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Abstract: The antibiotic spectrum is not reflected in conventional antimicrobial metrics. Days of
antibiotic spectrum coverage (DASC) is a novel quantitative metric for antimicrobial consumption
developed with consideration of the antibiotic spectrum. However, there were no data regarding
disease and pathogen-specific DASC. Thus, this study aimed to evaluate the DASC trend in patients
with bloodstream infections (BSIs). DASC and days of therapy (DOT) of in-patients with positive
blood culture results during a 2-year interval were evaluated. Data were aggregated to calculate
the DASC, DOT, and DASC/DOT per patient stratified by pathogens. During the 2-year study period,
1443 positive blood culture cases were identified, including 265 suspected cases of contamination.
The overall DASC, DASC/patient, DOT, DOT/patient, and DASC/DOT metrics were 226,626; 157.1;
28,778; 19.9; and 7.9, respectively. A strong correlation was observed between DASC and DOT,
as well as DASC/patient and DOT/patient. Conversely, DASC/DOT had no correlation with other
metrics. The combination of DASC and DOT would be a useful benchmark for the overuse and
misuse evaluation of antimicrobial therapy in BSIs. Notably, DASC/DOT would be a robust metric
to evaluate the antibiotic spectrum that was selected for patients with BSIs.

Keywords: antimicrobial use metric; antimicrobial stewardship; bloodstream infection; antibiotic
spectrum score; de-escalation

1. Introduction

Defined daily doses and days of therapy (DOT) are used to quantify antimicrobial
consumption around the world [1,2]. These metrics have been monitored to measure
the antimicrobial stewardship program (ASP) process or outcome in inpatient settings [3–5].
The de-escalation strategy is one of the ASPs that reduce unnecessary broad-spectrum
antibiotic use, which can reduce bacterial resistance and health costs [6–9]. However,
conventional antibiotic metrics did not reflect the antibiotic spectrum or targeted bacteria.
Additionally, the de-escalation strategy has not been sufficiently evaluated because of its
unclear definition [9–12]. Previous studies evaluated de-escalation strategy by antimicrobial
stewardship interventions, although each study’s definition varied [13–17].

Kakiuchi et al. developed a novel quantitative metric for antimicrobial consumption
with antibiotic spectrum consideration to address the problems of conventional metrics [18].
The individual antibiotic spectrum coverage (ASC) score and its dosing period are used
to calculate the days of antibiotic spectrum coverage (DASC). DASC can evaluate both
overall antibiotic consumption and antibiotic spectrum [18]. Therefore, we considered
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that DASC will be suitable for disease or pathogen-specific antimicrobial use evaluation,
including a de-escalation strategy [17,19]. However, data on disease or pathogen-specific
DASC remain lacking to evaluate ASPs. Thus, this study aimed to evaluate the trend of
DASC in patients with bloodstream infections.

2. Results
2.1. Patient Characteristics, DASC, and DOT Metrics in This Study

A total of 1443 positive blood cultures cases were identified that included 265 suspected
cases of contamination during the 2-year study period. Table 1 shows the stratified BSI
cases by age category.

Table 1. Positive blood culture cases and cases without contamination stratified by age category.

Age Category No. of Cases
(All, n = 1443)

No. of Cases
(Without Contamination, n = 1178)

0–5 46 (3.2) 35 (3.0)
6–14 9 (0.6) 8 (0.7)
15–49 121 (8.4) 93 (7.9)
50–64 232 (16.1) 189 (16.0)
65–74 324 (22.5) 264 (22.4)
≥75 711 (49.3) 589 (50.0)

Data were presented as n (%).

Table 2 shows the overall DASC and DOT metrics in this study population. Each
metric’s trends were comparable between 2020 and 2021.

Table 2. The overall DASC and DOT metrics in this study population.

Year DASC DASC/Patient DOT DOT/Patient DASC/DOT

2020 112,235 155.9 14,403 20.0 7.8
2021 114,391 158.2 14,375 19.9 8.0
Total 226,626 157.1 28,778 19.9 7.9

DASC, days of spectrum coverage; DOT, days of therapy.

2.2. DASC, DOT, and DASC/DOT Trends in BSI Patients by Month

Figures 1 and 2 show the DASC, DASC/patient, DOT, and DOT/patients trends by
month. These metrics transitioned to parallel by month. In contrast, the DASC/DOT
transitions were independent of DASC or DOT (Figure 3).
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Figure 3. Monthly DASC/DOT trend during this 2-year period. DASC, days of antibiotic spectrum
coverage; DOT, days of therapy.

