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Abstract: Antibiotic resistance (AR) is a naturally occurring phenomenon with the capacity to render
useless all known antibiotics in the fight against bacterial infections. Although bacterial resistance
appeared before any human life form, this process has accelerated in the past years. Important
causes of AR in modern times could be the over-prescription of antibiotics, the presence of faulty
infection-prevention strategies, pollution in overcrowded areas, or the use of antibiotics in agriculture
and farming, together with a decreased interest from the pharmaceutical industry in researching and
testing new antibiotics. The last cause is primarily due to the high costs of developing antibiotics. The
aim of the present review is to highlight the techniques that are being developed for the identification
of new antibiotics to assist this lengthy process, using artificial intelligence (AI). AI can shorten the
preclinical phase by rapidly generating many substances based on algorithms created by machine
learning (ML) through techniques such as neural networks (NN) or deep learning (DL). Recently, a
text mining system that incorporates DL algorithms was used to help and speed up the data curation
process. Moreover, new and old methods are being used to identify new antibiotics, such as the
combination of quantitative structure-activity relationship (QSAR) methods with ML or Raman
spectroscopy and MALDI-TOF MS combined with NN, offering faster and easier interpretation of
results. Thus, AI techniques are important additional tools for researchers and clinicians in the race
for new methods of overcoming bacterial resistance.

Keywords: antibiotic resistance; antibiotic development; automated antibiotic discovery; adaptive
resistance; computer-aided drug discovery; artificial intelligence (AI); machine learning; neural
networks; deep learning; future of medicine

1. Introduction

Antibiotic resistance (AR) is a naturally occurring phenomenon consisting mostly of
acquired adaptative mechanisms. These mechanisms aid bacteria to overcome and survive
the aggression caused by antibiotics [1]. AR represents an important problem in present
times due to several factors. A wide majority of the antibiotics currently in use have been
discovered before the 1980s [2]. Some have been improved by chemical processes such
as conjugation with other substituents (e.g., fluoroquinolones, which are a result of the
addition of a fluoride atom to already existing quinolones). Although the pharmacokinetic
and pharmacodynamic properties of the derivates are improved, these developmental
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processes do not solve the issue of AR because the main structure of the molecule remains
the same.

Due to the current COVID-19 pandemic, funds have been redirected towards research,
prophylaxis, and equipment to improve survival and to reduce the probability of compli-
cations amongst infected patients [3]. Moreover, with the attention shifting towards the
current pandemic, it is estimated that antimicrobial resistance (AMR) has only accelerated
during this period due to the extensive use of disinfecting agents, extensive prescription
of antibiotics, and interrupting treatments of various other chronic conditions due to
decreased access to the hospital [3].

Most antibiotics used today target the same few bacterial structures. Therefore, re-
search should focus on developing molecules with innovative action mechanisms, which
target new bacterial sites [4,5]. Antibiotic development faces economical and technical diffi-
culties, with increased costs of research and marketing new antibiotics being some of the
economic hardships [6–8]. Technical difficulties include lack of equipment, infrastructure,
and trained personnel in some regions [6–8]. To overcome AR, international programs
should be created and enforced globally. Such programs are currently developed with the
aid of DL-constructed computer systems [9].

DL is a subtype of ML that utilizes artificial neural networks (ANN). Every ANN
consists of multitudinous interconnected neurons, grouped into layers, having similar
functionality to biological neurons. They receive an input, process the data, and generate
an output signal. In the beginning, the program’s generated predictions will be highly
inaccurate. The parameters linking the NN, namely the weights and biases, are thus
far unrefined to form an appropriate processing pathway. However, the neural network
architecture constantly evolves to form the correct pattern recognition [10].

The core principle is that the weights and biases’ values are self-evaluated with every
input. Therefore, the more qualitative and heterogeneous data the network receives, the
more precise its predictive power becomes. This self-evaluation arises via comparing
the desired output and the output the algorithm produces. Based on this feedback, the
parameters acquire increasingly authentic values, new patterns assemble, and the final
form of the algorithm is constructed [10].

