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Abstract: Bacterial resistance to antibiotics continues to be a global public health problem. The choice
of the most effective antibiotic and the use of an adapted dose in the initial phase of the infection
are essential to limit the emergence of resistance. This will depend on (i) the isolated bacteria and
its resistance profile, (ii) the pharmacodynamic (PD) profile of the antibiotic used and its level of
toxicity, (iii) the site of infection, and (iv) the pharmacokinetic (PK) profile of the patient. In order
to take account of both parameters to optimize the administered treatment, a minimal inhibitory
concentration (MIC) determination associated with therapeutic drug monitoring (TDM) and their
combined interpretation are required. The objective of this narrative review is thus to suggest
microbiological, pharmacological, and/or clinical situations for which this approach could be useful.
Regarding the microbiological aspect, such as the detection of antibiotic resistance and its level, the
preservation of broad-spectrum β-lactams is particularly discussed. PK-PD profiles are relevant for
difficult-to-reach infections and specific populations such as intensive care patients, cystic fibrosis
patients, obese, or elderly patients. Finally, MIC and TDM are tools available to clinicians, who
should not hesitate to use them to manage their patients.

Keywords: microbiology; minimal inhibitory concentration; pharmacology; PK/PD parameters;
TDM-guided dosing adjustment; clinical practice

1. Introduction

The increasing resistance of bacteria to antibiotics is a major worldwide public health
problem, particularly considering the association of increased mortality and length of
hospital admission for patients with multidrug-resistant (MDR) bacterial infections [1]. It
is urgent to assess ways to reduce the global spread of bacterial resistance and to select the
most effective antibiotic during the initial phase of infection, particularly when resistance
affects the most broad-spectrum agents such as carbapenems or, recently, last-line therapies
such as β-lactams/β-lactamase inhibitor (BLBLI) combinations and cefiderocol [2,3].

Before targeting an optimal antibiotic therapy, an empirical treatment is administered,
and the previous collection of a microbiological sample helps choose the most effective
treatment. Among the microbiological results, antibiotic susceptibility testing (AST) is cur-
rently based on testing the ability of an antibiotic to inhibit bacterial growth in vitro under
standardized experimental conditions. Antibiotic susceptibility is mostly measured by the
diameter (in mm) of the zone of bacterial growth inhibition around an antibiotic-containing
disk versus the tested pathogen. AST reflects the responsible pathogen’s susceptibility or
resistance to diverse antibiotics, leading to the selection of a clinically effective antimicro-
bial treatment. For most bacterial infections, AST measured using a diameter is sufficient.
However, in the case of severely ill patients with chronic infections previously treated with
many broad-spectrum antibiotics, more accurate information is needed to facilitate the
selection of an optimal antibiotic regimen.
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The minimal inhibitory concentration (MIC) may help to choose the most appropriate
treatment. It defines in vitro the levels of susceptibility or the resistance of specific bacterial
strains to a targeted antibiotic [4]. However, it is difficult to predict the clinical outcome of
an infection only based on the MIC value. Several pharmacokinetic and pharmacodynamic
(PK/PD) parameters have been associated more precisely with patient or infection outcomes
for some antibiotics and PK/PD measurements help to optimize antibiotic therapy and to
minimize the emergence of resistance [5,6]. Moreover, MIC may be determined in other
clinical situations in severely ill patients (especially in cases of renal injury or augmented
renal clearance [5,7]) or in the case of difficult-to-reach sites of infection (i.e., endocarditis or
meningitis [8,9]). The aim of this article is to discuss the microbiological and pharmacological
points of view regarding a clinical situation in order to propose specific cases where MIC
determination and therapeutic drug monitoring (TDM) may be beneficial for the patient.

2. MIC and Its Microbiological Indications

Classic AST, e.g., critical diameter measurement, raises problems in some conditions,
leading to the determination of the MIC value. We will detail below the methods that can
be used, their relevance, and their microbiological indications.