2.3. Relationship between DASC, DOT, DASC/DOT, and BSI Patient Number by Month

The relationships among DASC, DASC/patient, DOT, DOT/patient, DASC/DOT,
and no. of patients per month are shown in Figure 4. A strong correlation was ob-
served between DASC and DOT, as well as DASC/patient and DOT/patient. In contrast,
DASC/DOT had no correlation with other metrics.
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observed values. Diagonal cells show Spearman’s correlation analysis results. A strong correlation was
observed between DASC and DOT ($ = 0.963) as well as DASC/patient and DOT/patient ($ = 0.923).
In contrast, DASC/DOT had no correlation with other metrics ($ = −0.279–0.368). DASC, days of
antibiotic spectrum coverage; DOT, days of therapy.

2.4. DASC/Patient, DOT/Patient, and DASC/DOT Comparisons Which Were Stratified by Pathogens

The DASC/patient, DOT/patient, and DASC/DOT distribution, which were stratified
by BSI pathogens are shown in Figures 5–7. DASC/patient and DOT/patient high scores
were Gram-positive bacteria compared with Gram-negative bacteria (Figures 5 and 6).
Conversely, the DASC/DOT of Gram-positive bacteria was lower compared with Gram-
negative bacteria (Figure 7).
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spectrum coverage; BSI, bloodstream infection; MSSA, methicillin-susceptible Staphylococcus aureus;
MRSA, methicillin-resistant Staphylococcus aureus; ESBL, extended-spectrum beta-lactamase; AMR,
antimicrobial resistance.
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antimicrobial resistance.

3. Discussion

The present study revealed that the DASC metric could be applied to antimicrobial
use evaluation in BSI patients. Previous reports on spectrum scoring have evaluated the de-
escalation strategy because conventional antibiotic use metrics do not mirror the antibiotic
spectrum [20–24]. However, the antibiotic spectrum score application was limited to
the frequently used antibiotics and infectious diseases. Moreover, the calculation process
of scoring was complicated [21,22]. DASC was simply based on dichotomous scores for
efficacy against microorganisms [18]. Therefore, the ASC scores list was exhaustive, as well
as simple to set up.

In this study, parallel changes in DASC and DOT per month were observed. A low
DASC/DOT score would indicate that there was no broad-spectrum antibiotic overuse,
although both DASC and DOT increased in September 2020. Conversely, no DASC and
DOT increment in January 2021 with a DASC/DOT increment would be indicative of
broad-spectrum antibiotics overuse. The long-term use intervention or promoting antibiotic
de-escalation would be needed during the periods according to the results of these metrics.
In addition, the correlation analysis showed that DASC/DOT had no correlation with
other metrics. DASC/DOT was an independent and robust metric that could evaluate
the antibiotic spectrum consistent with the previous study [18]. However, in the case of
empirical therapy using broad-spectrum and stopping antibiotics immediately, DASC/DOT
reflects a broad-spectrum antibiotics score. The results of this study suggested that a DASC
and DASC/DOT combination is a metric that can evaluate broad-spectrum antibiotics
overuse in BSIs.

Pathogen-specific DASCs were evaluated to provide utility ASP evaluation. The DASC
and DOT of Gram-positive bacteria were higher than Gram-negative bacteria. Gram-
positive bacterial infections need long-term antibiotic treatment, such as infective endo-
carditis. A high DASC was caused by a DOT increment, which was long-term antibiotic
use. Conversely, a high DASC/DOT was observed in Gram-negative bacteria. Antibiotics
that have activity against Gram-negative bacteria typically have high ASC scores [18].
The metrics stratified by BSI pathogens will clarify the object of ASP interventions. Notably,
each metric suspected of case contamination in this study was evaluated. A contaminated
case of blood culture is associated with unnecessary treatment [25]. ASPs should target to
reduce the DASC of contaminated cases including BSIs due to fungi, although this study
could not discriminate against other existing infections [26,27].
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Ideally, antibiotic use metrics should evaluate antimicrobial use appropriateness or
standardization [28–30]. The standardized antimicrobial administration ratio (SAAR),
which was risk-adjusted for hospital-level and unit-level factors, has been implemented
as a standardized benchmark of antibiotic use in the United States, although conventional
metrics could not be quantitatively evaluated for appropriateness [28]. Pathogen-specific
DASCs will potentially be applied as a standardized metric in antimicrobial use. Cefazolin
has been a recommended treatment for S. aureus bacteremia [31,32]. The treatment du-
ration is 14 days for uncomplicated infections and 4–8 weeks for complicated infections,
including infective endocarditis [31–33]. An ASC score of 3 for cefazolin and its dosing
period-derived standardized DASC/patient is 42 in uncomplicated infections to 84–168
in complicated infections. Moreover, carbapenems are standard antibiotics for extended-
spectrum beta-lactamase (ESBL) producing Enterobacterales infections [34]. An ASC score
of 12 for meropenem and a 14-day treatment period of derived standardized DASC/patient
as 168 in complicated urinary tract infections [35]. Fewer than both 168 DASC/patient and
12 DASC/DOT indicate de-escalation from meropenem to narrower-spectrum antibiotics.
A DASC, DOT, and DASC/DOT combination stratified by BSI pathogens will be able to
evaluate standardized and appropriate antimicrobial use. However, standard therapy peri-
ods are different by infection focus and severity. Further studies are needed to determine
the disease-specific DASC appropriateness.

