]. There is some evidence
of the activity of Prp, however, as no published crystal structures of L27 within a ribosome
contains residues N-terminal to the conserved A(S/H)KK motif [35–40]. These structures
also suggest that addition of residues would reach into the PTC and interfere with protein
synthesis. Antibiotics that act at the PTC, such as oxazolidinone, have also been shown to
crosslink to the A(S/H)KK motif of L27 in E. coli and S. aureus, but not to any residues past
this point [5,41]. Additionally, the phylogenetic and structural similarities discussed in this
paper suggest that Prp activity, at least within the Firmicutes phyla, would be consistent
with that seen in S. aureus.
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Table 2. L27 N-terminal extension cleavage sequence comparison.
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2. Materials and Methods
2.1. Bioinformatics

Alignments of gp46, gp47, L27, Prp, and FlhB peptide sequences were performed
using Cluster Omega v1.2.4, available on the UniProt website (uniprot.org, Release 2022_02,
The UniProt Consortium [42]) with default settings and zero iterations. Similarity outputs
were then used as data for the colored rendering in Tables 1–3. FlhB sequences were
compared to the L27 cleavage motif [MLxx(D/N)LQ(F/L)F’A(S/H)KK] by hand.



Antibiotics 2022, 11, 1109 6 of 20

Table 3. FlhB and L27 N-terminal extension cleavage sequence comparison.

Antibiotics 2022, 11, x FOR PEER REVIEW 9 of 21 
 

 

Phylum Species Protein FlhB 

Firmicutes 

B. subtilis 
L27 M-LRLDLQFF’A-SKK… 

FlhB MKLRVDLQFF’AG-----EKTEKATPKKRKDTRK-KGQVAKS… 

C. difficile † L27 M—LNMNLQLL’A-SKK… 

FlhB M…FALAPMFF’MGSTD---KTEEATPKKKGEQRK-KGNIAKS… 

C. tetani † L27 M-LLMNLQLF’A-TKK… 

FlhB M…VPPILFIF’A-SED---KTEEATPHKLQEARK-KGQVAKS… 

E. rectale 
L27 M-LNMNLQFF’A-HKK… 

FlhB M…LCYNLQWF’AQDGEGGEKTEPATEKKLKDARE-EGKVAKS… 

Spirochete 

B. pilosicoli † FlhB M…RGFALTLF’ASAEDEG-RTELPTERKKRRAREEEGRVVNS… 

B. recurrentis † FlhB M…WYIPLNFF’ASE-DEG-RTEVPTEQRKQKARR-EGQVLKS… 

B. burgdorferi † FlhB M…WYIPLDFF’SAD-DEG-RTELPTDQKKQKARE-EGRVLKS… 

L. biflexa FlhB M…YEIQLQLF’AAA-DEG-RTEPPSERRRREEKE-KGNVPKS… 

T. pallidum † FlhB M…FIIDLQWF’AAE-DEG-RSEDPTETKLRKARE-EGRVPKS… 

Thermotogae 
T. lettingae FlhB M…KKLFKQLF’ADP--E--KTEKPTPRRRRKARE-EGQVATS… 

T. maritima FlhB M…IE--LLLF’AEA--E--RTERATPRKRRRVRE-EGRAPVS… 

T. naphthophila FlhB M…IE--LLLF’AEA--E--RTERATPRKRRRVRE-EGRAPVS… 

Proteobacteria * E. coli FlhB M---------’SDESDD--KTEAPTPHRLEKARE-EGQIPRS… 

 * S. Typhimurium † FlhB M---------’AEESDDD-KTEAPTPHRLEKARE-EGQIPRS… 

 
† Obligate pathogen, * does not have Prp, sequences following the L27 cleavage motif in green, high 
FlhB conservation in dark blue, moderate FlhB conservation in blue, low FlhB conservation in light 
blue. Bolded red residues indicate positions known to be important for motility. Alignments per-
formed with Cluster Omega. 

 
Some bacteria, such as many Spirochetes and Thermotogae, have a Prp-FlhB pheno-

type (i.e., Prp and FlhB containing, but lacking a long L27). These include the pathogens 
B. burgdorferi, the causative agent of Lyme disease, and Treponema pallidum, the causative 
agent of syphilis. Deep tissue penetration and persistence are common in these pathogens 
and can lead to lifelong illness [48,49]. FlhB is considered a pathogenesis factor in many 
pathogens in which it is present, as it is essential for motility and, therefore, infection dis-
semination throughout the host [50]. If the N-terminal FlhB cleavage by Prp is essential 
for motility in these pathogens, then a Prp-directed therapy could be used as an adjuvant 
therapy to prevent deep tissue progression of bacteria. 

3.3. Mechanism 
3.3.1. Proteolytic Mechanism of Prp 

Prp is a cysteine protease. Every living organism contains cysteine proteases, as they 
are crucial to many important cellular functions [51–53]. Cysteine proteases have either 
catalytic triads (Cys-His-Asn) or dyads (Cys-His) that assist in irreversibly cleaving pro-
teins. Cysteine proteases that use a catalytic dyad are initialized by deprotonation of cys-
teine by the histidine (A). This thiolate acts as a nucleophile to attack the carbonyl carbon 
of the amide (B) to form an oxyanion tetrahedral intermediate (C), which breaks down to 
form an intermediate thioester (D), that is subsequently cleaved by water (E) (Figure 3) 
[54]. Even though cysteine proteases follow this general mechanism, each enzyme con-
tains residues with slightly different sequences, allowing for different substrate specific-
ity. Due to the wide array of functional capabilities of cysteine proteases, they have be-
come a popular drug target in recent years, as they stand as possible treatment options for 
many diseases [55].  