2.1. MIC Determination Methods

Two main methods are used to determine MIC [10]. Broth microdilution (BMD) is a method
in which containers are filled with identical volumes of inoculated broth and identical volumes
of an antibiotic solution, but incrementally (usually geometrically) increasing concentrations of
the antibiotic and a defined inoculum. The results are recorded as the lowest concentration of
antimicrobial agent that inhibits the visible growth of a microorganism, MIC, expressed in mg/L
or µg/mL. Agar dilution involves the incorporation of an antibiotic in solid or semi-solid agar
media in a geometrical progression of concentrations and the application of a defined bacterial
inoculum to the surface. Its purpose is the determination of the lowest concentration that inhibits
bacterial growth, namely MIC [10]. The responsible bacteria are susceptible or resistant if the
antibiotic MIC is below or above the clinical breakpoint cut-off, respectively. The “European
Committee on Antimicrobial Susceptibility Testing” (EUCAST) annually updates the clinical
breakpoint tables for the interpretation of MICs and zone diameters [11].

2.2. Relevance and Microbiological Indication of MIC Determination

Classic AST raises problems in certain conditions, leading to the need to perform a
specific MIC measurement. We will detail below the microbiological indications, their
limits, and the methods that can be used. In addition, the microbiological relevance of MIC
determination is summarized in Table 1.

Table 1. Microbiological determinants warranting MIC determination according to the EUCAST guidelines [11].

Microbiological Determinants Bacteria of Concern Antibiotic of Concern

Agar diffusion method as
inappropriate for some antibiotics

Gram-positive bacteria

Staphylococcus spp.

Enterobacterales, P. aeruginosa, A. baumannii

Daptomycin
Dalbavancin
Oritavancin
Telavancin

Vancomycin
Teicoplanin

Fosfomycin iv

Colistin

Absence of detection of the resistance level to
β-lactams

Streptococcus pneumoniae (reduced susceptibility to
penicillin strains)

Haemophilus influenzae (BLNAR * strains)
β-Lactams

Detection of low-level antibiotic
resistance Salmonella sp. Ciprofloxacin

MIC creep Staphylococcus aureus Vancomycin

Preserve broad-spectrum antibiotics Enterobacterales Piperacillin/tazobactam
Cephalosporins

* beta-lactamase-negative ampicillin resistance.
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2.2.1. Agar Diffusion Method Is Inappropriate for Some Antibiotics

For some antibiotics, the agar diffusion method (disc and gradient strip) does not
allow for the interpretation of the susceptibility of the tested microorganisms. This is due
to their poor diffusion in a solid medium (colistin) or the need for particular chemical
conditions (lipopeptides such as daptomycin or dalbavancin) [11]. Therefore, the EUCAST
guidelines recommend the use of a BMD method to determine MIC [12].

2.2.2. Absence of Detection of the Resistance Level to β-Lactams

For some microbiological species, it is difficult in the case of resistance to the usually
tested antibiotic to define the resistance mechanism and to specify the optimal treatment
choices. This is the case for β-lactam resistance in Streptococcus pneumoniae resistant to
oxacillin (e.g., suspected of reduced susceptibility to penicillin) and Haemophilus influenzae
resistant to aminopenicillins.

In the first case, for S. pneumoniae, resistance is associated with alterations in penicillin-
binding proteins (PBPs) that reduce the binding affinity of the antibiotic to PBPs [13]. As
the S. pneumoniae genome encodes six PBPs and each β-lactam inhibits different PBPs, the
modification of PBPs leads to an increase in the MICs of all β-lactams, but the extent of this
increase varies according to the antibiotic [14].

Whereas in the second case (H. influenzae), two main mechanisms of amino penicillin
(AMP) resistance lead to reduced susceptibility to this antibiotic class: either by the pro-
duction of a β-lactamase, or by alteration of PBP3 [15]. In addition, the β-lactam MIC
differs according to the degree of alteration of PBP3. It may be difficult using the disc
method to distinguish β-lactamase-negative ampicillin susceptible (BLNAS) strains from
β-lactamase-negative ampicillin resistance (BLNAR) strains, because most discs contain
high concentrations of β-lactams [16].

Determination of the MIC of β-lactams to define the most appropriate treatment
will be more justified when a practitioner is dealing with severe or invasive infections
(such as bacteremia or meningitis), clinical failure, and/or an isolate suspected of reduced
susceptibility to penicillin (S. pneumoniae) or AMP (H. influenzae). EUCAST guidelines
recommend testing of the β-lactams of interest, particularly in these cases [12].