While ML still utilizes human intervention, when the desired output is different from
the generated output, DL can adjust itself to meet the required criteria, making it the
preferred method [11]. Thus, it has seen a growth in popularity in the precision medicine
field. The creation of personalized therapy protocols is achieved through predicting,
identifying, and validating bioactive agents fitting a patient’s molecular background [10].

With the aid of DL, such molecules’ effectiveness and design, i.e., physicochemical
properties and synthesis, are generated in a financially and time-effective manner. Further-
more, it eliminates toxic side effects to the personnel handling the substances [12].

For this reason, the aim of this narrative review is to present the role of DL applications
in the field of AR.

2. History

Bacteria possess a collection of genes that grant them resistance to external aggres-
sions. The resistance genes’ inheritance model and transcription levels define the bacterial
resistome [1]. Bacteria often develop resistance to antibiotics, but even before antibiotics
have been used, they developed resistance to other aggressors.

The primary cause of bacteria becoming resistant is the effect of environmental factors
such as exposure to sunlight, soil components, water, and even anthropic ecosystems. All
these factors form the environmental resistome which has appeared long before bacteria
were exposed to antibiotics [13]. However, AR appeared before any human life form.
Gene-sequencing studies have shown that there is no significant difference between the AR
mechanisms of bacteria that exist today and ancient bacteria [14]. In addition, genes coding
enzymes that grant AR have been proven to be present in bacteria found in the permafrost.
These enzymes show a structural likeness to those found in modern bacteria [15,16].
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3. Present

AR is a pressing issue in current times, with a concerning lack of awareness from
the health practitioners and the general public. This frequently determines an unjus-
tified self-prescribed usage of antibiotics, as well as an over-prescription of antibiotics
by medical practitioners, with studies showing that half of the prescribed antibiotics
are unnecessary [17].

Infection prevention control strategies are deficient in a number of countries, especially
in developing ones. The main factors to be considered are the governing political parties,
infrastructure, lack of knowledge on proper prophylactic measures, urbanization, and the
general low level of education in relation to antibiotic intake [18].

Modern technologies could come to aid in impeding AR. As infrastructure develops,
so do the quality and stability of the newer antibiotic formulas. Moreover, bioinformatics
has become crucial in the development of in silico methods that aid researchers in studying
antibiotic interactions.

3.1. Antimicrobial Peptides Testing

Ruiz Puentes et al., proposed a new DL model, called AMPs-Net, that successfully
classified a set of 23,967 peptides from known databases as antimicrobial peptides (AMPs)
or non-AMPs, assigning each AMP to its class: antibacterial, antiviral, antifungal, or an-
tiparasitic. To test this DL model and discover new AMPs, they used a restriction enzyme
to cut an Escherichia coli (E. coli) genome and generate a new peptide library. With the
help of a neural network generated algorithm, they were able to identify 252 peptides out of
423,697 sequences created by the restriction enzyme by filtering these 252 peptides with an-
timicrobial activity they found four AMPs which were further analyzed. Molecular dynamics
assays were used to describe the capability of these AMPs to penetrate membranes. In vitro
evaluation of these AMPs concluded that three out of four peptides presented antimicrobial
activity. RD-10, a peptide consisting of ten amino acids, showed promising bacteriostatic
activity and it was considered a potential candidate for further preclinical examinations [19].

Li et al., used a DL-derived tool that predicted new AMPs derived from the Rana
catesbeiana (bullfrog) genome. They tested the new acquired peptides against the World
Health Organization’s (WHO) priority list. They concluded that 4 of the 16 new discov-
ered AMPs were highly active against multiple species of bacteria from the organiza-
tion’s priority list, including multi-drug-resistant (MDR) carbapenemase-producing (CPO)
E. coli. The algorithm works by partitioning its training set, and the authors concluded
that this novel approach is superior to other deep-learning models. It was speculated that
the AMPs, with no effect on the four bacterial isolates used in this study, may be active on
other microbes such as fungi or viruses [20].