† Obligate pathogen, * does not have Prp, sequences following the L27 cleavage motif in green, high FlhB
conservation in dark blue, moderate FlhB conservation in blue, low FlhB conservation in light blue. Bolded red
residues indicate positions known to be important for motility. Alignments performed with Cluster Omega.

Both the L27 and Prp phylogenic trees were created using the sequence analysis
software Geneious 2022.1 (Biomatters, Auckland, New Zealand) available for download
at https://www.geneious.com (accessed on 23 June 2022). Accession codes were used to
retrieve L27 and Prp sequences on UniProt for representative bacteria of the following
phyla: Firmicutes, Fusobacteria, Proteobacteria, Synergistetes, Spirochete, Tenericutes, and
Thermotogae. The genomic DNA FASTA sequences were downloaded from the Europena
Nucleotide Archive (ENA) database and imported into Geneious. All L27 sequences species
of bacteria were aligned using a Geneious global alignment with free end gaps, and a cost
matrix of 65% similarity. This alignment was then used to create a neighbor-joining tree
model, with no outgroup. The genetic distance model utilized was Tamura-Nei. Branches
were selected to be proportionate and ordered.

2.2. Structural Analysis

Structural analysis was performed on crystal structures available on the protein data
bank (unbound S. aureus: 4PEO, bound S. aureus: 7KLD, unbound S. mutans: 2IDL, unbound
S. pneumoniae: 2G0J, and unbound T. maritima: 1S12). These files were read directly into
PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. The waters, ions, and
any other molecules used in the crystallization process were removed prior to alignment.
In structures containing more than one dimer, the dimer containing the B and D subunits
was kept and other atoms removed. All structures were then aligned to the bound SaPrp
structure (7KLD) to allow for direct comparison. Measurements were performed with
the Wizard measurement tool. Images were taken using the ray setting and modernized
rendering. Annotations were made by hand in Microsoft® PowerPoint® Version 2205.

3. Results and Discussion
3.1. Bioinformatics

The gene for Prp is ysxB (previously called DUF464) and is located between the genes
for ribosomal proteins L21 (rplU) and L27 (rpmA). Both rmpA and ysxB have been classified
as essential in S. aureus by saturation transposon mutagenesis [43]. The Prp of S. aureus

https://www.geneious.com
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(SaPrp) is recognized as the prototypical member of cysteine protease group number
108 (C.108) within clan CR (MEROPS protease database). One of the many benefits of
bacterial Prp as an antimicrobial target is that no human analogs exist within the C.108
family or CR clan. The only other enzyme in the CR clan is another cysteine protease that
cleaves an N-terminal extension of about 40 amino acids from a capsid protein within
Staphylococcal bacteriophage CP-1 [44].

Several phyla of bacteria have been found to contain long L27 through bioinformatic
analysis, including Firmicutes, Fusobacteria, Synergistetes, and some Thermotogae and
Tenericutes [16,26]. There exists a ribosomal phylogenetic grouping termed Megaphyla
III, which includes Firmicutes, Fusobacteria, and Tenericutes. This group is also closely
related to Synergistetes, which illustrates the abundance of similarity in the ribosomal
characteristics between the phyla containing long L27 [31]. All species encoding long L27
also encode for Prp. The inverse is not true as some bacteria containing Prp do not encode
long L27 [16].

Genetic bioinformatic analysis was conducted on selected representative species from
the six phyla that encode Prp. The phylogenic tree produced from L27 nucleotide sequence
comparison shows good agreement with overall genetic and phylogenic classifications
of these species. The L27 tree also shows similar trends in evolutionary relation to the
previously published L27 phylogeny by Wall et al. [11]. Of note, this new tree shows
multiple bacteria which contain Prp without long L27 (Figure 2). The prevalence of this
phenotype indicates an alternative function of the enzyme, such as cleavage of the flagellar
protein FlhB (discussed in Section 3.2).

The phylogenic tree comparing nucleotide sequences of Prp revealed a very different
organization. Compared to the L27 tree, this phylogeny tells a story of widely varying Prps,
even among those phyla that encode for a long L27. In the species that do not contain long
L27, such as T. maritima and B. burgdorferi, Prp does not have the role of cleaving L27, and
thus the greater evolutionary differences observed were expected. However, in phyla such
as the Firmicutes a conservation in Prp was expected due to the similarity observed in their
L27s. This was not the observed phenomena. This may, in part, be due to the L27 cleavage
motif differences observed. For example, the Streptococcal species are all highly similar in
their L27s (>94% identity), however the S. mutans Prp (SmuPrp) is significantly different
(<50% identity) from that of S. oralis and S. pneumoniae (97.37% identity between S. oralis
and S. pneumoniae). This is reflected in the eight residues of the L27 cleavage motif proximal
to the cleavage point. S. mutans has a sequence slightly different ( . . . NLANLQLF’ . . . ) to
that of S. oralis and S. pneumoniae ( . . . TLNNLQLF’ . . . ). This minor change in L27 results
in a significant change required in Prp.
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3.2. Prps of Bacteria without an L27 N-Terminal Extension