2.2.3. Detection of Low-Level Antibiotic Resistance

Fluoroquinolone resistance in Salmonella is mainly caused by chromosomal mutations
in the quinolone resistance-determining regions (QRDRs) of the topoisomerase genes [17]
that lead to resistance to nalidixic acid (MIC > 16 mg/L) and higher MIC values for
ciprofloxacin (at least 0.12 mg/L). Moreover, resistance may be associated with other
diverse mechanisms of resistance, such as plasmid-mediated quinolone resistance (PMQR)
mechanisms that result in reduced susceptibility to ciprofloxacin (MIC of 0.125 to 1.0 mg/L),
but only a modest or no increase in susceptibility to nalidixic acid [17]. Indeed, PMQR
mechanisms are clinically relevant because patients infected with Salmonella typhi or non-
typhoidal Salmonella isolates with ciprofloxacin MICs of 0.125 to 1.0 mg/L have more
treatment failures and longer times to fever clearance than patients with isolates fully
susceptible to ciprofloxacin (MICs < 0.06 mg/L) [18]. Thus, using the disk method, the
ciprofloxacin disk fails to detect this low-level resistance [19].

2.2.4. MIC Creep

The first option for the treatment of invasive methicillin-resistant Staphylococcus aureus
(MRSA) infections is vancomycin, which continues to be the reference standard approach
in this context. However, an increasing number of MRSA isolates with high MICs, within
the susceptible range (vancomycin MIC creep), are being reported worldwide. It has been
reported that the efficacy of vancomycin therapy is contingent upon a target AUC0–24/MIC
ratio of ≥400 (see next section on PK/PD indices) [20]. Nevertheless, AUC values greater
than 600 mg.h/L are also associated with a higher risk of acute kidney injury, making
it nearly impossible to safely and effectively treat microorganisms with vancomycin
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MICs > 1 mg/L [21]. Moreover, a few studies have reported poorer clinical outcomes
and increased mortality associated with vancomycin MIC creep [22,23]. Divergent studies
of this phenomenon have been reported in the literature [20,21] and the determination of
vancomycin MIC in challenging situations will be discussed in terms of improving PK-PD
target selection. Currently, EUCAST guidelines recommend the use of a reference labora-
tory to confirm the GISA or hetero GISA character of an S. aureus isolate if the vancomycin
and/or teicoplanin MIC is >1 mg/L, using the BMD method [24].

2.2.5. Preservation of Broad-Spectrum Antibiotics

Piperacillin-Tazobactam/Cephalosporins and ESBL-Producing Strains
Carbapenems have been considered as the treatment of choice for severe infections

caused by extended spectrum β-lactamase (ESBL)-producers [25,26]. The increasing world-
wide incidence of ESBL-related infections has led to the increased use of carbapenems,
leading to selection pressure for carbapenem resistance [27,28]. Therefore, to avoid the use
of carbapenems, several authors have suggested the use of antibiotics that are active with re-
gard to AST, despite the fact that they are hydrolyzed by the ESBL enzyme. Thus, EUCAST
guidelines recommend reporting ESBL-producing strains as resistant to all penicillins, but
as susceptible to BLBLI combinations or third-generation cephalosporins (3GC) when they
are active on AST [29]. In addition, when susceptible, the use of β-lactam/β-lactamase
inhibitor (BLBLI) combinations or cephalosporins has been proposed as an alternative
to carbapenems [30]. Despite controversies [31,32], success when using these antibiotics
depends on several factors, including the microbial species, the site of infection [33] and
the MIC [34]. Studies show that success was more frequent in cases of urinary or biliary
tract infections related to Escherichia coli [33] and that mortality was lower for isolates with
an MIC ≤ 4 mg/L for BLBLI than for isolates with a higher MIC [31,34]. However, the
use of 3CG s is more rarely possible as many ESBL-producing isolates are resistant, and
such antibiotics should be limited to Escherichia coli strains or Klebsiella pneumoniae-related
infections with MICs below 1 mg/L [35]. In conclusion, although alternatives have been
studied, carbapenems remain the drugs of choice against ESBL-positive strains [36].

