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Abstract: Heterocyclic compounds are considered as one of the major and most diverse family of
organic compounds. Nowadays, the demand for these compounds is increasing day-by-day due to
their enormous synthetic and biological applications. These heterocyclic compounds have unique
antibacterial activity against various Gram-positive and Gram-negative bacterial strains. This review
covers the antibacterial activity of different heterocyclic compounds with nitrogen moiety. Some of the
derivatives of these compounds show excellent antibacterial activity, while others show reasonable
activity against bacterial strains. This review paper aims to bring and discuss the detailed information
on the antibacterial activity of various nitrogen-based heterocyclic compounds. It will be helpful for
the future evolution of diseases to synthesize new and effective drug molecules.

Keywords: heterocyclic compound; medicinal chemistry; infectious disease; organic synthesis;
in-vitro studies

1. Introduction

Bacteria cause different infectious diseases, which can have a compelling effect on
health and become the main reason for the bulk of hospital-acquired diseases responsible
for a huge mortality rate and immense responsibility on healthcare systems. Various
advanced malignant bacterial forms have appeared, with distinctive levels of resistance
against a therapeutic agent. The current infections may be due to Escherichia coli, multidrug-
resistant tuberculosis [1], and methicillin-resistant Staphylococcus aureus [2], etc. So, there
is a persuasive demand for the development of new and more competent drugs across
both drug-sensitive and drug-resistant micro-organisms. In recent times, for the synthesis
of advanced drugs, greater concentration has been paid to the progress of heterocyclic
scaffolds [3]. Among the heterocyclic compounds, the ones containing nitrogen atom(s) are
of huge interest, since they constitute a significant class of distinct non-natural and natural
products [4]. With the increase in the synthesis of new drugs from different medicinal
experts, the resistance against these drugs by the microbes is also increasing with good
pace. Many microbes are showing resistance against 2nd and 3rd generation antibiotics. So,
in order to fight with resistance there is a need for the synthesis of new drugs with fruitful
antimicrobial potential. The main objective of this review is to provide a literature survey
to the readers about the synthesis and anti-infectious potential of different nitrogen-based
heterocyclic compounds.
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1.1. Heterocyclic Compounds

Heterocyclic compounds are cyclic compounds which contain the atoms of two discrete
elements as representative of their ring(s). They belong to one of the larger classes of
organic compounds and also appear more valuable in different fields of chemistry [5].
These compounds encompass a higher number of drugs, most biomass, nucleic acids,
synthetic dyes, and numerous natural products such as alkaloids, herbicides, vitamins,
antibiotics, hormones, and pharmaceutics [6]. Heterocyclic compounds have tremendous
importance for both organic and medical chemists, and the synthesis of such molecules
always remains a challenge from both industrial and academic aspects [7]. Heterocyclic
systems with different structures display various biologic activities because of diversities
in their molecular structures [8]. All these systems have been used for the composition of
unusual drugs due to their unique physicochemical properties. Furthermore, the systems
of these compounds have been very attractive in recent times because of both sulfur and
nitrogen atoms present in them [9]. In therapeutic perseverance, to deal with the various
types of bacterial and fungal infections along with the analysis of cancer, gastric ulcers, and
many other diseases, these compounds have been extensively utilized [10].

1.2. Application of Heterocyclic Compounds

In biochemical processes, heterocyclic compounds play a significant role due to the
existence of aromatic heterocycles in the side groups of the utmost typical and fundamental
constituents of all living cells [11]. These heterocyclic compounds, along with organic
compounds with their biological activities, are utilized as drugs in many veterinary and
human medicines, and are also used as pesticides and insecticides in agriculture. Many
marketed drugs show the presence of these chemical rings (Figure 1). The existence of
these rings exhibited that such types of drugs have pharmaceutical properties and at the
same time can present a platform for diverse types of pharmacophoric groups, which can
interact with receptors [12].
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Figure 1. Literature survey of antibacterial activity of nitrogen-based heterocyclic compounds.

The researchers’ interest has been primarily on nitrogen and sulfur-containing het-
erocyclic compounds through the advancement of organic synthesis. Most of them are
tetrazoles, triazoles, fused thiazoles, oxadiazoles and thiadiazoles, which are constitu-
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tional subunits of different biologically active compounds [13]. Derivatives of thiadi-
azole possess biological activity owing to the vigorous aromaticity of the ring system,
which further helps in acquiring considerable in vivo stability and also in reducing the
toxicity of higher vertebrates, along with humans [11]. Among different heterocycles,
pyranopyrimidines and derivatives of benzimidazole are an essential type of heterocyclic
pharmaceutical. Such compounds display intriguing biological properties, such as anti-
inflammatory, anti-fungal, anti-microbial, anti-phlogistic, antibacterial, anti-thrombotic
and anti-genotoxic activity [14]. Oxazole is an oxygen-containing heterocyclic compound,
which plays a very pivotal role in the formation of such numerous biologically effective
drugs as anti-inflammatory, anti-cancer, anti-depressant, anti-microbial, anti-obesity, anti-
diabetic, and analgesic [15]. Moreover, for several years, interest in the derivatives of
pyrrole as anti-microbial agents has impelled the formation and antimicrobial estimation
of hundreds of distinctive molecules such as monodeoxypyoluteorin and derivatives of
2-(2’-hydroxybenzoyl) pyrrole bromine [16].

Thus, analysts have always been searching for such unique synthetic methodologies
that would help us to have an approach in more economical, potent, and selective ways
on the heterocyclic cores. Correspondingly, in the literature, various efficient illustrations
are available. Cycloaddition reactions are one of the most competent and straightforward
approaches to access the cores of different heterocyclic compounds [17]. These types of
reactions not only occur with excellent atom economy but also allow the simultaneous
manufacturing of two bonds; albeit this method has some limitations [18].