Some species of bacteria encode for Prp without long L27, including all Spirochetes
and some Tenericute and Thermotogae [30]. Since these species do not use Prp in ribosomal
maturation, targeting these Prps would likely not affect protein synthesis. The endogenous
ligand for these Prps has yet to be elucidated; however, Wall et al. proposed FlhB as a
potential cleavage candidate in flagellated bacteria [16]. FlhB is a component of the export
gate for flagella, as well as the flagellar-derived type III secretion system (T3SS), and is often
considered essential for motility [45]. In bacteria that use a T3SS, FlhB is also considered
vital for pathogenesis [46]. FlhB is subdivided into two major domains: the N-terminal
domain, FlhBTM, consists of four transmembrane α-helicies, and the C-terminal domain,
FlhBC, which is located in the cytoplasm. FlhBC is known to undergo autocleavage as part of
its role in substrate switching, an important part of the T3SS pathogenesis mechanism, and
much research on FlhB has focused on this domain. As a result, not much is known about
FlhBTM other than its binding position in the FliPQR-FlhB export apparatus. Minamino
et al., however, did show that a P28T mutation in the FlhB of Salmonella enterica serovar
Typhimurium (S. Typhimurium) resulted in significantly decreased motility and flagellar
protein expression, indicating some role for this region [47].

In B. subtilis, a bacterium with both long L27 and flagella, the cleavage sequence for
L27 matches almost exactly with a proposed cleavage site in FlhB (MLRLDLQFF . . . and
MKLRVDLQFF . . . , respectively). Additionally, the FlhB in other bacteria, such as E. coli,
does not extend past this potential cleavage site (Table 3). This indicates that BsPrp may be
doing double duty, cleaving both L27 and FlhB. This pattern of FlhB retaining homology
to the long L27 cleavage motif is true for other Firmicutes with both proteins (Table 3),
suggesting that both cleavages may be occurring in bacteria with long L27 and the extended
FlhB. In bacteria with no long L27, the role of Prp may be exclusive to cleavage of FlhB.

Some bacteria, such as many Spirochetes and Thermotogae, have a Prp-FlhB pheno-
type (i.e., Prp and FlhB containing, but lacking a long L27). These include the pathogens
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B. burgdorferi, the causative agent of Lyme disease, and Treponema pallidum, the causative
agent of syphilis. Deep tissue penetration and persistence are common in these pathogens
and can lead to lifelong illness [48,49]. FlhB is considered a pathogenesis factor in many
pathogens in which it is present, as it is essential for motility and, therefore, infection
dissemination throughout the host [50]. If the N-terminal FlhB cleavage by Prp is essential
for motility in these pathogens, then a Prp-directed therapy could be used as an adjuvant
therapy to prevent deep tissue progression of bacteria.

3.3. Mechanism
3.3.1. Proteolytic Mechanism of Prp

Prp is a cysteine protease. Every living organism contains cysteine proteases, as they
are crucial to many important cellular functions [51–53]. Cysteine proteases have either
catalytic triads (Cys-His-Asn) or dyads (Cys-His) that assist in irreversibly cleaving proteins.
Cysteine proteases that use a catalytic dyad are initialized by deprotonation of cysteine by
the histidine (A). This thiolate acts as a nucleophile to attack the carbonyl carbon of the
amide (B) to form an oxyanion tetrahedral intermediate (C), which breaks down to form an
intermediate thioester (D), that is subsequently cleaved by water (E) (Figure 3) [54]. Even
though cysteine proteases follow this general mechanism, each enzyme contains residues
with slightly different sequences, allowing for different substrate specificity. Due to the
wide array of functional capabilities of cysteine proteases, they have become a popular drug
target in recent years, as they stand as possible treatment options for many diseases [55].

Prps were initially believed to have an Asp-His-Ser catalytic triad, due to the proximity
of the residues in the available inactive crystal structures and inactivity of the D31A mutant
in vitro studies [11,12]. However, the crystal structure of Prp with a covalently bonded
ligand does not support this hypothesis [32]. Instead, this crystal structure shows that
Asp31 may play a structural role as it stabilizes the binding site flexible loop using four
hydrogen bonds to backbone amides. In addition to these hydrogen bonds, Asp31 also
contributes a negative charge that assists in stabilizing the positive amino terminus of the α-
helix dipole. In the wild-type protein, the sidechain of this aspartate is located between the
catalytic cysteine and the β-loop at His25, shortening the α-helix slightly. Some interactions
between Asp31 and Cys34 are possible but unlikely. When Asp31 is lost completely in the
D31A mutation, the enzyme’s function is also completely lost, implying that stabilization
of this loop is crucial to having a functional active site [11,12].

The prototypical Prp, SaPrp, uses the catalytic dyad of Cys-His to cleave the cleavage
motif from long L27 and release mature L27. H22A, C34A, and C34S SaPrp mutants have
>95% loss in catalytic activity, implying that these residues are the catalytic dyad used in
hydrolysis [11,12]. In initial in vitro experiments, the loss of catalytic activity in the H22A
mutant was associated with the loss of the ability to accept a proton from the active site
Cys34 (Figure 3A) [12]. However, the recently published covalent complex shows His22
on the opposite side of the substrate than Cys34, implying that accepting a proton from
this residue would be very improbable (although not impossible) [32]. A likely alternative
mechanism is that His22 acts as a general acid proton donor to the backbone amide on the
carboxyl side of the scissile bond that then becomes the leaving group (Figure 3).
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Figure 3. Mechanism of SaPrp proteolysis of long L27 (green) via a canonical cysteine protease
catalytic dyad comprising Cys34 (orange) and His22 (blue). (A). Initiation via deprotonation of
cysteine by the histidine. (B). Cystine thiolate acts as a nucleophile to attack the carbonyl carbon
of the amide. (C). Oxyanion tetrahedral intermediate breaks down. (D). Intermediate thioester is
attacked by water. (E). Cleavage is completed and product released.