Lin et al., created a DL-derived AMP predictor that used six physicochemical prop-
erties (PC6) to encode peptides based on their chemical structure. Furthermore, the team
implemented this algorithm in a web application, AI4AMP, by training the DL model with
more than 13,000 peptide sequences. This application was able to calculate a score, the
AI4AMP score, which is corelated with the antibacterial activity; higher score represent pos-
sible candidates for more preclinical testing. The authors concluded that an ideal encoding
DL-based model should consider protein features, such as the physicochemical properties
of peptides. Good analysis and choice of parameters lead to a better performance of the
prediction software, thus reducing the loss of information when encoding peptides for
further processing [21].

3.2. Detection of AR Genes

Yu Li et al., developed a multi-task method based on DL to ease detection of AR genes
(ARGs). The technology provides details about the antibiotic class for which resistance
is granted, the resistance mechanism, and gene mobility (if the gene is innate or plasmid-
acquired). For the beta-lactamase antibiotic family, the algorithm can tell which subclass
the ARG accounts for. The model presented in this study was trained using a dataset
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that was compiled manually out of 7 pre-existing ones for the technology to capture the
most relevant features associated with ARGs. The DL technology proposed in this study
performed better than other known models in characterizing ARGs presents in the human
intestinal microbiota [22].

The study conducted by Arango-Argoty et al., proposes two DL models which focus
on the similarity distribution of sequences in the ARGs database. This technology addresses
the limitations of the traditional “best-hit” methodologies which can have a significantly
higher rate of false negative results (they classify many ARGs as not being ARGs.) The DL
models were trained separately using a collection of three distinct databases (CARD, ARDB,
and UNIPROT). The first DL model was focused on predicting ARGs directly by reading
short DNA sequences, while the other DL model could read complete ARGs sequences and
was therefore used to discover novel ARGs. This technology’s limitations are that it cannot
predict AR granted by single nucleotide polymorphisms (SNPs) and it only recognizes
ARGs if they are part of one of the groups used in the training of the algorithm [23].

Steiner et al., studied the evolution of antiretroviral therapies (ART) resistance by
using the human immunodeficiency viruses (HIV) genome. The study uses the genome
of HIV-1 and drug resistance assay results for 18 known ARTs to test three different
ANN architectures. The genotype and phenotype data were obtained from Stanford
University’s HIV Drug Resistance database. All three DL methods were trained and tested
in all 18 data sets for ART resistance. The study compares the performance of three ML
algorithms in testing drug resistance and shows a higher classification performance of the
NN algorithms [24].

3.3. Other Measures to Decrease AR

Nevertheless, prophylaxis is desired instead of treatment. Therefore, knowledge
on proper hygiene is mandatory for preventing bacterial infections. Appropriate hand
hygiene alongside food safety measures can reduce the number of infections and lead, in
time, to a lower antibiotic usage [25]. Hospital-acquired multi-resistant bacteria pose a
threat to patients and require extensive antibiotic treatments. Thus, proper disinfection
and sterilization procedures represent helpful measures against nosocomial infections [26].
In addition, resistant bacteria hotspots should be located and eliminated to prevent further
development of bacterial reservoirs.

The rise in urbanization levels leads to increased pollution and overcrowded areas
and, together with other factors such as the individual’s susceptibility and pathogen’s
virulence, these facilitate chronic respiratory tract infections. Recurrent infectious episodes
lead, in time, to the evolution of multi-resistant bacteria [27].

Usage of antibiotics in the fodder fed to livestock affects humans as well. Animal
excrements containing traces of antibiotics determine an environmental selection pressure.
The consequence is the appearance of drug-resistant bacteria, which cause serious human
infections. In addition, animals can be responsible for AR through mobile genetic elements
(MGE), such as transposons. For example, the mcr-1 transposon was responsible for the
development of AR in swine farms in Northeastern China. When mcr-1-positive E. coli was
frequently isolated from meat in China, its prevalence in animal food attracted negative
public attention [28].