2.2.6. Therapy for Carbapenemase-Producing Enterobacterales (CPE)-Related Infections

The release of new antibiotics has opened up many new possibilities in the treatment
of CPE-related infections [36]. Indeed, until the arrival of the new BLBLI, the corner-
stone of treatment for CPE-related infections was a combination of antibiotics [37]. In
addition, it has been demonstrated that these new associations (e.g., aztreonam with cef-
tazidime/avibactam) are effective, regardless of the mechanisms of resistance [36,38,39].
Although each molecule’s MIC is independently high, the β-lactamase inhibitor will be
responsible for restoring susceptibility to β-lactams. In case of associations, a simple way
to determine MICs is based on the Etest strip superposition method which has been shown
to be particularly effective for aztreonam/inhibitor combinations [40]. However, the lack
of availability of these new antibiotics in low- and middle-income countries highlights
the possibility of using carbapenems in combination or as a therapeutic option in patients
with infections using CPE isolates with meropenem MIC ≤ 8 mg/L or the combination
of ertapenem with meropenem in the case of infections related to Klebsiella pneumoniae
carbapenemase (KPC)-producing bacteria [36,40].

3. Relevance of PK/PD Indices and TDM
3.1. PK-PD Indices

The aim of TDM is optimization of the dose regimen to maximize treatment efficacy
while reducing the risk of toxicity and the emergence of bacterial resistance [5]. However,
paradoxically, while the individual PK characteristics of the patient are generally taken
into account, the PD data of the offending organism are often little or not considered, and
the targets used are most often based on the EUCAST clinical breakpoint or using MIC
distributions such as epidemiological cut-off values (ECOFF) [5,6,41].



Antibiotics 2022, 11, 1748 5 of 15

These targets are based on the classically described PK-PD indices with (i) time-
dependent antibiotics for which the index of interest is the percentage of time the free drug
concentration remains above the MIC (%f T>MIC), (ii) concentration-dependent antibiotic
in which it is the ratio of maximum antibiotic concentration (Cmax) to MIC (Cmax/MIC),
and (iii) mixed-effect antibiotics in which %f T>MIC and Cmax/MIC are of interest and are
characterized by the ratio of the free drug area under the concentration–time curve during
a 24-h period to MIC (f AUC0-24/MIC) [42,43]. The PK-PD indices of the most commonly
used antibiotics are presented in Table 2.

Table 2. Summary of PK/PD indices associated with efficacy and PK threshold for toxicity for most
commonly used antibiotics.

PK/PD Index PK/PD Threshold for
Efficacy PK Threshold for Toxicity

β-Lactams %f T>MIC 100% f T>4x MIC

Neurotoxicity:
Cefepim: Cmin > 22 mg/L

Css > 35 mg/L
Meropenem: Cmin > 64 mg/L
Piperacillin: Css > 157 mg/L $

Css > 360 mg/L
Nephrotoxicity:

Meropenem: Cmin > 44.5 mg/L
Piperacillin: Cmin > 453 mg/L

[6,44–47]

Fluoroquinolones f AUC0–24/MIC AUC0-24/MIC > 125
Cmax/MIC > 10–12 [48,49]

Aminoglycosides Cmax/MIC Cmax/MIC > 8–10
Oto- and Nephrotoxicity:

Gentamicin, tobramycin: Cmin > 1 mg/L
Amikacin: Cmin > 5 mg/L

[50–52]

Vancomycin f AUC0–24/MIC AUC0-24/MIC > 400
Nephrotoxicity:
Cmin > 20 mg/L
Css > 25 mg/L

[20,21,53,
54]

Linezolid f AUC0–24/MIC
%f T>MIC

AUC0-24/MIC > 100
85% f T > MIC

Hematotoxicity:
Cmin > 6 mg/L [55]

Daptomycin f AUC0–24/MIC AUC0-24/MIC > 666 Myotoxicity:
Cmin > 24 mg/L [56]

Colistin f AUC0–24/MIC Unclear Nephrotoxicity:
Cmin > 2.4 mg/L [57]

Cmax: peak concentration; Cmin: trough concentration; Css: steady-state concentration (when the antibiotic is
administered by continuous infusion). $ when used with tazobactam.

