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Abstract: Azithromycin has become famous in the last two years, not for its main antimicrobial effect,
but for its potential use as a therapeutic agent for COVID-19 infection. Initially, there were some
promising results that supported its use, but it has become clear that scientific results are insufficient
to support such a positive assessment. In this review we will present all the literature data concerning
the activity of azithromycin as an antimicrobial, an anti-inflammatory, or an antivirus agent. Our
aim is to conclude whether its selection should remain as a valuable antivirus agent or if its use
simply has an indirect therapeutic contribution due to its antimicrobial and/or immunomodulatory
activity, and therefore, if its further use for COVID-19 treatment should be interrupted. This halt will
prevent further antibiotic resistance expansion and will keep azithromycin as a valuable anti-infective
therapeutic agent.
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1. Introduction

Azithromycin (Azi) belongs to the large family of macrolide antibiotics, an impor-
tant class of first-line antimicrobial agents [1]. Azi belongs to the second generation of
macrolides, as a semisynthetic derivative of erythromycin with a modified macrolactone
ring with 15 members instead of 14 members as in erythromycin (Figure 1). Although Azi
did not exhibit improved activity against Gram-positive bacteria compared to the mother
compound erythromycin [2–4], it was selected for further development due to its enhanced
pharmacokinetic profiles. In particular, it was selected for its high half-life time and the
ability to accumulate at high levels within lung tissue [5–9]. Clarithromycin (Figure 1) is
another key second-generation 14-membered macrolide with similar features and structure,
and while it was initially included in a few trial schemes as a potential therapeutic drug for
COVID-19, it was rapidly discontinued [10,11]. Azi, like most of the other macrolides, is
not only known for its antimicrobial activity, but it also has additional actions as either anti-
inflammatory or antivirus agents. In this review we will present a summary of the existing
literature data concerning azithromycin and will explain why it was initially hypothesized
to have activity for COVID-19 treatment. Additionally, all studies on the use or non-use of
azithromycin in the treatment of COVID-19 will be presented. Finally, we will discuss why
Azi is not included anymore in therapeutic protocols and why its use must be interrupted
to avoid increasing Azi pathogen resistance thereby maintaining the antibiotic as a useful
therapeutic weapon for a longer time.
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Figure 1. Molecular structure of the mother macrolide molecule erythromycin and its semisynthetic 
derivatives azithromycin (15-membered) and clarithromycin (14-membered). Blue and red colors in 
the structures represent modifications of the mother molecule (black). 

2. Methods 
The authors searched the PubMed and the Scopus database using the terms “Coro-

navirus”, “COVID-19”, and “Azithromycin”. The same search terms were used for search-
ing the Clinical Trials database. The abstracts were screened and only the relevant articles 
were considered in the review. Articles from the Clinical Trials database that were limited 
by a small sample size or other criteria were declared not relevant, and therefore, were 
not considered. Articles published as recently as 15 April 2022 were included. 

3. Azithromycin as an Antimicrobial Agent 
The antimicrobial activity of azithromycin results from its binding with high affinity 

to the entrance of the ribosomal exit tunnel of prokaryotic 70S ribosomes and strongly 
inhibiting the bacterial protein synthesis [12–14]. According to the crystal structure data, it 
binds to the entrance of the nascent peptide exit tunnel and partially occludes it (Figure 2). 

 
Figure 2. Structure of azithromycin in complex with the 70S ribosome carrying A-, P-, and E-site 
tRNAs. (A,B) Location of the ribosome-bound azithromycin (yellow) in the macrolide binding 
pocket at the entrance to the nascent peptide exit tunnel (NPET) of the 70S ribosome relative to 
tRNAs viewed as cross-cut sections through the ribosome. The 30S subunit is shown in light yellow, 
the 50S subunit is in light blue, the mRNA is in magenta, and the A-, P-, and E-site tRNAs are colored 
green, dark blue, and orange, respectively. The phenylalanyl and formyl-methionyl moieties of the 
A- and P-site tRNAs are shown as spheres [15]. 

Thus, Azi was considered as ‘tunnel plugs’ that inhibit the synthesis of every protein 
entering the exit tunnel [1,16]. However, more recent evidence demonstrates that 

Figure 1. Molecular structure of the mother macrolide molecule erythromycin and its semisynthetic
derivatives azithromycin (15-membered) and clarithromycin (14-membered). Blue and red colors in
the structures represent modifications of the mother molecule (black).