However, the antibiotic-producing industry is more focused on generic drugs that
resemble established, original molecules, instead of trying to develop entirely new formulas.
Instead of creating innovative antibiotics with unique action mechanisms, the trend is to
produce virtually identical chemical drugs [13].

Tourism is another possible factor for the emergence of AR bacteria. With expanding
tourism, there is also a higher chance of people becoming vectors for bacteria. Through this
extensive spread, bacteria are responsible for creating new reservoirs that can transform
into endemic outbreaks [29].
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4. Future Perspectives

Due to the increasing number of multi-resistant bacteria, new approaches regarding
antibiotics development should be considered. Based on some important progresses made
in the recent years, beginning with the introduction of AI in antibiotics development, some
new areas of antibiotic discovery have started to yield encouraging results (Figure 1).
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4.1. Critical Findings Concerning AI in Antibiotics Development

Initially, AI was designed to carry out simple tasks and was generally used in the
industry to create and assemble parts, as well as to reduce costs. Continuous developments
in this field are currently shaping new opportunities for AI to be used in the field of AR for
the design of new therapeutic agents in order to tackle a potential future crisis [11].

It can take up to 10–12 years for drugs to reach the market, including antibiotics.
The first period of the drug development process usually ranges from 2–4 years. In this
period, new active substances are investigated from a chemical point of view. Only a few
manage to pass this step before being tested in animal studies to discover any toxicological
effects [30]. AI can shorten the preclinical phase by rapidly generating many substances
based on algorithms created by ML techniques. These algorithms predict the antibiotic
efficacy for each generated molecule by analyzing large sets of data, making the whole
early drug discovery process much faster [31].

ML is a technology that analyzes models and builds up algorithms depending on the
data which is initially introduced in the database. These computational methods can adapt
and become better based on previous experience. The predictive power of an algorithm
grows proportionally to the quantity and quality of the initial dataset and allows us to
explore a vast amount of information beyond the reach of traditional approaches.

NNs are also a subset of ML which are rapidly emerging. NNs are inspired by the
human brain, in which neurons obtain input information, process it, and transform it to
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a specific output signal. Likewise, NN can recognize patterns and can learn from exam-
ples before processing incoming data and generating predictions. Weights are assigned
for each input variable, and by constantly adjusting in the processing pathway, NN are
able to improve their accuracy over time, which makes them a powerful asset to AI [32].
DL algorithms are basically NN which have more than three hidden layers.

4.2. Drug Repurposing Testing

An important aspect in which AI technologies are valuable is drug repurposing testing.
By combining the above-mentioned methods, already-known approved or unapproved
substances can be screened for antimicrobial effects. With the help of computer-generated
simulations, interactions between these substances and bacterial structures can be studied.
A good example of drug repurposing is aspirin, currently being used as an antiaggregant
in addition to its anti-inflammatory effects [33]. The beta-blocker propranolol is also used
nowadays in the treatment of infantile hemangioma, proving that drug repurposing can also be
an efficient method in antibiotic development programs [34]. Given that many new substances
never reach clinical testing, drug repurposing can be very helpful and AI techniques can be
beneficial by helping with scanning and filtering the large number of known drugs as well as
drugs that undergo preclinical and clinical testing for other indications.

4.3. Discovery of Antibiotic Peptides

ML is also used in the discovery of antibiotic peptides [35]. Peptides with antimicrobial
activity are also widely distributed in different lifeforms where they play an essential role
as part of the innate immune system. The most known mammalian AMPs are cathelicidins
and defensins, acting as human host defense peptides (HDPs). They are secreted in different
parts of the organism such as the skin, eyes, respiratory tract, lung, and intestine. Their main
role is to act fast by being part of the innate immune system and provide a broad-spectrum
protection against invading pathogens [36]. Microorganisms like bacteria and fungi also
produce AMPs which help them fight against each other. AMPs are simple peptides
without a complex 3D structure like large proteins, however their cost of production is
expensive, at about USD 100–1000 for 1 mg of AMP, and they are only produced in lab
conditions for experiments [37].