2. Antibacterial Activity of Heterocyclic Compounds
2.1. Synthesis and Antibacterial Activity of the Pyrrole

The synthesis of various derivatives of pyrrole (4–27) was carried out by Mohamed
et al., 2009 from primary aromatic amines (2), benzoin (1), and malononitrile (Scheme 1).
The synthesized compounds were evaluated in terms of their antibacterial activity against
Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa. Most
of the synthesized compounds exhibited excellent activity against these bacterial strains.
Some of them showed similar activity while others were two to four times more or less
active than the standard drug, amoxicillin. The activity of compounds 6, 10, and 15 was
almost similar to that of the reference drug, whereas 17 was found to be two times more
active than amoxicillin against B. subtilis. Furthermore, the compound 18 against S. aureus
displayed activity that was lower than amoxicillin, while 21 and 27 were four times more
active than amoxicillin. The compound 5 was also more effective against E. coli and 16
showed significant activity against P. aeruginosa, which was reciprocal to amoxicillin [16].
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Largani et al., 2017 also synthesized pyrrolo [3,4-b]quinolin-2(3H)-yl)benzamides from
benzohydrazide and 9-phenylfuro[3,4-b]quinoline-1,3-dionesas as shown in Scheme 2.
The antibacterial activity of compounds 37–41 was evaluated against Staphylococcus au-
reus, E. coli and Enterococcus faecalis which demonstrated vigorous inhibition against these
bacterial strains. It was observed that amongst all the targeted compounds, 37 exhib-
ited magnificent activity against E. faecalis, S. aureus and E. coli bacteria with MIC 0.5,
0.25, and 0.25 mg/mL, respectively [19]. The various pyrrole derivatives were prepared
(Schemes 3 and 4) from amino-containing compounds through several steps and their
antibacterial activity was evaluated [20]. Compound 42 was synthesized by refluxing ace-
tophenone and thiourea, which was further used for the synthesis of targeted compounds.
The synthesized compounds exhibited good antibacterial potential against microbes with
an MIC value of 16 µg/mL (Table 1). The activity of compound 44 was equipotent corre-
lated with ciprofloxacin against S. aureus and E. coli [21]. The protected pyrrole ring was
synthesized (46–53) from 45 by reacting with aromatic aldehyde and protected amine. It
was revealed that compounds 50, 51, and 52 exhibit valuable antibacterial activity against
Pseudomonas putida bacterial strains. Compound 49 also showed the equivalent inhibitory
potential against the tested strains of bacteria. Similarly, 53 and 49 exhibited remarkable
antibacterial activity at the range of 32–64 µg/mL [20]. The synthesis of bis-pyrrole (56–60)
through hydrazonoyl halides (Scheme 5) and their evaluation against four different bacte-
rial strains was reported by Kheder [22]. The synthesized compounds were more active
against the positive strains as compared to the negative strains. Furthermore, compound
59 with the Cl group at the para-position displayed a high degree of antibacterial activity
against B. subtilis and S. aureus. Similarly, pyrrole derivatives (64–76) were prepared by a
method based on microwave irradiation (Scheme 6) and their antibacterial activity was
evaluated against E. coli and S. aureus [23]. It was also found that the compounds 65 and 71
exhibit significant activity against both S. aureus and E. coli, while 72 was the least effective.
Furthermore, 71 displayed MIC (20 µg/mL in S. aureus and E. coli) closer to the reference
drug, gentamicin. They also explained the SAR of the synthesized compounds, which
showed that the substituent 3-formylpyrroles at position C-2 with thiophene (52) and
pyridine (50, 51) had significant antibacterial activity, while 4-pyridyl had a weak response.
They further elaborated that the presence of methoxy and ethoxy at positions C-8 and C-6
in the system of chromene increased the efficiency of the compound. The outcome revealed
that the substitution at the 2-position of the phenyl ring of the chromene moiety (72, 73 and
75) had the least inhibition of bacterial growth.
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2.2. Synthesis and Antibacterial Activity of the Pyrimidine