2. Methods

The authors searched the PubMed and the Scopus database using the terms “Coron-
avirus”, “COVID-19”, and “Azithromycin”. The same search terms were used for searching
the Clinical Trials database. The abstracts were screened and only the relevant articles were
considered in the review. Articles from the Clinical Trials database that were limited by
a small sample size or other criteria were declared not relevant, and therefore, were not
considered. Articles published as recently as 15 April 2022 were included.

3. Azithromycin as an Antimicrobial Agent

The antimicrobial activity of azithromycin results from its binding with high affinity
to the entrance of the ribosomal exit tunnel of prokaryotic 70S ribosomes and strongly
inhibiting the bacterial protein synthesis [12–14]. According to the crystal structure data, it
binds to the entrance of the nascent peptide exit tunnel and partially occludes it (Figure 2).
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Figure 2. Structure of azithromycin in complex with the 70S ribosome carrying A-, P-, and E-site
tRNAs. (A,B) Location of the ribosome-bound azithromycin (yellow) in the macrolide binding pocket
at the entrance to the nascent peptide exit tunnel (NPET) of the 70S ribosome relative to tRNAs
viewed as cross-cut sections through the ribosome. The 30S subunit is shown in light yellow, the 50S
subunit is in light blue, the mRNA is in magenta, and the A-, P-, and E-site tRNAs are colored green,
dark blue, and orange, respectively. The phenylalanyl and formyl-methionyl moieties of the A- and
P-site tRNAs are shown as spheres [15].

Thus, Azi was considered as ‘tunnel plugs’ that inhibit the synthesis of every pro-
tein entering the exit tunnel [1,16]. However, more recent evidence demonstrates that
macrolides selectively inhibit the translation of a subset of cellular proteins and that their
action crucially depends on the nascent protein sequence and the antibiotic structure [17].
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Recent studies have shown that the translation of many genes was arrested at a few
distinct sites through the length of the gene after treatment with macrolide antibiotics.
Analysis of the sites of the stops revealed the existence of specific sequence signatures
that induce pronounced drug-induced translation arrest and lead to specific regulation
of protein synthesis. Ribo-seq and toeprinting experiments have revealed leader ORFs of
macrolide resistance genes carrying the +x+ motif, where + stands for positively charged
amino acids lysine or arginine, and x stands for any amino acid [17,18].

Therefore, Azi emerges as a modulator of translation rather than as a global inhibitor of
protein synthesis. In general, macrolide antibiotics are active mainly against Gram-positive
bacteria and have a lower activity against Gram-negative bacteria [19,20]. Macrolides are
very active against Gram-positive bacteria Staphylococcus, Streptococcus, and Diplococcus;
among Gram-negative cocci, Neisseria gonorrhea, Haemophilus influenzae, Bordetella pertussis,
and Neisseria meningitis; and are extremely active against various Mycoplasmas. Since its
discovery Azi has been extensively used in the treatment of bacterial and mycobacterial
infections of the respiratory, gastrointestinal, genitourinary, and cutaneous systems [21–23].
Azi is a member of the WHO list of essential medications [24] and is available in large
quantities worldwide. Despite some mild side effects, including mainly diarrhea and
QT prolongation, Azi is proven to be safe and cheap, and therefore, easily available to
humans worldwide [21,22].