The most widely known mechanism through which AMPs kill microbes is osmotic
shock, which occurs either through the formation of pores, or paving as carpet on the
membrane surface to weaken membrane integrity [35,38].

Unlike most conventional antibiotics, which have specific functional or structural
targets, AMPs act directly on the microorganisms, often causing cell lysis, or modulate
the host immunity to enhance defense against microorganisms [39]. Moreover, they act
faster than conventional antibiotics [19], have a narrower active concentration window for
killing [40], and do not typically damage the DNA of their targets [20,41], though there
have been studies describing how AMPs inhibit critical intracellular functions by binding
to DNA, RNA, or intracellular proteins [42]. As a result, they do not induce resistance to
the extent that is observed with conventional antibiotics [21]. Nevertheless, if bacteria are
exposed to AMPs for extended periods of time, they can and do develop resistance even to
peptide-based drugs, including the last-resort and life-saving drug, colistin [20,21].

The quantitative structure-activity relationship (QSAR) method, combined with ML
techniques, was successfully used in 2009 by a group with the objective to discover new
AMPs with antibacterial properties [43]. Their algorithm managed to predict and rank
antimicrobial activity of 100,000 virtual peptides, with 94% of the 50 highest ranking
peptides later being proved as being highly active against strains of multidrug-resistant
Pseudomonas aeruginosa (P. aeruginosa), methicillin-resistant Staphylococcus aureus (MRSA),
extended-spectrum β-lactamase-producing E. coli and Klebsiella pneumoniae (K. pneumoniae), as
well as vancomycin-resistant Enterococcus faecalis and Enterococcus faecium (VRE) [43]. QSAR is
a computational modeling method that finds relationships between the structural properties
and biological effects of compounds. This method helps in antibiotic discovery by prioritizing
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the relevant active molecules to be further tested in animal studies, saving time and money [39].
The QSAR method shows a high potential when it comes to antibiotic discovery, especially
when it is combined with ensemble methods which can improve predictability [39].

Generally, a molecule able to inhibit many different strains of the same bacterium
will have a lower propensity than a molecule that inhibits a few strains. By following this
thread, new QSAR approaches, such as the multi-tasking model for quantitative structure-
biological effect relationships (mtk-QSAR), also called multi-target (mt-QSAR), are used
to integrate different kinds of chemical and biological data, allowing the assessment of
multiple biological activities against diverse biological systems. By screening large amounts
of data, the descriptors can show which pattern is often associated with the desired con-
ditions (for instance high antimicrobial activity against multiple Gram-negative bacteria
and low cytotoxicity to human cells). In the end, known peptides are prioritized based on
their similarity with these descriptors and other peptides can also be generated with the
established set of rules. Only the combination of certain amino acids and the topological
distances between them are essential for improving the antibacterial activity [44]. In the
study conducted by Kleandrova et al., the study group generated a library formed by
10 peptides, all which exhibited high antibacterial activity against Gram-negative bacte-
ria based on the molecular descriptors which they used to screen a data set containing
3592 peptides [44].

To this extent, the use of in silico models based on perturbation theory concepts and
machine learning technologies (PTML) could measure the probability of a drug being active
under certain conditions (protein, cell line, organism) [45]. The combination between PTML
and mtc-QSAR models showed promising results in discovering multi-strain inhibitors.
In another study, Kleandrova et al., showed that this approach proved to be helpful in
identifying molecules that could extend antituberculosis (anti-TB) effect. Twelve molec-
ular descriptors were chosen and their tendencies of variation were calculated, meaning
how much these descriptors should vary in order for a molecule to enhance its anti-TB
activity and versatility (ability to inhibit more than one Mycobacterium tuberculosis strain).
For example, one descriptor analyzes the augmentation of the molecule brought by the
hydrophobicity of any two atoms which are located three bonds from one another. The
mtc-QSAR-EL model identified proven antituberculosis drugs after screening a dataset
made up of 8898 agency-regulated chemicals (and investigational FDA-approved drugs).
It also recommended compounds with high potential to be experimentally repurposed as
antituberculosis (multi-strain inhibitors) agents [45].