In mutating Cys34 to serine, Prp was essentially changed from a cysteine protease
to a serine protease. As with most other serine proteases, the high pI of the hydroxyl
group within serine requires a proton-accepting group to form the seroxide nucleophilic
group that will attack the substrate [56]. Cysteine, however, can form its nucleophilic group
through deprotonation by either a proton acceptor or solvent at physiological pH [55].
The option of solvent deprotonation (Figure 3) allows Cys34 to function, even if His22
imidazole is on the opposite side of the scissile bond and, therefore, unable to act as a
proton acceptor. This mechanism is strongly supported by the recently published SaPrp
crystal structure [32].

3.3.2. Prp as a Ribosomal Protein Chaperone

There is some indication that Prp acts as a chaperone for L27 during ribosomal matura-
tion. The first indication of this was that S. aureus encoding “pre-cleaved” L27 (M’ASK . . . )
that is identical to the L27 found in mature ribosomes were found to have significant growth
defects [11,12]. Without tight binding to Prp, likely due to the missing cleavage sequence,
there are issues with L27 incorporation that result in either misfolding or insufficient ma-
ture ribosome assembly [16]. This notion is supported by Prp sharing characteristics with
known ribosomal protein chaperones, such as genetic encoding directly upstream of the
binding partner and chaperone binding to the ribosomal protein’s N-terminus during
translation [57–59]. The study of dedicated RP chaperones is underdeveloped, with only
9 of 80 RPs in yeast having specific chaperones and no specific chaperones having been
defined in bacteria [58,59].

Overexpression of an SaPrp C34A mutant resulted in growth defects of the bacteria
compared to WT Prp. This could be attributed to the 50% decrease seen in mature 70S
ribosomes, concurrent with an accumulation of the aberrant pre-50S particles. These
particles lacked the late-binding RPs L16, L27, and L25, indicating a ribosome trapped in
the late stage of maturation. Interestingly, both L27 and L16 interact directly with tRNA
at the PTC, and Western blot analysis of a pre-50S subunit within the C34A Prp showed
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Prp/L27 complexed with the subunit [12]. This evidence again suggests Prp may play a
role in stabilizing the 50S ribosomal subunit or late RP incorporation during maturation.

SaPrp has a high catalytic efficiency (74,000 ± 38,000 M−1 s−1) relative to other cys-
teine proteases (approx. 100–25,000 M−1 s−1) [60–63]. This is partly due to its low Km
(3.4 ± 1.8 µM), which may reflect a tight binding and, therefore, slow koff for the bound
cleavage substrate of the SaPrp catalyzed reaction. Also consistent with tight binding is
that the cleaved portion of the substrate has been shown to act as a competitive inhibitor
to catalysis [12]. This tight binding of L27 after cleavage is consistent with the proposed
chaperone function of SaPrp during ribosome maturation.

3.4. Structure

High-resolution three-dimensional molecular structures are often indispensable for
drug design [64]. These structures help with the virtual screening and refinement of
possible drug candidates. There are currently four bacterial species with published crystal
structures of Prp without a ligand in the active site (S. aureus: 4PEO, S. mutans: 2IDL,
S. pneumoniae: 2G0J, and T. maritima: 1S12). Each of these four structures show the catalytic
dyad (His and Cys) at distances or orientations not suitable for catalysis [65–68]. This
variation in conformation is likely due to the flexible loop (Figure 4, L2), which acts as a
clamp during catalysis.

Antibiotics 2022, 11, x FOR PEER REVIEW 11 of 20 
 

variation in conformation is likely due to the flexible loop (Figure 4, L2), which acts as a 
clamp during catalysis. 

 
Figure 4. General structure of Prp. 

After the cleavage function of Prp was determined in S. aureus by Wall et al., SaPrp 
became the founding member of family C.108 [11]. This family is characterized by a novel 
and unique peptide chain homology of NC, ββαββαβ (Figure 4). Family C.108 has high 
fold conservation, approximately 20–30% identity on average, and is conserved among 
classes: Bacilli, Spirochaetales, and Thermotogales [31]. In 2022, the first crystal structure of 
Prp bound to substrate was published for S. aureus (PDB: 7KLD) and now serves as the 
basis for comparison of bound to unbound Prp analysis. 

3.4.1. Case Study: SaPrp Structural Studies 
The first high-resolution partial crystal structure of SaPrp (RCSB ID: 4PEO) was 

published in 2015 [69]. A significant drawback of this structure is the lack of electron 
density for residues from positions 23–31 (Figure 5A). This missing segment contained 
Cys34 which, along with His22, makes up the catalytic dyad. This segment was presumed 
to be flexible and hypothesized to stabilize upon binding the N-terminal pre-L27 
sequence, thereby organizing the catalytic site and effecting cleavage. To obtain a fully 
resolved crystal structure of the binding site to facilitate drug discovery, Hotinger et al. 
used a peptide substrate containing a chloromethyl ketone (CMK) warhead to covalently 
link with SaPrp to stabilize the L2 flexible loop (Figure 5) [32]. This resulted in the first 
bound Prp crystal structure with a substrate bound, and the first SaPrp with a fully 
resolved L2. 