Pyrano[2,3-d]pyrimidine-6-carboxylates (82–90) were synthesized via a multistep reaction
(Scheme 7) [24]. The antibacterial activity for the synthesized compounds was checked against
Gram-negative (Klebsiella pneumonia, E. coli) and Gram-positive (P. aeruginosa, S. aureus) strains
using ciprofloxacin as a standard drug. Compounds 80–81, 83–85, 87, 89 and 90 exhibited
exceptional activity, while compounds 83, 86, and 88 showed remarkable activity (Table 1). They
further elaborated that compounds with an electron-withdrawing substituent (–OCH3 and
–NO2) exhibited maximum activity as compared to compounds with the methyl group [24].
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Misra et al., 2018 reported the synthesis of pyrimidine derivatives with 1,5-benzodiazepines
under microwave conditions using 1,4-diazabicyclo[2.2.2]octane and dimethyl acetylenedicar-
boxylate, as shown in Scheme 8. The antibacterial results indicated that compound 95 had
exhibited persuasive inhibitory activity against E. coli and S. aureus with IC50 values of 300
and 200 µg/mL, respectively [25]. The synthesis of (benzo[5,6]chromeno[2,3-d]pyrimidine
(96–106) (Scheme 9) was reported by Ameli et al., 2017, while their anti-infectious activity was
checked against S. aureus, B. subtilis, E. coli and Salmonella typhimurium. Compounds 100–106
showed high activity while 96-99 remained moderate (MIC > 250). These results suggested
that the pyrimidine moiety plays a significant role in antibacterial activity. Compounds 101,
102, 105 and 106 whose aryl groups have a Cl or OH group, displayed greater inhibitory effects
against E. coli, S. aureus, S. typhimurium and B. subtilis strains which may have the potential
to bind the compounds to corresponding receptors [14]. The 2,4-disubstituted-6-thiophenyl-
pyrimidine as antibacterial agents was prepared by Fang et al., 2019 and the route of synthesis
is presented in Scheme 10. It is estimated that among compounds 116–123, the most potent
were 118, 117 and 123 with 5 µg/mL MIC compared to vancomycin and methicillin (Table 1).
On the other hand, the inhibitory effect was weak against E. coli which may be due to the
lower penetrating capacity of the synthesized compounds to the outer Gram-negative bacterial
membrane [26]. The results further showed the presence of the group at the 2nd position of
pyrimidine pivotal activity. The cyclo-condensation protocol was also reported for the synthesis
of the bis-2-phenylpyrimidines compound from β-ketoester, benzamidine hydrochloride, and
dihaloalkanes as shown in Scheme 11 [27]. The in vitro antibacterial activity of the synthesized
compounds 126–134 was also studied against Salmonella enterica ATCC 13312, E. coli ATCC
25922, Micrococcus luteus ATCC 29213, B. subtilis ATCC 29213, and S. aureus ATCC 29213. The
results showed that compounds 126–134 had good activities towards B. subtilis, S. enterica
and M. luteus, while most of the compounds against S. aureus showed a weak response [27].
Pyrimidine (140–149) and oxadiazole (150–159) were prepared by Triloknadh et al., 2018 as
shown in Scheme 12 [28]. Among all the synthesized compounds, 150, 154, 155a, and 156
exhibited vigorous activity with 0.0125 to 0.0412 mg/mL values of MIC, which were higher
than gentamicin (MIC = 0.0212 to 0.0422 mg/mL). Compound 141 displayed dominant activity
across three strains (P. aeruginosa, B. subtilis and S. aureus) with 0.0124, 0.0120, and 0.0311 mg/mL
MIC values, respectively (Table 1). Moreover, if the methoxy group was moved from position
3 to position 4 (140), it may lead to the reduction of activity across the strains. In addition,
methyl, cyano, and bromo substitutions enhanced the activity. Andrews et al., 2017 described
the synthesis of the pyrimidine derivatives (161–170), (171–180) as represented in Scheme 13.
The in vitro antibacterial activity of the recently synthesized compounds was screened against
E. coli, S. aureus and P. aeruginosa by agar well disk diffusion technique. The antibacterial activity
data showed that compounds 161–170 had lower inhibition than compounds 171–180 [29].
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2.3. Synthesis and Antibacterial Activity of the Thiazole

The thiazole derivatives (181–189), such as 3-substituted-4-aryl-2-[(1-phenylethylidene)
hydra-zono]-2,3-dihydrothiazoles and 4-Aryl-2-[2-(1-substituted ethylidene) hydra-zinyl]-
thiazoles were prepared through the reaction of bromoacetophenones and (ethylidene)
hydrazinecarbothioamides (Schemes 14 and 15) [30]. Compounds 192–209 were evaluated
against different Gram-positive and Gram-negative strains of bacteria such as K. pneumo-
nia, P. aeruginosa, S. aureus, and E. coli using reference drugs. The results concluded that
compounds 192, 194, 195, 200 and 205 had remarkable activity against E. coli. Furthermore,
compounds 195, 192, 196, 200, 209 and 207 reported the promising antibacterial activity
against K. pneumonia, which is greater than ciprofloxacin. Compounds 192, 194, 195, 200,
205 and 207 exhibited excellent activity against P. aeruginosa, which was higher as com-
pared to ciprofloxacin. Moreover, 196, 200, 205, 207 and 209 displayed several folds of
activity against S. aureus. It was indicated from the results that the existence of a phenyl
ring at thiosemicarbazones is necessary for significant activity. Similarly, the allyl, benzyl
and phenyl group on the N-position of thiazole (207, 209 and 205) was associated with
a significantly high degree of activity [30]. Thirty thiazole derivatives (213–242) were
synthesized by Zha et al., 2019 as represented in Scheme 16. In vitro antibacterial studies
of compounds were carried out against B. subtilis, S. aureus, K. pneumonia and E. coli. The
results explained that compounds 231 and 232 demonstrated valuable activity against all
the bacterial strains, while compounds 226 and 227 revealed good activity against E. coli,
S. aureus and B. subtilis because of the existence of an electron-donating (-OCH3 and -OH)
moiety in the molecule [31]. Similarly, Abdel-Galil et al., 2018 reported the synthesis of a
series of scaffolds of heterocyclic compounds that contain thiazolidin-5-one and thiazole
rings from 4-formylphenyl benzoate precursor (Scheme 17). Antibacterial activity of the
synthesized compounds was performed against S. aureus and E. coli. The results reported
that compounds 244, 245 and 248 exhibited dominant antibacterial activity against the
S. aureus bacterial strain, while 6 displayed exceptional activity against E. coli. Moreover,
compounds 251, 250 and 246 demonstrated acceptable activity across the positive strain
and compounds 244 and 247 revealed good activity against the negative strain (Table 1).
The existence of ethoxy, methyl, amino, azo, hydroxyl, or methoxy groups assimilated
with phenylbenzoate, cyanoacetyl hydrazine, and carbamothioylhydrazone moiety in the
derivatives of thiazole depicted excellent antibacterial activity. Furthermore, the presence
of an electron-withdrawing group rather than an electron-donating group in compound
249 reduced the activity. The compound 248 showed the excellent antibacterial activity
against S. aureus and E. coli bacterial strains, which may be due to the –CH3 group at the 4th
position of thiazole [32]. The synthesis of thiazoles from allyl thiourea as given in Scheme 18
was carried out by Khare, et al., 2016. All the synthesized compounds (253–258) exhibited
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moderate activity [33]. Beyzaei, et al., 2017 illustrated the synthesis of 4-thiazolylpyrazole
(264–269) compounds from the modified Hantzsch method, in the presence of catalyst
MgO nanoparticles as represented in Scheme 19. An evaluation of the in vitro antibacterial
activity of the synthesized compounds was also performed against 21 bacteria. Compounds
264 to 269 of 4-thiazolylpyrazoles exhibited inhibition activities against S. agalactiae, P. aerug-
inosa and S. pneumoniae. In comparison with the other compounds, thiazoles 265 and 269
were potent against eight pathogenic bacterial strains, and as such they appeared as one of
the effective broad-spectrum agents [34]. Mohamed et al., 2018 reported the synthesis of
thiazole derivatives as shown in Scheme 20 and observed that the derivative of 272 had
greater antibacterial activity. This may be due to the thiazole’s molecular structure and
also the existence of the NH group, which helps the adsorption of a compound onto the
surface of bacteria, perforation into their cell membrane, and finally eradication of the
membrane, causing the death of bacteria [35]. Seven unique derivatives of pleuromutilin
with the moiety of thioether and thiazole-5-carboxamide (277–283) were prepared by Wang
et al., 2011 as represented in Scheme 21. The in vitro antibacterial activity of the synthesized
compounds was evaluated against two positive strains of bacteria viz. S. aureus ATCC26112
and S. aureus SC. The compounds exhibited valuable activity against the bacteria and it can
be examined that the bacterial strain of S. aureus was more susceptible than S. aureus [36].
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2.4. Synthesis and Antibacterial Activity of the Pyridine