NN-based algorithms are also used to identify and describe the bioactivity of each
peptide sequence. For using recurrent neural networks (RNNs), representation methods
together with architecture for each representation must be used to analyze the sequence of
amino acids. Vectors are commonly used to describe essential properties of AMPs [19]. They
are used to represent the order of amino acids in AMPs, for example by representing pep-
tides as sequences of vectors, describing the presence of one of the 20 essential amino acids
in the sequence. Alternatively, 1D vectors have been considered, where each amino acid in
the sequence is codified by a number from 0 to 19. More recently, peptides have been repro-
duced with the aid of the word2vect denomination. However, sequential representation
does not consider the interactions between amino acids and the atoms within each amino
acid. Essential properties of AMPs must be included, such as amino acid composition or
composition–transition–distribution, to make the vectors more descriptive [19].

4.4. Other Applications Combined with AI for Antibiotic Discovery

Lu et al., used the Raman spectroscopy combined with ML in order to depict AR status
of K. pneumoniae. Raman spectroscopy is a powerful tool that requires a sample to generate
a fingerprint with the chemical constituents of the sample. After training the neural
network with the initial dataset consisting of 71 K. pneumoniae isolates, the algorithm was
programmed to output a probability distribution across seven ARGs, two virulence genes,
and the drug-resistant phenotypes (sensitive or non-sensitive), among 15 commonly used
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antimicrobial agents. This convolutional neural network (CNN) has proved to be better at
predicting ARGs, virulence factors, and drug-resistant phenotypes compared to other past
ML algorithms. It is also much faster than conventional antimicrobial-susceptibility testing
(AST) methods which imply growing of bacterial colonies on agar plates in the presence
of antibiotics and the study group. When compared to other culture free methods, the
Raman spectroscopy combined with CNN offers a faster and easier interpretation of the
samples, thus reducing the risk of antimicrobial resistance development that comes with
empirical treatment [40].

Brincat and Hofmann created a text-mining system that incorporates DL algorithms to
help speed up the curation process. This kind of algorithm can replace the manual curation
process by screening a large amount of literature to find genes related to AR. The new text-
mining algorithm was used to identify ARGs of Helicobacter pylori (H. pylori), a bacterium
that infects the stomach of more than half of the world’s population. The algorithm was
then tested by using the nitroimidazole antibiotic group as a case study. Results showed
that out of 28 identified genes, 23 should be included in knowledge databases because they
could serve as new candidates in studies regarding H. pylori resistance to antibiotics [41].

Ciloglu et al., used, for the first time, a new bacterial resistance identification tech-
nique to distinguish between MRSA and methicillin-susceptible Staphylococcus aureus
(MSSA). This new method combined surface-enhanced Raman spectroscopy (SERS) with
DL algorithms. Spectral data was acquired by illuminating the bacteria coated by silver
nanoparticles (AgNPs) and authors anticipated spectral differences between MRSA and
MSSA cell wall. The data was then processed by an autoencoder to train the DL model,
represented by a CNN. Authors stated that SERS successfully identified variations between
the MRSA and MSSA surface that could indicate the presence of structures related to
AR, such as modified penicillin binding proteins (PBPs). In conclusion, SERS technique
combined with deep-learning processes could be a valuable tool in the future that will
guide clinicians’ decision making by rapid bacterial diagnoses [38].

Wang et al., developed a new DL-derived ensemble method that was able to predict the
ARGs to their class. After training the program with ARGs data acquired from the COALA
database (collection of all antibiotic resistance gene databases), the algorithm could identify
known sequences and align them before predicting their class (e.g., SULFONAMIDE class;
TETRACYCLINE class; BETA-LACTAM class). This method will save the time required
for classic antimicrobial susceptibility testing (AST) and reduce the failure rate that comes
with the empirical treatment of infections [46].