4. Azithromycin as an Anti-Inflammatory Agent

Beyond the antibacterial activity of azithromycin, and broadly most macrolides, their
anti-inflammatory effects have been established and some of them have been used in
chronic inflammatory diseases such as chronic rhinosinusitis, bronchial asthma, bronchiec-
tasis, chronic obstructive pulmonary disease, cystic fibrosis, etc. [23–27]. Probably, the
most striking example of their immunomodulation comes from diffuse panbronchiolitis,
an idiopathic inflammation and progressively destructive disease of the bronchioles which
can be converted from a lethal to a treatable disease with daily low-dose erythromycin
or Azi [23,28,29]. This has been accredited to the ability of Azi to normalize the upregu-
lated activities of IL-1β, IL-2, TNF, and GM-CSF [30]. Azi is rapidly absorbed after oral
administration with a half-life time of approximately 3 days, leading to a high and con-
stant tissue concentration [23,31]. As a result, Azi accumulates in human cells, including
epithelial cells, and most notably in phagocytes where it has been concentrated hundreds
to thousands of times with a focus on phagocyte lysosomes [9,31]. Its anti-inflammatory or
immunomodulatory activity reported in several studies includes the most frequent effects
on neutrophils, monocytes, and lymphocytes [27,29,32]. Among the usually measured
immunological modified markers are the number of decreased neutrophils; the concen-
trations of neutrophil elastase; cytokines release; surface-expressed molecules (mainly
Toll-like receptors); superoxide production; and cell homeostasis, mainly apoptosis and
phagocytosis (Figure 3) [27,29,32,33]. Neutrophil function inhibition has been reported
more frequently than eosinophil function inhibition. Azi stimulates neutrophil degranula-
tion and phagocytosis-associated oxidative burst, mediated via modulation of ERK 1/2
signaling [19]. These initial stimulatory effects are followed by modulation of transcription
factors activator protein (AP)-1, nuclear factor kappa B (NFκB), inflammatory cytokines,
and mucin release, with overall anti-inflammatory effects [34].

Azi inhibits lipopolysaccharide-induced pro-inflammatory cytokines; increases phago-
cytosis by inhibiting AP-1 [35]; improves lysosomal resistance to oxidant challenge [36];
and promotes M2 polarization of macrophages (a process in which macrophages produce
distinct functional phenotypes in response to specific microenvironmental stimuli and
signals) [37–39]. Azi can also increase the phagocytosis of apoptotic epithelial cells [40] and
neutrophils by macrophages [41] further supporting its anti-inflammatory activity. Studies
have shown that part of the immunomodulatory effects of macrolides could be attributed to
the impairment of TLR signaling by reducing the release of PAMPs (Pathogen-Associated
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Molecular Patterns) and inhibiting TLR expression, either of dendritic cells or macrophages,
thereby regulating the immune response [33,42].
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Immunomodulatory effects, although similar to most therapeutic macrolides, are
likely to differ among them. Few studies have examined the anti-inflammatory effects
of macrolides on more than one macrolide, and none of the human trials have explicitly
compared different macrolides. Furthermore, the majority of these trials were conducted
on healthy volunteers and/or Azi was administered in varying doses at a time [27,43–45].
Clinical investigations in CF patients, on the other hand, revealed that Azi, but not Clar-
ithromycin, improves respiratory function and reduces pulmonary exacerbations [46,47].
Additionally, another study showed that Azi, but not clarithromycin or roxithromycin,
inhibits IL-1alpha and IL-1beta production [48]. In general, azithromycin inhibits the syn-
thesis of pro-inflammatory cytokines by both innate and adaptive immune cells, as well as
the accumulation, adhesion, and death of pulmonary neutrophils [32].

Azithromycin, like other macrolides, has very low activity against eukaryotes due to
their low affinity for binding to eukaryotic ribosomes [1]. There are specific differences
between eukaryotic and bacterial ribosomes (differences between rRNA bases or ribosomal
proteins) that mediate the selectivity and toxicity of ribosomal drugs, as established by
rRNA sequencing studies and X-ray crystallography [49].

5. Azithromycin as an Antivirus Agent

Azi’s antiviral effects have been demonstrated in vitro, albeit not all examples have
been confirmed in vivo [32]. Since Azi mediated exacerbations in airway diseases, partic-
ularly in asthma [25,50], its effects were studied against viruses that cause such airway
infections such as rhinoviruses (RV). Azi inhibits RV replication and releases in primary
human bronchial epithelial cells in vitro [51]. The AMAZES research, the largest clinical
trial of a long-term macrolide on airway diseases, found that Azi reduced asthma exac-
erbations by 40% in vivo [25]. The mechanism is not known, but metagenomic analysis
suggested that it could be related to an antibacterial effect versus Haemophilus influenzae and
possibly its abundance in inhaled air [52–54]. Pre-treatment with azithromycin inhibits RV
replication in CF bronchial epithelial cells, probably by amplifying the antiviral response
mediated by the IFN pathway [55]. Additionally, Azi showed a reduction in H1N1 viral
replication in A549 cells with IC50 58 µM interfering with the internalization of viruses [56].
In experiments with the Zika virus, within glial cell lines and human astrocytes, there was a
reduction in viral growth and virus-induced cytotoxicity [57]. Equally, Azi inhibited Ebola
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replication with EC50 5.1 µM and low toxicity; however, it did not boost survival in mice or
guinea pigs when tested in vivo in a mouse model [58].