Sirisha, K. et al., 2010 reported the synthesis of twenty 1,4-Dihydropyridines (287-306)
from a condensation reaction of aromatic aldehyde, ammonium acetate and N-heteroaryl
acetoacetamide as shown in Scheme 22. The in vitro antibacterial activity of the synthesized
compounds was executed against the strains using streptomycin and tetracyclin as reference
drugs. Data analysis showed that compound 299 with 2-pyridyl at position C-4 and N-(6-
methylpyridin-2-yl) at the C-5 and C-3 position was equipotent to tetracyclin/streptomycin
across negative strains, while compound 305 was more effective against B. subtilis. Com-
pounds 292, 295 and 299 also had good inhibitory activity across MRSA [37]. Althagafi and
Latif, 2021 reported the synthesis of the derivatives of 6,8-dichloro-imidazo[1,2-a]pyridine
(309–314), including pyrazole, thiazole, and pyridine ring, as represented in Scheme 23.
They evaluated synthesized compounds against K. pneumonia, E. coli, B. subtilis, and S.
aureus. The antibacterial screening presented that many tested compounds displayed
significant activity against both strains of bacteria. The compounds 316, 317, 318 and
319 had the maximum inhibitory activity across most of the bacterial species, while 318
exhibited tremendous activity against all strains as compared to gentamycin and ampicillin
(Table 1). Furthermore, compounds 317 and 316 revealed significant activity toward E.
coli. Compound 318 also showed the same value of MIC against K. pneumonia [38]. The
synthesis of Pyrido[2,3-d]pyrimidine was undertaken by a reaction of the derivatives of
cyanoacetylurea with arylidines or aromatic aldehydes as shown in Schemes 24 and 25.
Antibacterial activity was performed for all the targeted compounds against E. coli and
S. aureus strains using gentamicin as a standard drug. From the data of the antibacterial
activity, it was observed that the compounds 316, 320, 319, 322 and 321 had displayed
tremendous activity across all the strains with a 16.5 to 24mm zone of inhibition (ZOI)
value compared to the reference drug (ZOI 15 mm) [39]. Pyrimidine (326–332) and pyri-
dine (333–341) were synthesized according to Scheme 26 and screened against different
bacteria [40]. The compounds 326–332 and 333–341 exhibited promising activity against
K. planticola. Correspondingly, compounds 326–332 and 335–336 also showed appreciable
activity against S. aureus. From the SAR study, it was estimated that the activity of the
compounds was due to the existence of pyrimidine fused to the skeleton of pyrazolo[3,4-b]
pyridine with a particular substitution pattern [40]. Pyridine derivatives were synthesized
by Jemmezi et al., 2014 from a cyclocondensation reaction as shown in Scheme 27. All
the synthesized compounds were screened for their antibacterial activity against Vibrio
vulnificus, Vibrio cholera, Vibrio alginoliticus and Vibrio parahaemolyticus. It was revealed
that the synthesized compounds had significant biological activities. Compound 344 was
found to be the one that showed the best activity, which is comparable to the activity of
tetracycline. This was due to the presence of an aldehyde function, which imparted its
tremendous biological activities [41].
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2.5. Synthesis and Antibacterial Activity of the Oxazole

The synthesis of oxazole was carried out according to the reaction scheme shown
in Scheme 28 by Ferouani et al., 2018. The synthesized compounds were evaluated for
their in vitro antibacterial activity against Enterococcus faecium (DSM 20477), E. coli (CECT
515) and Clostridium perfringens (CECT 486) using ampicillin and gentamicin as standard
drugs. Among the synthesized compounds, the ones with 4-F, 2-OH and 4-CH3 exhibited
remarkable activity across all three bacterial strains [7]. The compounds also displayed
better activity in comparison with the reference drugs, while remaining compounds indi-
cated good activity, except for the one containing 4-N(CH3)2, which exhibited complete
retardation against all the bacterial strains. The compound 348 displayed the equivalent
antibacterial activity against E. faecium and E. coli, while compounds with 4-OMe and 2-F
were found to be active across only one bacterial strain each (C. perfringens and E. faecium,
respectively) (Table 1). Babu et al., 2019 reported the synthesis of 2-sulfonyl benzoxazole
compounds (351-360) comprising the nucleus of 1,2,3-triazole through a highly effective
and naturally favorable ionic liquids microwave-assisted method as shown in Scheme 29.
Among all the synthesized compounds, 353 with a moiety of 4-fluoro phenyl triazole at 2-
sulfonyl benzoxazole showed persuasive activity against P. aeruginosa (MIC = 6.25 µg/mL),
E. coli (MIC = 3.12 µg/mL) and S. epidermidis (MIC = 6.25 µg/mL), and mild activity against
B. subtilis (MIC = 12.5 µg/mL). The other compounds displayed moderate to low activity.
All results were analogous to streptomycin [42]. The derivative compounds 1,2-Oxazole
(364–369) were synthesized by Arshad, M. 2018 as shown in Scheme 30. They were esti-
mated computationally to determine their physicochemical properties and also screened



Antibiotics 2022, 11, 1750 14 of 25

for their antibacterial activity against S. aureus, S. epidermidis, E. coli, and P. mirabilis. The
antibacterial study indicated that four synthesized compounds 365, 367, 368 and 369 exhib-
ited activities greater than the reference drug (ciprofloxacin). It was also revealed that all
six products displayed larger activity and lesser MIC than the reference drug [43].
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Scheme 30. Synthesis of 1,2-oxazoles 364–369.