An a priori dose regimen adaptation—before TDM—should follow recommendations
for a specific population and clinical setting, and one way to determine the initial dosage
is to review the probability of target attainment (PTA) corresponding to our specific situ-
ation [58]. PTA is based on Monte Carlo simulations and corresponds to the probability
that at least a specific value of a PD index is achieved for a given MIC [43]. More and
more PK-PD studies are comparing a dose regimen and/or administration modality with
therapeutic success, for example for β-lactam antibiotics [59–63], fluoroquinolones [64],
and aminoglycosides [65]. However, as these probabilities are deduced from a population
PK model, this implies that the patient concerned corresponds to this specific population,
and that extrapolation of PK parameters from one population to another (e.g., data from
neutropenic oncology patients extrapolated to intensive care patients) is not possible.

3.2. Relevance of MIC Determination to Perform TDM

A posteriori adaptation using concentration measurement is thus recommended for
many antibiotics [5]. However, how does knowledge of MIC improve PK-PD target
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selection rather than using the usual breakpoints? Especially in cases where there is
an acute risk of toxicity (e.g., with antibiotics with a narrow therapeutic window) or,
conversely, a risk of underexposure due to PK (such as increased renal clearance) or PD
(e.g., hard-to-reach infectious site) characteristics?

3.2.1. Situations at Risk of Toxicity

Toxicity due to overdosage may occur for antibiotics with a narrow therapeutic range
and/or in the case of organ failure, especially the kidney, as most antibiotics are renally
cleared [7]. In the latter case, a simple adjustment of the dose regimen and repeated
TDM can limit the risks of toxicity. However, in the case of a narrow therapeutic window,
flexibility is reduced, and a low MIC may help. Available not-to-exceed concentration
thresholds for the most used antibiotics are indicated in Table 2.

For β-lactam antibiotics, cefepim is of the greatest concern for neurological toxicity,
with a threshold of Cmin < 22 mg/L if used by intermittent infusion and a steady-state
concentration (Css) < 35 mg/L if used by continuous infusion [44,45]. So, for example,
in the case of Pseudomonas aeruginosa infection, the EUCAST clinical breakpoint is equal
to 8 mg/L, implying a therapeutic target between 32 mg/L (because of a PK-PD target
of 100% f T>4x MIC) and 35 mg/L if used in continuous infusion [6,11]. In this case, the
information provided by the MIC of the offending organism, if below the EUCAST clinical
breakpoint, would allow us to target lower concentrations, thus limiting the risk of toxicity.

Similar concerns exist for colistin and Enterobacterales, for which the concentrations
should be greater than 2 mg/L, but less than 2.4 mg/L when considering the clinical
breakpoint [29,57,66].

3.2.2. Situations at Risk of Under-Exposure
Populations at Risk of Drug Under-Exposure

The use of recommended doses may be associated with sub-therapeutic exposure,
particularly in intensive care patients [67]. A specific PK profile has been described in this
population with a very high inter-individual variability, an increased volume of distribution,
and potentially augmented renal clearance (ARC) [7,67]. ARC is defined by a creatinine
clearance (CLCR) higher than 130 mL/min/1.73 m2, occurs in 20% to 65% of ICU patients,
and corresponds to an increase in renal blood flow that often arises in septic shock [7,58,68].
It causes a significant increase in the clearance of renally eliminated antibiotics leading to
a risk of not reaching PK-PD targets. For example, the population PK of piperacillin was
investigated in a study in 110 ICU patients [69]. This study indicated that for patients with
CLCR > 90 mL/min, a high dose of 24 g per day by continuous infusion did not achieve
100% f T>4x MIC against bacteria with MIC≥ 4 mg/L [69]. In this population, use of a higher
daily dose and/or extended intermittent infusions or continuous infusion is the best way
to increase the probability of PK-PD target attainment [7]. However, again, a low MIC
would avoid significant dose increases by using up to twice or more of the recommended
dose regimen.