Figure 4. General structure of Prp.

After the cleavage function of Prp was determined in S. aureus by Wall et al., SaPrp
became the founding member of family C.108 [11]. This family is characterized by a novel
and unique peptide chain homology of N→C, ββαββαβ (Figure 4). Family C.108 has high
fold conservation, approximately 20–30% identity on average, and is conserved among
classes: Bacilli, Spirochaetales, and Thermotogales [31]. In 2022, the first crystal structure of
Prp bound to substrate was published for S. aureus (PDB: 7KLD) and now serves as the
basis for comparison of bound to unbound Prp analysis.

3.4.1. Case Study: SaPrp Structural Studies

The first high-resolution partial crystal structure of SaPrp (RCSB ID: 4PEO) was
published in 2015 [69]. A significant drawback of this structure is the lack of electron
density for residues from positions 23–31 (Figure 5A). This missing segment contained
Cys34 which, along with His22, makes up the catalytic dyad. This segment was presumed
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to be flexible and hypothesized to stabilize upon binding the N-terminal pre-L27 sequence,
thereby organizing the catalytic site and effecting cleavage. To obtain a fully resolved
crystal structure of the binding site to facilitate drug discovery, Hotinger et al. used a
peptide substrate containing a chloromethyl ketone (CMK) warhead to covalently link with
SaPrp to stabilize the L2 flexible loop (Figure 5) [32]. This resulted in the first bound Prp
crystal structure with a substrate bound, and the first SaPrp with a fully resolved L2.
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Figure 5. Surface representation of published SaPrp structures. (A). Unbound SaPrp (4PEO, violet,
1.73 Å) overlaid with liganded SaPrp (7KLD, cyan, 2.25 Å) bound to covalent to L27-like covalent
inhibitor (KLNLQFF-CMK, green). (B). SaPrp binding site showing movement of catalytic His22
upon binding (red arrow). Flexible loop and catalytic residues in darker shades. All images produced
with PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.

Along with the complete resolution of SaPrp, the new structure provides insights into
the bound versus unbound conformation of Prp. Although the His22 of both structures is
resolved, the His22 of the unbound structure resides in space that becomes occupied by
substrate in the covalently bound structure. The His22 in the bound structure moves out of
the way (Figure 5B, red arrow) to allow for the P1–P2 position residues to take its place.
Similar restructuring can be seen in the Asp62-Gly65 region, although conclusions cannot
be drawn due to the low-resolution nature of the region in the unbound structure.

The 7KLD structure also provided the first glimpse into the binding site interactions
made between Prp and L27. Many of the interactions that Prp uses to stabilize its covalently
bound substrate are hydrophobic. At the P1–P2 position of the binding site, there is a
Phe-Phe which makes an edge-to-face π-π “interaction network” with the Prp’s Phe42
(Figure 6A). It has also been indicated that P1 forms a π-π stacking interaction with His22
of Prp [12]. Without this interaction, His22 would be too mobile to be able to participate
in catalysis. Because of this, most known L27 sequences contain phenylalanine in the P1
position (Table 2). Additionally, L4 and L6 occupy desolvated space at the interface of
the Prp dimer (Figure 6A). Collectively, these hydrophobic interactions most likely help
position the bound peptide correctly for cleavage. Furthermore, at the P1′ position, this
structure contains an alanine and illustrates a considerable size limitation at this position of
the peptide. The P1′–P2′ substrate positions of known Prp substrates are occupied by small
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residues such as alanine and serine (Tables 1 and 2), which further supports the theoretical
special limitations.
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Figure 6. Interactions between acetyl-KLNLQFF-chloromethylketone (termed Ac-KLNLQFF-CH2-
when covalently bound) and SaPrp. (A). Intermolecular forces between peptide (green) and Prp
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bolded. (B). Interactions between covalently bound peptide (green) and catalytic residues (teal).
(C). Table with L27 cleavage sequence naming conventions. All images produced with PyMOL
Molecular Graphics System, Version 2.0 Schrödinger, LLC. Dashed yellow lines indicate hydrogen
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The P3 position glutamine of the substrate plays two crucial roles in stabilization
and binding. The first role stabilizes the flexible loop L2 through hydrogen bonds with
Gly29 and Asp31, which places His22 in correct proximity to Cys34 for catalytic activity
(Figure 6A). The second role of glutamine is forming an intra-peptide hydrogen bond
between the Nε2 of glutamine and the carbonyl oxygen of the P4 position leucine (Figure 6B).
This stabilizes the peptide in a conformation that can be reacted upon. Glutamine also
forms a similar hydrogen bond from its backbone nitrogen to the sidechain amide oxygen
of the asparagine at the P5 position (Figure 6B). These hydrogen bonds formed could
potentially be the reason for Prp’s high selectivity, as they could help form the confirmation
of the complementary peptide to the active site.

Two different residues create the oxyanion hole responsible for stabilizing the transi-
tion state of the substrate. Ala23 creates the first half through its backbone amide in the
flexible loop (Figure 6A). The imidazole sidechain of His22 completes the other half. This
imidazole contains a protonated Nδ1 that is 4.5 Å away from the thioester carbonyl oxygen
of Cys34 that covalently attaches to the bound substrate in this crystal structure (Figure 6B).
However, with a true substrate bound, such as L27, the lack of a methylene group bound
to Cys34 should orient His22 so that the imidazole sidechain is within hydrogen bond
distance to Cys34. The L2 flexible loop is flanked by conserved glycine residues (Gly21
and Gly29) that help preserve the oxyanion hole through their flexibility. This flexibility
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creates a fluctuating pocket that minimizes the chance for incorrect bond formation, but
will stabilize both position and charge once catalysis begins.