The compounds containing benzothiazole and an oxazole ring were synthesized and
evaluated for their antibacterial activity against P. aerugenosa, E. coli, and Staphylococcus
aureus using an agar nutrient medium and were compared with ofloxacin by Tomi et al.,
2015. The derivatives of benzothiazole 383–385 displayed appreciable antibacterial activity
against P. eruginosa, E. coli, and S. aureus when correlated with the derivatives of oxazole
374–376 (Schemes 31–33). The compounds 384 and 385 exhibited credible activity against
P. eruginosa and E. coli, respectively, as compared to the reference drug. All the remaining
compounds showed mild to valuable antibacterial activity. The derivatives of oxazole
374–376 were also recognized to be effective across the strains of bacteria. Compound 376
exhibited higher antibacterial activity towards P. aerugenosa, while compounds 374 and
376 showed a similar inhibition value against E. coli (Table 1). It was concluded that the
derivatives comprising the benzothiazole moiety were more effective than the oxazole
moiety [44]. Kaushik et al., 2020 reported the synthesis of benzoxazole and benzothia-
zole containing the 1,2,3-triazoles moiety (389–408) through a cycloaddition reaction as
represented in Scheme 34. The derivatives were evaluated for their antibacterial activity
according to in vitro models against Gram-positive bacteria such as B. subtilis, S. aureus
and Gram-negative strains (E. coli and K. pneumonia). It was found that in many cases, the
existence of any substituent group in the benzene ring enhanced activity against all the
verified strains of bacteria. Moreover, the occurrence of an electron-withdrawing moiety
in the benzene molecule had displayed a benefit over an electron-donating substituent.
Compounds 394 and 402 with the –NO2 group exhibited increased activity than its alkyl-
substituted or unsubstituted analogs. Improved activity was shown by the 1,2,3-triazoles
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comprising –CH3 group at m-position (391 and 400) against bacterial strains than its para
or ortho counterparts. Compounds 396 and 407 with the Br group in the benzene ring
showed more activity than the compounds with Cl and F substituents. Furthermore, the
compounds 397 and 408 comprising the naphthyl ring exhibited potential activity towards
all the bacteria. All the derivatives of triazole encompassing the ring of benzothiazole
displayed better efficiency in contrast to the ring of benzoxazole [45]. Fifteen compounds
(411–426) with the oxazole ring were prepared by Kakkar et al., 2018 (Scheme 35). They
were evaluated against S. aureus, E. coli, B. subtilis, P. aeruginosa and S. enterica using ce-
fadroxil as a standard drug. The antibacterial outcome showed that compound 416 was
moderately effective against S. aureus and E. coli with MIC 14.8 µM, while compound 421
showed moderate activity against the B. subtilis strain of bacteria with MIC value 17.5 µM
(Table 1). Moreover, compounds 419 and 425 exhibited MIC 17.8 and 17.3 µM against S.
enteric and P. aeruginosa, respectively. From the SAR study, it was revealed that compounds
421 and 425 have an electron-donating group at p-position that enhanced the antibacte-
rial activity against B. subtilis and P. aeruginosa, respectively. Moreover, the existence of
p-(phenoxy-methyl)benzene in compound 416 increased the activity against S. aureus and
E. coli. However, the electron-withdrawing moiety (Cl) at para position of the compound
419 improved the activity towards A. niger and S. enterica [46].
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2.6. Synthesis and Antibacterial Activity of the Thiazolidinone