The precise mechanism of the antiviral activity of Azi remains unclear. Given that
Azi is a weak base it can accumulate in acidic intracellular organelles such as endosomal
vesicles and lysosomes [59]. In keeping with lysosomal accumulation, azithromycin causes
lysosomal pH change [23]. This modified acidic environment caused by accumulation of
Azi could also be responsible for uncoating enveloped viruses such as influenza and maybe
coronavirus [59]. Data also suggest that the antiviral activity of Azi could be attributed to
its ability to increase the expression of the epithelial interferon genes, leading to a reduction
in viral replication [60].

Recently, Azi and spiramycin (a natural 16-membered ring macrolide) provided sig-
nificant in vivo protection against enterovirus-A71 infection in mice [61]. Spiramycin was
found to interfere with EV-A71 viral RNA synthesis, and it is likely that spiramycin and
Azi function in concert after the viral entrance; thereby, inhibiting viral RNA synthesis
either directly or indirectly.

6. Azithromycin and Betacoronovirus

From the beginning of the current SARS-CoV-2 pandemic, several drug screens were
conducted in a rapid, urgent manner to evaluate potential candidate medications against
this pathogen. The requirements were: to be approved, to be inexpensive, to be safe,
and to be available as quickly as was feasible worldwide. Previous screens had recog-
nized more than 90 drugs that inhibited SARS-CoV-2 viral replication with EC50 nearly to
10 µM [62]. The tested drugs included protease inhibitors, ATPase proton pump inhibitors,
viral protease inhibitors, compounds targeting the angiotensin pathway, and antibiotics.
Azi tested in Vero E6 cells had an EC50 of 2.12 µM and EC90 equal to 8.65 µM, and selectivity
index >19 [63], which is very comparable to the control antiviral-compound remdesivir
(EC50 = 1.65, EC90 = 2.52), the first antiviral agent with proven clinical efficacy against
SARS-CoV-2 in all clinical trials [64–66]. Azi was also discovered as a target in a bioinfor-
matic screening investigation of potentially relevant pathways that may be turned into
pharmaceutically acceptable forms. An initial study focused on two of the previous candi-
date molecules, hydroxychloroquine (HQL) and Azi, suggested a synergistic inhibition of
SARS-CoV-2 replication in Vero cells at 5 and 10 µM concentrations, respectively [67,68].
This synergy was presented as a way to make hydroxychloroquine more effective at less haz-
ardous concentrations. It was the first observational study suggesting that HQL, especially
when combined with Azi, improved virological clearance [69]. However, because the data
with Azi came from only six patients and the study was open-label and nonrandomized, no
acceptable conclusions could be derived statistically [70]. This Azi-HQL combination was
also investigated in nonhuman primates, but no substantial antiviral effect was observed
in the five macaques given Azi in addition to hydroxychloroquine [71]. Furthermore, this
initial favorable finding led to the immediate start of interventional trials to assess the
efficacy of the COVID-19 therapy combination, as well as the efficacy of Azi with HQL.
Hundreds of trials with Azi are listed on clinical trials.gov. Initially, Azi was prescribed as
an adjunct to hydroxychloroquine, but later HQL was largely abandoned and Azi was used
alone. From the beginning of 2020, decades of publications were released either favoring
or discouraging the use of Azi, both with or without HQL [70]. According to them, Azi
was initially favored with or without HQL [72–77] but at the same time more observations
did not favor its use [78–86]. Since most of them were retrospective studies, it was clear
that randomized control trials (RCTs) were necessary to clarify the previous controversial
data. All these RCTs were integrated during the previous year and are presented in Table 1.
The table gives an overview of the most currently published, up-to-date, peer-reviewed
studies in the literature, in which the effect of Azi is evaluated. Although these RCTs in
Table 1 differ in their outcomes and whether or not hospitalized patients are included, all of
them suggested that azithromycin does not reduce hospital admissions, respiratory failure,
or death when compared to conventional therapy, and therefore, Azi should no longer be
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used to treat COVID-19. In a few words, all of them showed that, in hospitalized patients
with COVID-19, azithromycin did not reduce the time to sustained clinical improvement or
discharge. There is clearly no efficacy in terms of clinical status or mortality at the fixed
time points used in all scientifically acceptable large trials.