The Christie Lab constructed SaPrp mutants to evaluate the importance of active
site residues [12]. The G21A, D31A, and S38A mutants were found to be inactive (loss of
catalytic activity over 97%), reiterating their importance for binding and/or cleavage [12,70].
Gly21 and Gly29 were hypothesized to be the amino-terminal and carboxyl-terminal hinge
points for L2 restructuring, respectively. The loss of Gly21 in the G21A mutation results in
a loss of loop flexibility; therefore, this loop cannot be reoriented, blocking the substrate
from binding in a cleavable position.

The stabilization of L2 after restructuring is also essential to ligand binding and
catalysis. Activity was lost after D31, a residue important to L2 stabilization, was mutated
to alanine. Additionally, the inactive G21A mutant Prp may result in a conformation unable
to make the intra-protein hydrogen bond between Gly21 and Gly65. This reduces the
stability of the catalytically active conformation. Although it is unlikely the loss of this
hydrogen bond is the main cause for loss of activity in the G21A mutant, it likely plays
a role.

The SaPrp-peptidyl complex crystal structure shows that the serine located on helix α1
(Ser38) forms several crucial interactions between the substrate and surrounding residues
(Figure 6A). The first of these interactions is a 2.6 Å hydrogen bond with the carbonyl
oxygen within Cys34, likely holding it into catalytic conformation. Ser38 also forms two
hydrogen bonds of 3.5 Å and 3.6 Å with the backbone amides of the residues at substrate
positions P1–P2. Although these interactions are just outside the range of a typical hydrogen
bond, they are likely shorter when interacting with the endogenous ligand rather than
chloromethylketone, because this inhibitor contains a methyl group the endogenous ligand
does not. The function of Ser38 is essential; the interaction with Cys34 stabilizes the
orientation of the catalytic amino acid, and the hydrogen bonds with P1–P2 peptide linkage
allow P1 to interact with Cys34 to be cleaved.

3.4.2. Firmicute Prp Homology

The similarity of Firmicute Prps in structure is evident when comparing the position
of the catalytic residues and other major binding site residues of the available structures. In
the unbound structures, the catalytic histidine and cysteine in each of the structures line
up and have highly similar conformations (Figure 7A). When overlaid with the unbound
SaPrp partial crystal structure, SmuPrp and SpPrp (Figure 7A) showed similar sequences
and confirmations with three minor exceptions: a full turn extension on the N-terminal end
of α2 in SmuPrp (Figure 7A, 1), elongation of the C-terminal end of α1 in SpPrp (Figure 7A,
2), and the different L2 conformation taken by SaPrp (Figure 7A, 3). These differences do
not significantly affect the substrate binding site but may cumulatively result in changes
in cleavage sequence preferences. As an example, the extended α1 in SpPrp may allow
for more space in the P1′–P2′ area to allow for the slightly larger histidine residue in
the P2′ position area (MTLNNLQLF’AHKK . . . ) in comparison to the serine in SaL27
(MLRLDLQFF’ASKK . . . ).

This comparison of structures within a phylum also allows for further evaluation
of the effect of L27-Prp binding. This is because the SmuPrp and SpPrp flexible loops
can provide insights into the placement of the SaPrp flexible loop when in an unbound
conformation. The mobile segment of L2 in SmuPrp rests within the active site, not only
preventing substrate binding but also displacing the catalytic His22 residue, causing this
confirmation of SmuPrp to not be functional (Figure 7B, 1). The His22 can be shifted into the
active site through the movement of the mobile segment along with the substrate binding
of positions P1–P3. This binding of the P1–P3 positions could be one of the contributing
factors to the high specificity of Prp towards the specific pre-L27 within the bacteria (or
Prp inhibitors). Additionally, the terminus of α1 is unwound for nearly one full turn on
the distal end in the unbound SmuPrp (Figure 7B, 2). This region coils much tighter in the
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bound SaPrp to allow for the mobility of the Gly21-Gly26 segment to move out of the active
site which in turn supports substrate binding.
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Another example of this is the stabilizing Gly-Gly hydrogen bond between the C-
terminus of L4 and N-terminus of L2. In unbound SmuPrp, the carboxyl oxygen of Gly66
interacts with the backbone nitrogen of Gly21 at a distance of 3.1 Å. A very similar bond is
found in the bound Prp structure (2.9 Å). The unbound SaPrp structure, however, has 7.3 Å
between these atoms, as Gly65 is facing the opposite direction. Although this may be due
to poor resolution in this region, it may also reflect some of the restructuring undergone by
SaPrp upon interaction with L27.

Along with the catalytic residues, other conserved binding site residues, such as Ser38
and Phe42 on the α1 helix, can be compared in the context of binding (Figure 7B). Of
note, the Phe42 of SaPrp was previously thought to be conserved, as it makes important
interactions with SaL27 during binding. This position is, however, seen to be variable,
as the SmuPrp has isoleucine at residue 42 and the SpPrp has methionine at residue 41.
Changes at these binding site residues may be the cause of some of the selectivity that has
previously been observed.