Guzel-Akdemir et al., 2020 reported the synthesis of 4-thiazolidinones and 5-sulfamoyl-
1H-indoles (430–445) as represented in Scheme 36 and evaluated the antibacterial activity
of the synthesized compounds. Compounds 435 and 444 (with a tert-butyl at 8- position on
the spirothiazolidinone) and 434 (with propyl moiety at 8-position) showed good activity.
The presence of an alkyl substituent at 8-position had stimulated an influence on the activity
against S. epidermidis. Compounds 440–445 exhibited optimum activity against S. aureus
ATCC 33951, while 440, 442, and 443 (alkyl groups at 2 and 7 positions) were the most
effective against S. aureus ATCC 33951 [47]. Cheddie et al., 2020 reported the synthesis of a
thiazolidinone (449–460) derivatives from the p-nitro-o-phenylenediamine compound as
shown in the Scheme 37. The in vitro antibacterial activity of the targeted compounds was
estimated against two Gram-positive and four Gram-negative strains using levofloxacin
and ciprofloxacin as the standard antibiotics. Most of the compounds were 140-fold more
effective than levofloxacin and 80-fold more effective than ciprofloxacin against K. pneumo-
nia and approximately 140-fold more active than levofloxacin and 600-fold more effective
than ciprofloxacin against S. aureus. Nitro and Br groups in compounds 452, 458 and 460
exhibited broad-range activity across all bacterial strains. The 4-Br (458) and 2-Br (452)
derivative compounds indicated excellent activity, greater than that of ciprofloxacin against
both the Gram-positive bacterial strains (MRSA = 188.6 µM and S. aureus = 94.3 µM). Com-
pound 460 with the NO2 group displayed exceptional activity against the Gram-negative
strains with MBC 0.15 µM against E. coli, S. typhimurium and K. pneumonia and 9.58 µM
against P. aeruginosa. It was observed that the phenyl ring has an influence on the activity of
the synthesized compounds. Compound 449, which does not have a Ph substitution, was
effective against S. aureus and E. coli only and had lower activity than the ones with a Ph
ring. For instance, the 454 derivative compound with NO2 at the 2nd position had reduced
activity than compound 460 with NO2 at the 4th position against E. coli (Table 1). Similarly,
compounds containing halogen substitutions on the ring have a profound response to-
ward antibacterial activity. Moreover, benzimidazole compounds with a Ph moiety at C-2,
rather than the trifluoromethyl group, also displayed appreciable antimicrobial activity [29].
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Some derivative compounds with a thiol moiety at C-2 rather than the trifluoromethyl
showed 4-fold better activity against strain-specific bacteria than ciprofloxacin [1]. The
thiazolidinone derivatives (464–473) were also prepared by Jilla et al., 2020 from benzocy-
clohepetenone as shown in the Scheme 38. The results showed that 469 and 470 displayed
significant antibacterial activity against all the strains. Compound 469 showed exceptional
activity with MIC 1.9 µg/mL against B. subtilis MTCC 121. Compound 470 displayed
substantial activity against all the pathogens with MIC 3.8 to 7.9 µg/mL. Compounds 466
and 467 demonstrated promising activity against P. aeruginosa MTCC 2453 and S. aureus
MTCC 96 with 3.9 µg/mL (MIC). In the perspective of the structure–activity relationship, it
was noticed that the targeted compounds 469 and 470 possessed secondary amines such as
piperidine and pyrrolidine and displayed more probable antimicrobial activity than the
compounds with other substituents (Table 1). Furthermore, compounds 464, 466 and 467,
bearing morpholine, ethyl piperazine-1-carboxylate and phenyl piperazine substituents
connected to the benzosuberones compound associated with a scaffold of thiazolidin-4-one,
had shown considerable activity correlated with other substituted derivatives [48].
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Scheme 38. Synthesis of 2-(9-chloro-2,3-dimethyl- 6,7-dihydro-5H-benzo[7] annulen-8-yl)-3-(3-oxo-3-
[piperazin-1-yl]propyl)thiazolidin-4-one derivatives.

The different derivatives of thiazolidinones (477–486) were synthesized by the conden-
sation of aryl aldehyde with a basic skeleton as depicted in Scheme 39. The antibacterial
activity of all the synthesized compounds was estimated against P. aeruginosa, K. aerogenes,
C. violaceum B. subtilis, S. aureus and B. sphaericus using streptomycin as a standard drug. From
antibacterial data, it was revealed that all the synthesized compounds 477–486 were active
and displayed moderate to valuable activity against bacterial strains (Table 1). Amongst
them, compounds 478, 480 and 486 exhibited excellent antimicrobial activity against P. aerugi-
nosa, while compounds 478 and 486 were active against C. violaceum [49]. Ismael et al., 2020
reported the synthesis of compounds with pharmacophore of 4-thiazolidinone 490–493 as
depicted in Scheme 40 and also evaluated their antimicrobial activity against Gram-positive
and Gram-negative strains. Compound 492 against E. coli exhibited the highest activity which
was comparable to that of trimethoprim and also more valuable than the reference drug
against S. Pyougenes and Acinetobacter. In contrast, compound 491 had preferable activity than
the standard drug on S. pyogenes and was equivalent to the trimethoprim in Acinetobacter
baumanni. From the comparison of antibacterial results, it was explained that among the
tested compounds, compound 492 showed the best activity as compared to 491 [50]. The
4-thiazolidinones derivatives based on 1,2,4-triazole (497–506) were reported by Ahmed et al.,
2016 (Scheme 41). Antibacterial activity of the synthesized compounds was also evaluated
against P. aeruginosa, P. vulgaris and E. coli as Gram-negative and S. aureus, E. faecalis and
B. subtilis as Gram-positive strains using moxifloxacin and ciprofloxacin as the control drugs.
It was concluded that compounds 502–506 exhibited valuable activity with broad-spectrum,
while compounds 498–501 had not shown any activity across all of the strains. Moreover,
it was also found that almost all the tested compounds did not have any activity against
P. vulgaris. Compound 497 showed reasonable activity against E. coli and S. aureus with a
~61% zone of inhibition value (Table 1). Most of the derivatives of 1,2,4-triazole exhibited MIC
values (8–128 g/mL). The excellent MIC value estimated for the compound 502 was 8 µg/mL
against S. aureus (Table 1). In the advancement of antibacterial agents, lipophilicity was found
to be one of the significant physicochemical parameters, because it was closely associated with
permeation through the bacterial lipid layer. The targeted compounds displayed remarkable
lipophilic characteristics with 3.4–5.2 p-values. From the structural perspective, it appeared
that the presence of -OCH3, -CH3, -NO2 and F had auspicious antibacterial activity [51].
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Scheme 40. Synthesis of thiazolidinone from benzylalcohol.
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Scheme 41. Synthesis of thiazolidinone from benzoic acid (497–506).