Difficult-to-Reach Sites of Infections

TDM is mainly performed on plasma samples and may not reflect antibiotic expo-
sure at the site of infection, particularly in cases of endocarditis, mediastinitis, central
nervous system infections, pneumopathy, or infections on prosthetic material [6]. It is thus
important to consider the diffusion of antibiotics in the tissues concerned and to adapt
the plasma target accordingly [70,71]. For example, when considering lung diffusion, the
criterion of interest is the ratio of epithelial lining fluid (ELF) concentration to plasma con-
centration (ELF/plasma ratio). Antibiotics are then classified according to their diffusion
with (i) ELF/plasma ratio < 1: vancomycin, meropenem, and piperacillin; (ii) ELF/plasma
ratio ~1: cefepime and linezolid; and (iii) ELF/plasma ratio > 1: fluoroquinolones and
azithromycin [70,71]. Antibiotics with the highest diffusion will be thus be useful for
organisms with a high MIC.
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Direct measurement at the site of infection, when possible, is also interesting and
allows for a direct comparison of an antibiotic concentration with the MIC of the offend-
ing organism. This has been described, for example, for cefotaxime in peritoneal fluid,
meropenem in cerebrospinal fluid, and colistin in drainage fluid in the context of prosthesis
infection [61,72,73].

4. Discussion

For a long time, therapeutic monitoring of antibiotic prescriptions was limited to
treatments with a narrow therapeutic index (aminoglycosides and glycopeptides) in order
to avoid any treatment-related toxicity. Over the last 20 years, numerous publications
have suggested the importance and value of monitoring plasma antibiotic levels to cure
the infected patient and avoid the emergence of resistance that may be responsible for
therapeutic failure or recurrence. Numerous populations at risk of antibiotic underdosing
have been described in the literature, both in the ICU [74–76] and outside the ICU [65].
In addition, the emergence of resistance within microbial species, including previously
susceptible strains, has increased interest in antibiotic dosing and in adapting dosing and
administration methods. Thus, several studies [20,48,50,67,77,78] have emphasized the
importance of administration methods in the outcome of infected patients.

However, few publications have evaluated the importance of MIC determination in
the outcome of infected patients, even though the antibiotic dosage cannot theoretically
be interpreted for a given patient in the absence of MIC. Indeed, difficulty in obtaining
the MIC, uncertainties related to the interpretation of this test, and delays in obtaining
the results are, in our opinion, the three elements that make the use of this test difficult in
clinical practice.

Thus, most of the studies carried out to date and demonstrating or suggesting the
interest of the MIC determination have been based essentially on a “theoretical” MIC,
generally the highest MIC for the chosen antibiotic and found in the species responsible for
the infection. This choice, which currently seems to be accepted by various authors, does,
however, run the risk of individual toxicity and of collective antibiotic overconsumption.
Therefore, the question of the interest of MIC determination in clinical practice is the same
as the question of the right prescription, i.e., the right antibiotic dose that best responds
to the PK/PD data, for a given microbial species, in a particular tissue infection and in
a patient with his/her own specificities. It is thus obvious that many infections will not
require antibiotic dosing or MIC determination, provided that the antibiotic administered
at the usual doses diffuses to the infection site at sufficient concentrations and below toxic
concentrations, concentrations that are equivalent to and exceed the PK/PD parameters
(see above) required to cure and avoid the emergence of antibiotic resistance.

Nevertheless, there are still many clinical situations that do not meet the above-
mentioned characteristics and for which MIC determination should be considered. Indeed,
the literature data lead us to propose a strategy that mainly includes the three main actors:
the infectious site, the microbial species, and the antibiotic (Figure 1). Moreover, certain
clinical situations seem to be more at risk of therapeutic failure due to the low diffusion
of some antibiotics, but the risk cannot be conceived for all microbial species or for all
antibiotics. Thus, for example, a brain or meningeal infection, where most antibiotics are
poorly distributed, due to MRSA [79] or S. pneumoniae [80], with reduced susceptibility to
penicillin, will absolutely require MIC determination and TDM in the event of the choice of
a glycopeptide and a β-lactam, respectively. In the first situation, to avoid the risk of failure
linked to MIC creep, and in the second, to optimize therapeutic choices. In the case of the
choice of an antibiotic with better diffusion [81], such as linezolid in cerebral meningeal
infections due to coagulase-negative Staphylococci [82], we think it is less justified, as the
antibiotic concentration obtained at the infection site ensures a priori effectiveness. If the
question arises in other clinical situations such as bone and endocardial infections [83], or
in microbiological situations for microbial species with multiple resistance mechanisms
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(natural or acquired), the assay and MIC determination seem to be less justified in the case
of pneumonia or primary or secondary bacteremia in a “drainable” source of infection [84].
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Figure 1. Microbiological, pharmacological, and clinical situations where an interpretation of the
antibiotic concentration in relation to the MIC determination would be useful. TDM: therapeutic
drug monitoring; MIC: minimal inhibitory concentration; ESBL: extended spectrum β-lactamase;
MDR: multidrug-resistant.