3.4.3. Non-L27 Cleaving Prps

The Prp in bacteria that do not have long L27 tend to have shorter flexible loops,
potentially allowing for larger and less specific substrates or due to lack of use of the
protease [11,16]. These Prps also tend toward more neutral isoelectric points (PIs) as
opposed to the acidic nature of Firmicute Prps (e.g., SaPrp = 4.45) [11,16,32]. There currently
exists only one Prp crystal structure of a non-L27 cleaving Prp, that of T. maritima (1S12).
The catalytic residues of this structure align with the corresponding residues within the
bound SaPrp crystal structure (Figure 8). This is likely due to the very short nature of its L2,
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measuring half the residues (Gly15-Asp19) in comparison to that of SaPrp (Gly21-Asp31).
Of note, the Pro18 of TmPrp appears to allow for a sharp turn in the loop, allowing for His22
to rest in an active conformation. This is diametrically opposed to the resting/unbound
pose of other Prps, as they relax into a conformation unfit for catalysis (Figure 7).
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Many of the stabilizing interactions seen in the Firmicute Prp structures can be seen
in the TmPrp structure (Figure 8B). This includes the hydrogen bond between Gly15 and
Gly50 that stabilizes the distal end of L2. The conserved α1-helix serine is in a slightly
different orientation but is still within range (2.9 Å) to make a hydrogen bond with the
backbone of the catalytic cysteine. The proximal end of L2 is stabilized by Asp19 through a
hydrogen bond between the backbones Asp19 and Pro18 (3.4 Å). Interestingly, there is a
distance of 3.7 Å between the carboxyl oxygens of Asp19 and Pro18. This distance would
provide sufficient space for a water-bridged hydrogen bond. This bridged interaction may
allow for the stabilization of the water molecule used in catalysis, as it would be held in
proximity to the cleavage site of a bound substrate.

4. Conclusions

Prp is a recently characterized enzyme used by Firmicutes, Fusobacteria, Synergistetes,
Spirochetes, Tenericutes, and Thermotogae. It has been shown to be essential in the
pathogen S. aureus, making it a potential new antibiotic target. It is the prototype member
of C. 108, which has no human homologs. Since only a subset of bacteria encode Prp, it is
an attractive target for selective drug design. This narrow-spectrum design would slow
resistance development due to lower selective pressures across all bacteria.

Our bioinformatic analysis reveals and emphasizes the coevolutionary relationship
between Prps and their cleavable L27 sequences. Notwithstanding this critical relationship,
FlhB was also found to have potential as a substrate, with the N-terminus of FlhB and L27
in B. subtilis having the same cleavage motif. The recently published crystal structure with a
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covalently linked substrate has allowed for structural insights explaining observed reduced
catalytic activity in active site mutants. This has facilitated the structural comparison with
unbound Prps of multiple species, giving insights into their homology and differences.
These insights reveal the selective nature of Prp-L27 interactions and may guide future
pathogen-specific drug design.
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29. Mikulík, K.; Bobek, J.; Ziková, A.; Smětáková, M.; Bezoušková, S. Phosphorylation of ribosomal proteins influences subunit

association and translation of poly (U) in Streptomyces coelicolor. Mol. BioSyst. 2011, 7, 817–823. [CrossRef]
30. Pankey, G.A.; Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of

Gram-positive bacterial infections. Clin. Infect. Dis. 2004, 38, 864–870. [CrossRef]
31. Garcia-Vallvé, S.; Simó, F.X.; Montero, M.A.; Arola, L.; Romeu, A. Simultaneous horizontal gene transfer of a gene coding for

ribosomal protein L27 and operational genes in Arthrobacter sp. J. Mol. Evol. 2002, 55, 632–637. [CrossRef]
32. Hotinger, J.A.; Pendergrass, H.A.; Peterson, D.; Wright, H.T.; May, A.E. Phage-related ribosomal protease (Prp) of Staphylococcus

aureus: In vitro Michaelis–Menten kinetics, screening for inhibitors, and crystal structure of a covalent inhibition product complex.
Biochemistry 2022, 61, 1323–1336. [CrossRef]

http://doi.org/10.1016/S0092-8674(00)00216-6
http://doi.org/10.1074/jbc.M302109200
http://www.ncbi.nlm.nih.gov/pubmed/12690106
http://doi.org/10.1111/j.1749-6632.2011.06330.x
http://doi.org/10.1016/S0022-2836(03)00662-4
http://doi.org/10.1016/S1097-2765(02)00570-1
http://doi.org/10.1128/AAC.19.6.1050
http://doi.org/10.1128/AEM.00468-21
http://doi.org/10.1111/mmi.12862
http://doi.org/10.1111/mmi.13644
http://www.ncbi.nlm.nih.gov/pubmed/28187498
http://doi.org/10.1016/S0924-8579(01)00317-X
http://doi.org/10.1016/j.virol.2010.08.036
http://www.ncbi.nlm.nih.gov/pubmed/20869739
http://doi.org/10.1002/jobm.201800412
http://doi.org/10.1146/annurev-biochem-062608-160432
http://doi.org/10.1146/annurev-biochem-060614-033917
http://doi.org/10.1080/10409230500256523
http://doi.org/10.1016/j.tibs.2017.05.005
http://doi.org/10.1021/bi8001874
http://doi.org/10.3791/62664
http://doi.org/10.1016/j.jmb.2011.09.004
http://www.ncbi.nlm.nih.gov/pubmed/21945294
http://doi.org/10.1038/nsb915
http://www.ncbi.nlm.nih.gov/pubmed/12665853
http://doi.org/10.1371/journal.pone.0036972
http://www.ncbi.nlm.nih.gov/pubmed/22615861
http://doi.org/10.1261/rna.053330.115
http://doi.org/10.1016/j.molcel.2005.09.009
http://doi.org/10.1039/C0MB00174K
http://doi.org/10.1086/381972
http://doi.org/10.1007/s00239-002-2358-5
http://doi.org/10.1021/acs.biochem.2c00010