2.7. Synthesis and Antibacterial Activity of the Imidazole

The synthesis and antibacterial evaluation of the different derivatives of the imidazole
was undertaken by Patil et al., 2015 as shown in Scheme 42. S. aureus, B. subtilis, E. coli and
Micrococcus were used in biological studies, while sulfamethoxazole and ciprofloxacin were
used as the standard drugs. Among the four synthesized compounds, 514 showed the highest
activity against all strains. Furthermore, compounds 511 and 512 with electron-donating groups
depicted good activity against Micrococcus, E. coli and S. aureus, but slightly less activity toward
B. subtilis. On the other hand, compound 513 substituted with benzimidazole as an electron-
withdrawing group displayed equivalent activity against Micrococcus, E. coli and S. aureus and
comparatively remained inactive against B. subtilis [52]. Choudhari et al., 2020 reported the
synthesis of imidazole compounds based on 1,4-naphthoquinones (518–521) and (522–525)
as presented in Scheme 43. All the synthesized compounds displayed a wide spectrum of
antibacterial activity towards all strains. Some compounds showed MIC values that were
comparably smaller than the reference drugs. The compounds also exhibited significant MIC
towards isolates of bacteria viz. P. aeruginosa NCIM 5029, E. coli NCIM 2931 and S. aureus
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5021. Furthermore, the reference antibiotics exhibited a relatively greater MIC value against
both strains of Pseudomonas. Compounds 516 and 517 were found to be the 1st and 2nd most
active compounds in comparison with the remaining synthesized compounds in terms of
MIC. Compound 518 showed a higher MIC value, in the range of 128–512 µg/mL, against all
strains (Table 1). Compounds 519 and 520 exhibited MIC = 32 and 64 µg/mL, respectively,
against P. aeruginosa NCIM 5029. Compound 521 showed an MIC value of 32µg/mL against
P. aeruginosa NCIM 5029, 64 µg/mL against P. vulgaris NCIM 2027 and S. aureus NCIM 2079.
Compound 525 displayed the best activity against S. aureus NCIM 5021 with an 8 µg/mL
MIC, while 128 µg/mL MIC was observed against the remaining strains. Compound 524
displayed activity with 8 µg/mL MIC against S. aureus NCIM 5021, whereas a 16 µg/mL value
against P. aeruginosa NCIM 5029 and 128 µg/mL value against S. aureus NCIM 2079 were
found. Compounds 522–525 demonstrated favorable antibacterial activity towards S. aureus
with 8 µg/mL MIC, but the good value was noticed for E. coli and S. aureus [53]. Shahzad
et al., 2020 illustrated the formation of a tetra-substituted imidazole class of compounds (527,
528 and 529) by a cyclocondensation reaction of aromatic primary amines, benzil, aldehydes
and C2H7NO2 as represented in Scheme 44. Synthesized compounds were also evaluated for
their antibacterial activity against two S. aureus, B. subtilis and E. coli using ciprofloxacin as a
standard drug. Compound 528 was found to have tremendous efficacy against bacterial strains.
Furthermore, the compound 527 showed the lowest activity (Table 1). Compounds 528 and 529
displayed promising results (>20 mm) against all bacterial species. Moreover, compound 528
showed maximum activity against B. subtilis among the three compounds (23 mm) [54].

Antibiotics 2022, 11, x FOR PEER REVIEW 22 of 27 
 

 

a = PPA/Heat, b = NaNO2/HCl, c = Hydroxybenzaldehyde, d = Nitrophenol, e = 

NaOH/NaNO2/H2SO4, f = DMF/Reflux. 

Scheme 42. Synthesis of imidazole from diamine.  

 

a = Ammonia, b = Acetic anhydride/H2SO4, c = R-NH2, d = KOH. 518,522:R = Me;519,523:R = 

C2H5;520,524:R = C3H7;521,525:R = C4H9. 

Scheme 43. Synthesis of imidazole-based 1,4-naphthoquinone.  

NH2

NH2

+

HOOC

HO OH

N

N
H

OH

HO

507

N
H

N

O

O

N N

N

N
H

OH

HO

ON

N
H

N

O O

N

OH

N

HN

N
H

N

O O

N

S

N

N O

N
H

N

O

O

N

508
509

512

511

513

514

510

a b

c

d

e

f

Cl

Cl

O

O

515

a
NH2

Cl

O

O

b
NH

Cl

O

O

O

c
NH

N
H

O

O

O

R

d N

N

O

O R

516 517 518-521 522-525

Scheme 42. Synthesis of imidazole from diamine.

Antibiotics 2022, 11, x FOR PEER REVIEW 22 of 27 
 

 

a = PPA/Heat, b = NaNO2/HCl, c = Hydroxybenzaldehyde, d = Nitrophenol, e = 

NaOH/NaNO2/H2SO4, f = DMF/Reflux. 

Scheme 42. Synthesis of imidazole from diamine.  

 

a = Ammonia, b = Acetic anhydride/H2SO4, c = R-NH2, d = KOH. 518,522:R = Me;519,523:R = 

C2H5;520,524:R = C3H7;521,525:R = C4H9. 

Scheme 43. Synthesis of imidazole-based 1,4-naphthoquinone.  

NH2

NH2

+

HOOC

HO OH

N

N
H

OH

HO

507

N
H

N

O

O

N N

N

N
H

OH

HO

ON

N
H

N

O O

N

OH

N

HN

N
H

N

O O

N

S

N

N O

N
H

N

O

O

N

508
509

512

511

513

514

510

a b

c

d

e

f

Cl

Cl

O

O

515

a
NH2

Cl

O

O

b
NH

Cl

O

O

O

c
NH

N
H

O

O

O

R

d N

N

O

O R

516 517 518-521 522-525

Scheme 43. Synthesis of imidazole-based 1,4-naphthoquinone.



Antibiotics 2022, 11, 1750 21 of 25Antibiotics 2022, 11, x FOR PEER REVIEW 23 of 27 
 

 

a = AcOH/Reflux/p-cresolamine/CH3COONH4/Acetaldehyde, b = AcOH/Reflux/p-cresola-

mine/CH3COONH4/Furfural, c = AcOH/Reflux/p-cresolamine/CH3COONH4/Benzaldehyde. 

Scheme 44. Synthesis of 5-methyl-2-(2-methyl-4,5-diphenyl-1H-imidazol-1-yl)phenol, 2-[2-(furan-2-

yl)-4,5-diphenyl-1H-imidazol-1-yl]-5- methylphenol and 5-methyl-2-(2, 4, 5-triphenyl-1H-imidaz-

ole-1-yl) phenol.  

Table 1. Compounds with good antibacterial activities. 