There are certainly other clinical situations that require TDM, whether in intensive
care, where numerous studies have highlighted the risk of therapeutic failure linked to
underdosing, or in special populations such as the very obese (risk of underdosing); the
elderly with an increased risk of toxicity [85]; and finally patients with cystic fibrosis [86,87]
who have treatment difficulties linked to the bacterial species involved (Pseudomonas aeruginosa;
Burkholderia cepacia), to the presence of biofilm, and to an increase in distribution volumes [87].

It is important to emphasize that certain complex clinical situations involving changes
in renal function and infections with species that are difficult to treat will require plasma
assays and MIC measurements. In the case of renal failure in a patient infected by a
bacterium with a high MIC, the need to reach the required thresholds may lead to exposure
of the patient to increased toxicity [88]. On the other hand, and conversely, in the case
of hyper-clearance, an adverse effect may occur with an inability to reach the required
thresholds, regardless of the dose administered [62,89].

An indication that, in our opinion, will be more and more frequent lies in the use of
antibiotics ”concerned by the resistance mechanisms” of the treated species. Over the last
ten years, in view of the spread of resistance and to avoid the use of so-called last-resort
antibiotics, the possibility of using narrower-spectrum antibiotics based on phenotypic
resistance data has become widespread. Until the worldwide spread of ESBL strains, the
genotypic character had prevailed. Thus, species producing an enzyme that hydrolyzes
β-lactam antibiotics made it impossible to use these β-lactam antibiotics. Concerning ESBL,
it was thus unimaginable to use antibiotics that could be hydrolyzed by the enzyme, such
as 3GC. Thus, carbapenems, the only antibiotics that cannot be hydrolyzed by ESBL, were
the reference antibiotic. More recently, many authors [33,34,90–92] have emphasized the
possibility of treating ESBL, such as carbapenemase-producing Enterobacterales, with a
hydrolyzable β-lactam, provided that the concentration at the site of infection meets the
PK/PD criteria, i.e., in this particular case, a concentration that is more than 40% of the
time in the dosing interval above MIC. It is obvious that therapeutic success as well as the



Antibiotics 2022, 11, 1748 9 of 15

risk of failure in this type of indication depend on the MIC value, as was recently recalled
in the MERINO study [92].

To conclude, in Table 3 we provide a list of microbiological and clinical situations for
which we strongly recommend MIC determination.

Table 3. Microbiological and clinical situations for which we strongly recommend MIC determination.

Bacterial resistance Whenever an alternative to the
reference treatment is used

• ESBL (e.g., use of tazocilline or cefepime)
• Carbapenemase (e.g., use of combination of

car-bapenems)

Infection site When antibiotics with limited
diffusion are used.

• Meningitis (e.g., β-lactams in infection by S. pneumoniae
or H. influenzae)

Patient characteristics When the population is at risk of
under-exposure

• Augmented renal clearance (e.g., vancomycin or most
β-lactams)

• Acute care patients

Patient outcome When the outcome is not favorable • Persistence of bacteremia
• Unfavorable clinical-laboratory outcome

5. Current Limitations and New Challenges
5.1. Limitations Associated with TDM

TDM implies the use of an available, timely, and accurate bioanalytical assay for
drug measurements. Many hospital laboratories now routinely measure the most com-
monly used antibiotics, most often by immunoassay (notably for aminoglycosides and
glycopeptides) or by liquid chromatography coupled to ultraviolet or mass-spectrometry
detection [93]. However, while immunoanalysis is a common and easy-to-use technique,
the use of chromatographic techniques requires expertise and logistics that limit their de-
ployment to a few hospital facilities, which raises the question of the stability of antibiotics
during sample transport. Stability studies are available and show that most β-lactams
are stable for 6 h at room temperature [94], as well as daptomycin [95], and this period
increases to 72 h for fluoroquinolones [96]. After this period, it is recommended to transport
the samples at +4 ◦C within 2 to 3 days [94].