Antibiotics 2022, 11, 1109 19 of 20

33. Kramer, M.J.; Cleeland, R.; Grunberg, E. Mersalyl: A diuretic with antiviral properties. Antimicrob. Agents Chemother. 1975, 8,
295–299. [CrossRef]

34. Lauber, M.A.; Running, W.E.; Reilly, J.P. B. subtilis ribosomal proteins: Structural homology and post-translational modifications.
J. Proteome Res. 2009, 8, 4193–4206. [CrossRef] [PubMed]

35. Filbeck, S.; Cerullo, F.; Paternoga, H.; Tsaprailis, G.; Joazeiro, C.A.P.; Pfeffer, S. Mimicry of canonical translation elongation
underlies alanine tail synthesis in RQC. Mol. Cell 2021, 81, 104–114. [CrossRef] [PubMed]

36. Franken, L.E.; Oostergetel, G.T.; Pijning, T.; Puri, P.; Arkhipova, V.; Boekema, E.J.; Poolman, B.; Guskov, A. A general mechanism
of ribosome dimerization revealed by single-particle cryo-electron microscopy. Nat. Commun. 2017, 8, 722. [CrossRef] [PubMed]

37. Crowe-Mcauliffe, C.; Murina, V.; Turnbull, K.J.; Kasari, M.; Mohamad, M.; Polte, C.; Takada, H.; Vaitkevicius, K.; Johansson, J.;
Ignatova, Z.; et al. Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics
in Gram-positive pathogens. Nat. Commun. 2021, 12, 3577. [CrossRef]

38. Golubev, A.; Fatkhullin, B.; Khusainov, I.; Jenner, L.; Gabdulkhakov, A.; Validov, S.; Yusupova, G.; Yusupov, M.; Usachev, K.
Cryo-EM structure of the ribosome functional complex of the human pathogen Staphylococcus aureus at 3.2 Å resolution. FEBS
Lett. 2020, 594, 3551–3567. [CrossRef]

39. Watson, Z.L.; Ward, F.R.; Méheust, R.; Ad, O.; Schepartz, A.; Banfield, J.F.; Cate, J.H. Structure of the bacterial ribosome at 2 Å
resolution. eLife 2020, 9, e60482. [CrossRef]

40. Murphy, E.L.; Singh, K.V.; Avila, B.; Kleffmann, T.; Gregory, S.T.; Murray, B.E.; Krause, K.L.; Khayat, R.; Jogl, G. Cryo-electron
microscopy structure of the 70S ribosome from Enterococcus faecalis. Sci. Rep. 2020, 10, 16301. [CrossRef] [PubMed]

41. Leach, K.L.; Swaney, S.M.; Colca, J.R.; Mcdonald, W.G.; Blinn, J.R.; Thomasco, L.M.; Gadwood, R.C.; Shinabarger, D.; Xiong, L.;
Mankin, A.S.; et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol. Cell 2007,
26, 393–402. [CrossRef]

42. Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.;
Bursteinas, B.; et al. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [CrossRef]

43. Chaudhuri, R.R.; Allen, A.G.; Owen, P.J.; Shalom, G.; Stone, K.; Harrison, M.; Burgis, T.A.; Lockyer, M.; Garcia-Lara, J.; Foster, S.J.;
et al. Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation
(TMDH). BMC Genom. 2009, 10, 291. [CrossRef]

44. Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes,
their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46,
D624–D632. [CrossRef] [PubMed]

45. Kuhlen, L.; Johnson, S.; Zeitler, A.; Bäurle, S.; Deme, J.C.; Caesar, J.J.E.; Debo, R.; Fisher, J.; Wagner, S.; Lea, S.M. The substrate
specificity switch FlhB assembles onto the export gate to regulate type three secretion. Nat. Commun. 2020, 11, 1296. [CrossRef]
[PubMed]

46. Inoue, Y.; Kinoshita, M.; Namba, K.; Minamino, T. Mutational analysis of the C-terminal cytoplasmic domain of FlhB, a
transmembrane component of the flagellar type III protein export apparatus in Salmonella. Genes Cells 2019, 24, 408–421.
[CrossRef]

47. Minamino, T.; Namba, K. Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature
2008, 451, 485–488. [CrossRef] [PubMed]

48. Radolf, J.D.; Deka, R.K.; Anand, A.; Šmajs, D.; Norgard, M.V.; Yang, X.F. Treponema pallidum, the syphilis spirochete: Making a
living as a stealth pathogen. Nat. Rev. Microbiol. 2016, 14, 744–759. [CrossRef]

49. Bernard, Q.; Thakur, M.; Smith, A.A.; Kitsou, C.; Yang, X.; Pal, U. Borrelia burgdorferi protein interactions critical for microbial
persistence in mammals. Cell. Microbiol. 2019, 21, e12885. [CrossRef] [PubMed]

50. Koolman, L.; Whyte, P.; Burgess, C.; Bolton, D. Virulence gene expression, adhesion and invasion of Campylobacter jejuni exposed
to oxidative stress (H2O2). Int. J. Food Microbiol. 2016, 220, 33–38. [CrossRef]
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