Heterocyclic 

Compounds 
Number/Code Microbes Reference 

Pyrrole 

6, 10, 15 and 17 B. subtilis [16] 

16 P. aeruginosa [16] 

18 S. aureus [16] 

5 E. coli [16] 

37 E. faecalis, S. aureus, and E. coli [19] 

44 S. aureus and E. coli [21] 

50, 51, and 52 P. putida [20] 

65 and 71 S. aureus and E. coli [22] 

49 B. subtilis and S. aureus [23] 

Pyrimidine 

82, 86, and 88 P. aeruginosa, S. aureus [24] 

95 E. coli and S. aureus [25] 

102, 101 and 106 S. aureus, B. subtilis, E. coli, and S. typhimurium [14] 

118, 117, and 123 E.coli [26] 

126–134 B. subtilis, S. enterica, and M. luteus [27] 

141 P. aeruginosa, B. subtilis, S. aureus [28] 

161–170 E. coli, S. aureus, and P. aeruginosa [29] 

Thiazole 

192, 195, 194, 200 and 205 E. coli [30] 

195, 200, 192, 209, and 207 K. pneumonia [30] 

194, 200, 192, 207, and 205 P. aeruginosahigher [30] 

200, 205, 209, 207, and 196 S. aureus [30] 

226 and 227 E. coli, S. aureus, and B. subtilis [31] 

244, 247, 247, and 248 S. aureus [32] 

247 E. coli [32] 

248 S. aureus and E. coli [32] 

Pyridine 

305 B. subtilis [37] 

291 B. subtilis and S. aureus [38] 

317 and 316 E. coli [38] 

O

O

N N

H3C

OH
CH3

527

N N

H3C

OH
O

N N

H3C

OH

a b

c

528

529

526

Scheme 44. Synthesis of 5-methyl-2-(2-methyl-4,5-diphenyl-1H-imidazol-1-yl)phenol, 2-[2-(furan-2-
yl)-4,5-diphenyl-1H-imidazol-1-yl]-5- methylphenol and 5-methyl-2-(2, 4, 5-triphenyl-1H-imidazole-
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Table 1. Compounds with good antibacterial activities.

Heterocyclic Compounds Number/Code Microbes Reference

Pyrrole

6, 10, 15 and 17 B. subtilis [16]
16 P. aeruginosa [16]
18 S. aureus [16]
5 E. coli [16]

37 E. faecalis, S. aureus, and E. coli [19]
44 S. aureus and E. coli [21]

50, 51, and 52 P. putida [20]
65 and 71 S. aureus and E. coli [22]

49 B. subtilis and S. aureus [23]

Pyrimidine

82, 86, and 88 P. aeruginosa, S. aureus [24]
95 E. coli and S. aureus [25]

102, 101 and 106 S. aureus, B. subtilis, E. coli, and S.
typhimurium [14]

118, 117, and 123 E. coli [26]
126–134 B. subtilis, S. enterica, and M. luteus [27]

141 P. aeruginosa, B. subtilis, S. aureus [28]
161–170 E. coli, S. aureus, and P. aeruginosa [29]

Thiazole

192, 195, 194, 200 and 205 E. coli [30]
195, 200, 192, 209, and 207 K. pneumonia [30]
194, 200, 192, 207, and 205 P. aeruginosa higher [30]
200, 205, 209, 207, and 196 S. aureus [30]

226 and 227 E. coli, S. aureus, and B. subtilis [31]
244, 247, 247, and 248 S. aureus [32]

247 E. coli [32]
248 S. aureus and E. coli [32]

Pyridine

305 B. subtilis [37]
291 B. subtilis and S. aureus [38]

317 and 316 E. coli [38]
318 K. pneumonia [38]

326–332 and 333–341 Klebsiella planticola [40]
344 Vibrio parahaemolyticus [41]
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Table 1. Cont.

Heterocyclic Compounds Number/Code Microbes Reference

Oxazole

348 E. faecium, and E. coli [7]
353 P. aeruginosa [42]

365, 367, 368, and 369 S. epidermidis, E. coli, and P. mirabilis [43]
385 P. aerugenosa [44]
384 E. coli [44]
376 P. aerugenosa [44]
374 E. coli [44]

394 and 402 E. coli and K. pneumonia [45]
416 S. aureus and E. coli [46]
419 S. enteric [46]

Thiazolidinone

434 S. epidermidis [47]
458 S. aureus [29]
460 E. coli [29]
469 B. subtilis [48]
466 P. aeruginosa [48]

478 and 486 C. violaceum [49]
479 E. Coli [50]
497 E. coli and S. aureus [51]
502 S. aureus [51]

Imidazole
518 P. aeruginosa and E. coli [53]
527 B. subtilis [54]

3. Conclusions and Future Perspectives

With the increasing population on the earth, health issues are becoming alarming
for chemists/pharmaceutics. As microbes become resistant against the available drugs in
the market, there is a need for new strategies or routes for the designing or synthesis of
new drugs that may be more effective against such microbes. In this review, the data of
various heterocyclic compounds with antibacterial activities were narrated from various
research groups. Most of the derivative compounds exhibited exceptional to moderate
antibacterial activity. There were some factors from a biological perspective, due to which
most of the compounds exhibited weaknesses such as: (a) it was difficult for most of the
targeted compound to pass through the bacterial membranous wall; (b) specific enzyme
production in bacteria which wipe out the drug compound; (c) most of the structural parts
had altered the bacteria itself, so the particular drug compound had shown their effect on it.
Here, we discussed detailed information on the antibacterial activity of various heterocyclic
compounds. It is evident from different studies that the presence of different substituents
has a diverse effect, as the electron-withdrawing substitution in the benzene ring enhances
the activity as compared to the electron-donating substituent. As heterocyclic compounds
have an immense application in the medicinal field, there is a need for more work on
synthesis, as well as on their evolution in terms of infectious diseases. Thus, this piece of
work would be helpful for the synthesis of new and effective drug molecules.
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