The present study has several limitations. First, this was a single-center pilot study
conducted in Tokyo, Japan, and our findings cannot be generalized to another geographical
area with different treatment standards and epidemiological BSI characteristics. Multicenter
and large-size studies are needed. Second, this study overlooked the correlation between
the metrics and outcomes, such as AMR, Clostridioides difficile infection, and cost saving.
Third, the actual ASPs interventions were not evaluated. The previous study suggested
that the efforts of ASPs to use narrow-spectrum antibiotics through empiric therapy or
de-escalation are not evaluated in the DOT-based metrics [18]. Further studies are needed
to evaluate the DASC application for the process and outcome of ASP interventions. Finally,
the concept of DASC has not been widespread in Japan. The development of an electronic
surveillance system would be needed to aggregate the DASC data in each hospital.

In conclusion, the study revealed that the DASC could evaluate antimicrobial use
in patients with BSIs. The combination of DASC and DOT would be a useful benchmark for
the evaluation of antimicrobial therapy overuse and misuse in BSIs. Notably, DASC/DOT
would be a robust metric to evaluate the antibiotic spectrum that was selected for patients
with BSIs. Disease and pathogen-specific DASC will be a benchmarking function that
will lead to promoting antimicrobial stewardship because of the quantitative antibiotic
spectrum evaluation.

4. Materials and Methods
4.1. Study Setting and Design

This retrospective study was performed at the Showa University Hospital, an 815-
bed tertiary teaching hospital in Japan. Inclusions were in-patients with positive blood
culture results during a 2-year interval from 1 April 2020 to 31 March 2022. Patient
age, antimicrobial regimen, isolated microorganisms, and AMR data were extracted from
patients’ medical records.

4.2. Calculation of Antimicrobial Use Metrics

Antimicrobial use data were collected from the initial blood sampling day for culture.
DASC was calculated by the ASC score defined in the previous study [18]. If an antimicro-
bial that was not defined by the ASC score was used, a similar class antibiotic score was
adopted according to the method of the prior study [18]. DASC/patient indicates the total
amount of antibiotic spectrum and dosing period per patient. DOT/patient indicates
mainly the dosing period per patient in addition to the number of antibiotic combinations.
DASC/DOT indicates the average selected ASC score per patient.
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4.3. Microbiologic Results of Blood Culture and AMR Definitions

BSIs were defined as organism isolation from positive blood culture. A suspected
case of contamination was defined as isolating skin-resident or environmental bacteria
from single blood culture which was not an identified specific infection focus [36,37]. BD
BACTEC FX System (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) was used
to perform blood cultures. MicroScan WalkAway system (Beckman Coulter, Inc., Tokyo,
Japan) was used to screen isolated strains.

The isolated pathogens were divided into major bacteria that cause BSIs to evaluate
pathogen-specific antimicrobial use metrics. Furthermore, the AMR was tested in five
microorganisms: Staphylococcus aureus, Escherichia coli, Klebsiella species, Enterobacter species
(including K. aerogenes), and Pseudomonas aeruginosa [19]. The clinical breakpoints of
the Clinical and Laboratory Standards Institute (CLSI) were used to define AMR [38].
Antimicrobial-resistant P. aeruginosa was resistant to at least two of the following antimi-
crobials: fluoroquinolones, aminoglycosides, and carbapenems. Methicillin resistance
in S. aureus was confirmed by oxacillin and cefoxitin testing. The double disk synergy
test was used to determine ESBL production in E. coli and Klebsiella spp. Disks containing
cephalosporins (ceftazidime and cefotaxime) were applied next to amoxicillin–clavulanic
acid disks. Antimicrobial-resistant Enterobacter spp. was defined by its resistance to third-
generation cephalosporins or carbapenems that include the isolation and identification
of a minimum inhibitory concentration (MICs) of meropenem ≥2 µg/mL or MICs of
imipenem ≥2 µg/mL and cefmetazole ≥64 µg/mL by the Japanese criteria [39].

4.4. Statistical Analysis

Spearman’s rank correlation analysis was used to calculate the coefficient ($) among
antimicrobial use metrics each month. Statistical tests were two-tailed, and p-values < 0.05
were considered significant. SPSS statistics version 23.0 (IBM Japan, Tokyo, Japan) was
used to perform statistical analysis.
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