Once the plasma concentration is obtained and compared to the MIC, dose adjustments
may be necessary. For this there are several strategies, from the most complex to the
simplest. In recent years, many precision dosing software programs have been developed
to optimize antimicrobial dosing [97]. These programs are based on the use of a population
PK model and allow for the identification of patient-specific PK parameters by Bayesian
analysis. These programs are generally easy to use, but require two to three samples
between two doses to characterize the terminal elimination phase of the antimicrobial
+/− its distribution in the patient [98,99]. If a Bayesian model is not available because it
does not exist for an antimicrobial or because the patient is too far from the characteristics
of the reference population, it is possible to estimate an elimination half-life from two
samples in the terminal phase of the curve and to estimate the Cmin, if not available [99].
However, this alternative involves considering a single compartment model with linear
elimination and should be used with caution. Finally, in the case of time-dependent
antibiotics, a simple trough concentration measurement can identify an exposure < MIC,
although this approach cannot be used to calculate patient-specific PK parameters [5]. To
date, no study has demonstrated the superiority of the use of Bayesian analyses over much
simpler approaches in the field of antibiotic therapy, although knowledge of the patient’s
PK parameters may be useful in the case of antimicrobials with non-linear elimination or
when the PD objective involves the AUC calculation.
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5.2. Limitations of MIC Determination

Determination of the MIC value has a few limitations. First is the time needed to
obtain the AST result. The current widely used methods require 2 days and this may extend
the duration of inappropriate initial antibiotic therapy and can negatively impact patient
outcome, particularly when bacteremia is associated with septic shock [100]. Second, au-
tomated AST systems are based on the BMD method and provide results within 6–8 h.
However, none of them have the ability to provide accurate MICs [101]. Indeed, panels usu-
ally contain only several concentrations of each antimicrobial agent, and the resulting MIC
is not always given as an exact value [101]. Recently, Tibbetts et al. reported the first clinical
evaluation of the Reveal rapid AST system, tested against randomly selected blood cultures
with Gram-negative organisms. The Reveal AST system allows for rapid susceptibility
testing of Gram-negative blood cultures, and provides accurate MIC values [102]. Third,
reduced antibacterial activity against specific bacterial pathogens at inocula (i.e., elevated
MIC or near the breakpoint) above those performed for AST is referred to as the inoculum
effect. Cephalosporins and PTZ consistently display observable inoculum effects in vitro,
whereas carbapenems are less susceptible to an inoculum effect [103]. The presence of
β-lactamase enzymes is the primary mechanism responsible for an inoculum effect, but
the observation of an inoculum effect in multiple pathogens lacking β-lactamase enzymes
indicates that multiple mechanisms may result in an inoculum effect [103].

6. Conclusions

The microbiological and pharmacological tools already available are useful for the
treatment optimization and follow-up of serious infections. The implementation of these
tests depends on a number of criteria that we tried to list without being exhaustive (Figure 1).
We particularly recommend the determination of MIC when organisms have a high level of
resistance, when patients present a risk of under-exposure, and in the case of difficult-to-
access infections (Table 3). Furthermore, practitioners should not hesitate to use MIC and
TDM more widely, without waiting for the appearance of adverse effects or the absence
of clinical improvement, especially when the antibiotic chosen is not the best available
treatment. In the future, yielding the MIC in less than 24 h and software helping to
optimize administration will increase therapeutic adequacy and probably patient survival.
Nevertheless, PK-PD data are and will remain tools at the disposal of the clinician, and the
patient’s clinical progress is still the most important guide for dose adjustment.
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