Table 1. Published RCTs assessing the effect of Azithromycin on COVID-19 treatment.

Name of Clinical Trial Year Participants Clinical Outcome Type of Study

Furtado et al., 2020 (COALITION II) [87] 2020 447
No justification for the use of

azithromycin for better
clinical outcomes.

Open label

Butler et al., 2021 (PRINCIPLE) [88] 2021 292
No justification for the use of

azithromycin for reducing time to
recovery or risk of hospitalization.

Open label

Hinks et al., 2021 (ATOMIC 2) [89] 2021 263
No justification for the use of

azithromycin for reducing the risk of
hospitalization or death.

Open label

Horby et al., 2021 (RECOVERY) [90] 2021 2265
No justification for the use of

azithromycin on inpatients for
increase in survival.

Open label

Oldenburg et al., 2021 [11] 2021 7763
No justification for the use

of azithromycin versus placebo for
elimination of symptoms at day 14.

Blind

Gyselinck et al., 2022
(DAWn-AZITHRO) [70] 2022 160

Early trial termination, failed to
demonstrate a benefit

of azithromycin.
Open label

Furthermore, according to Oldenburg et al., there was no significant difference in
self-reported symptom absence 14 days after enrollment among patients assigned to
azithromycin versus a placebo in their randomized controlled trial of single-dose oral
azithromycin for outpatient COVID-19 [11]. This last finding supports earlier randomized
clinical trials of azithromycin for COVID-19 in both outpatient and inpatient settings, none
of which found azithromycin to be effective in treating COVID-19.

Given that azithromycin consumption during the pandemic was increased up to
3 times compared to the pre COVID period [91–93], it is important to reduce useless
consumption, as it is an extremely dangerous practice, to avoid increasing antimicrobial
resistance (AMR). Antimicrobial resistance (AMR) develops when bacteria, fungi, or viruses
are exposed to antibiotics, antifungals, or antivirals leading to the development of a resis-
tance to one or more antimicrobial drugs. As a result, the antimicrobials become ineffective
and infections may persist. AMR is considered a serious and persistent therapeutic problem
today being an economic and health burden. It is conservatively estimated that, in the US
and Europe, 2.5 million people are affected by such infections each year and approximately
50,000 people die because of these infections [94]. The discovery of novel antibiotics has
nearly halted over the past 30 years leading to the exhaustion of the pipeline reserve. The
resistance of pathogens to antibiotics can be addressed with a rapid development of new
effective and safe antibiotics [1,95]. Several studies have revealed a significant increase
in drug resistance to azithromycin in some strains of gonococci [96]. Drug resistance to
azithromycin is also increasing in E. coli [95].

Identifying strategies that can work to reduce the burden of bacterial AMR—either
across a wide range of settings or those that are specifically tailored to the resources
available and leading pathogen–drug combinations in a particular setting—is an urgent
priority [97]. Since the prevalence of bacterial superinfection in COVID-19 is low [98], and
unlike influenza [99–101], there is no preventive benefit against postviral pneumococcal
and atypical pneumonia [98], it will be extremely helpful to avoid the useless consumption
of any antibiotic prescription, specifically azithromycin, in COVID-19 treatment..
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The outbreak of a pandemic led to a massive disruption of healthcare systems which
overshadowed the misuse and incorrect prescription of some antibiotics [102]. Many
COVID-19 patients received empirical antibiotic therapy for COVID 19 treatment in the
early stages of pandemic since it was considered the safer option due to clinical uncer-
tainty [93]. Control policies should be administrated in clinical practice regarding the use of
drugs in the treatment of COVID-19. As AMR will be a major clinical problem, stewardship
activities are necessary in the coming years to face the new-pandemic [102].

7. Closing Remarks and Perspectives

During the pandemic of coronavirus, antibiotics prescription was elevated without
justification, partly because the medical community was unprepared for this burst and
secondly because the clinical situation of patients changed dramatically each day after
the initial day of infection. The administration of known antibiotics was considered to
be the correct way of combating coronavirus but it soon became clear that there was no
justification for the overuse of antibiotics as they did not decrease the risk of mortality in
the patients who had no reason to receive this treatment [103].

To summarize, there is no scientific justification for the use of azithromycin in the
treatment of COVID-19 up to now, and the only way to keep this antibiotic relevant in the
future as a useful tool for combating pathogenic infections is to use it wisely, only after
careful consideration and high expectations.
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