Jang et al., tested how accurate predictions about ARGs occurrence could be by using three
different DL models. These methods were compared to determine which one predicts ARGs
occurrence linked with certain changes in the environment (e.g., rainfall, tide, salinity etc.). The
focus was on determining the abundance of four ARGs found in bacteria that contaminated
the water in a recreational beach area in South Korea. Each model was developed based on
both meteorological and aquatic variables as input data. All three models’ predictions were
compared to the observed emergence of ARGs and thus “loss” values were calculated. One
NN technology had an enhanced performance in detecting single ARGs, whereas another
model showed superior performance in predicting multi-ARGs and allowed identification
of the importance of the input variables [47].

Research on the detection of ARGs, and the discovery of novel antibiotics and antimi-
crobial peptides that combat these ARGs, is, with the existing technology, not lucrative.
High costs and low feasibility of molecule production are the main reasons why the focus is
on investing in already stable molecules by improving their properties rather than produc-
ing new ones. Thus, many potentially beneficial innovative drugs are overlooked. This lack
of advancement leads to limited existing antibiotics on the market. Even with improved
formulas and administration in combinations to maximize their effect, we swiftly reach
multi-drug resistant bacteria that cannot be therapeutically managed. These bacteria result
from natural resistance mechanisms and inappropriate prophylactic measures in clinical
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settings, such as unsuitable empirical antibiotic treatment [48], administration of antibiotics
without subsequent antibiogram correction, and poor hygiene and sterilization measures.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-
TOF MS) is another technique that can be used for rapid identifications of antibiotic
resistance in clinical medicine. The MALDI-TOF mass spectrometer is a popular MS instru-
ment used in many fields of biology. By using this technique, clinicians can rapidly and
precisely identify the genus and the species of many Gram-negative and positive bacteria.
Microorganism identification by MALDI-TOF MS works by identifying a characteristic
spectrum specific to the species and then matching it with a large database [49]. Addition-
ally, differences in biomass after incubation with antibiotics can be used as a rapid test
for antibiotic resistance with rapid detection by MALDI-TOF MS [50]. Nevertheless, DL
has forged new possibilities for bringing innovative molecules into the market. DL is a
computer system, a subtype of ML and AI, that has so far helped with drug repurposing,
such as the discovery of propranolol’s dual recommendation as a beta-blocker and treat-
ment of infantile hemangioma [34]. Numerous AMPs were discovered using DL variations,
such as the multi-task method [22] and DL modified for mining [41]. DL has also been
combined with other methods to increase its accuracy. For example, spectroscopy combined
with DL was used to discover new AMPs [40]. In addition, QSAR and DL were associ-
ated to differentiate between MRSA-MSSA, prompting a bacterial diagnosis that assists
clinical decisions [38].

ML and DL are both types of AI. While ML is AI that can automatically adapt with
minimal human expert intervention, DL is a subset of ML that uses ANNs to mimic the
learning process of the human brain. We mention that this narrative review presents only
the applications of DL in the field of antibiotic resistance.

5. Conclusions

Although AR has been used by bacteria for millions of years, in the last decades it
has had an increasingly negative impact on our society. Social, economic, and scientific
factors contribute to the continuous growth of AR and to its associated problems. Classical
approaches to antibiotics development are lengthy and costly, thus new and more efficient
techniques must be used in order to select the most promising molecules with innovative
mechanisms to which bacteria are naïve. AI can shorten the preclinical phase of drug
development by rapidly suggesting many new molecules based on algorithms created by
ML techniques such as NN or DL. However, although advancements are continuously
made in this domain, the transfer to the clinical context is yet to be achieved. For now,
prophylactic measures are the best accessible means of combating AR. By implementing
rigorous protocols that stop unnecessary antibiotics prescription, improving hygiene and
sterilization procedures, prescribing empirical antibiotic therapy according to the local
resistance geographic mapping, and lowering the use of antibiotics in livestock as growth
promoters, this prophylaxis can be achieved.
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