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Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science,
Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland
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Abstract: Bacteriophage potential in combating bacterial pathogens has been recognized nearly since
the moment of discovery of these viruses at the beginning of the 20th century. Interest in phage
application, which initially focused on medical treatments, rapidly spread throughout different
biotechnological and industrial fields. This includes the food safety sector in which the presence of
pathogens poses an explicit threat to consumers. This is also the field in which commercialization of
phage-based products shows the greatest progress. Application of bacteriophages has gained special
attention particularly in recent years, presumably due to the potential of conventional antibacterial
strategies being exhausted. In this review, we present recent findings regarding phage application
in fighting major foodborne pathogens, including Salmonella spp., Escherichia coli, Yersinia spp.,
Campylobacter jejuni and Listeria monocytogenes. We also discuss advantages of bacteriophage use and
challenges facing phage-based antibacterial strategies, particularly in the context of their widespread
application in food safety.

Keywords: bacteriophages; food safety; phage biocontrol; foodborne pathogens; bacteriophage
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1. Introduction

Foodborne illness has been affecting people’s lives unceasingly, impacting human
welfare and contributing to significant economic losses in many countries and populations.

Food products may become contaminated at different stages along the food chain
including slaughtering, milking, fermentation, processing, storage, packaging or finally con-
sumption of the product [1]. The most popular strategies for elimination of the pathogens
are implementation of high standard hygiene procedures, rational running of the process
line, and use of biocides and disinfectants [2]. However, currently applied methods for
elimination of foodborne pathogens are unreliable. For instance, use of steam, dry heat
or UV light leads to changes in organoleptic properties of the product. Moreover, there
are some limitations in the use of certain antimicrobial approaches, in particular products
such as fresh fruits, vegetables and ready-to-eat (RTE) products. A major problem is that
extensive use of sanitizers leads to the development of microbial resistance [1].

Bacteriophages, or phages for short, are viruses that selectively infect and replicate in
bacterial cells. Due to their unique properties, phages have been perceived as promising
tools in combating bacterial pathogens not only in human treatments (phage therapy) but
also in various industrial fields. This includes the food production sector in which, for the
sake of the consumer’s safety, all implemented antimicrobial procedures must be selected
with special care. In contrast to routinely used antibacterial approaches, phage application
does not change the properties of the product, viruses may be applied on a variety of
matrices and the problem of resistance may be overcome much more easily compared to
chemical antibacterials [3–5]. Phages are isolated from a variety of foods, which indicates
their natural contact with humans with this route [6]. Furthermore, phage-based strategies
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are cost-effective and consumer-friendly, making them an important alternative to standard
antibacterial procedures.

The ability of bacteriophages to effectively eliminate foodborne pathogens has been
reported in numerous scientific articles [7–10]. Since the latest years have brought a
significant increase in bacteriophage studies, in this review, we summarize the recent
findings regarding efficiency of phages against the main food-related pathogens and
potential application of these viruses in approaches of microbiological control in food
production. We believe that ensuring safety of food products is a key global concern,
and searching for novel solutions that will allow high standards of food production to be
maintained is urgently needed. In this aspect, the use of phages as tools providing safety
for consumers should be seen as an important alternative to currently applied methods.

1.1. Bacteriophages

Bacteriophages are the most ubiquitous biological entities on Earth, with an estimated
total global population of 1031 particles [11]. They are also known as phages, from the Greek
phagein meaning “to eat” [12]. They can be found in a variety of ecosystems, including
extreme environments, such as the Sahara desert, hot springs and cold polar waters [13].
They are characterized by a great diversity in structure, size and organization of the
genome [14].

Bacteriophages were first mentioned in 1896, when the British bacteriologist Ernest
Hankin reported unusual antibacterial activity in the waters of the Yamuna and Ganga
rivers. Furthermore, he suggested that this unknown factor inhibited the development
of the epidemic of cholera caused by Vibrio cholerae. Notably, his hypothesis has never
been confirmed by the scientific community [15]. The researcher who first observed
translucencies on a bacterial lawn caused by bacteriophages was Frederick Twort. However,
at that time he considered it to be the action of a “transmissible vitreous transformation”,
the amount of which increased after the death of the cell. In 1917, the French-Canadian
microbiologist Félix d’Herelle published results of his research, describing the phenomenon
of bright “zonas”, which he eventually called plaques. He was also the first to propose the
hypothesis that the translucencies could be caused by a virus that parasitizes bacteria. He
called it a “bacteriophage” [13].

One of the most characteristic features of bacteriophages is their high specificity,
regarding one species, or a specific strain of bacteria they infect [14]. This high specificity
is based on selective binding of the virus receptor with the ligand at the bacterial surface.
Proteins, polysaccharides, lipopolysaccharides (LPS) and carbohydrate moieties as well as
outer membrane proteins, pili and flagella may be used by phages as keys to the entrance
to bacterial cells [16]. Bacteriophages multiply with two basic replication cycles. In the lytic
cycle, once the genetic material of the phage is inside the relevant host, it is replicated with
the molecular apparatus of the bacterium. In a relatively short time after phage penetration,
new virions are assembled and released to the environment. This sequence of molecular
events naturally leads to lysis of the bacterial cell [17]. Bacteriophages amplifying with
the lytic cycle are called lytic or virulent phages [18]. In the lysogenic cycle, performed
by temperate phages, nucleic acid of the virus integrates with the bacterial genome and
multiplies with the host as a prophage. However, as a result of unfavorable changes in
environmental conditions, the phage can revert to the lytic cycle [13]. Clearly, due to the
lack of lytic activity, temperate phages are not relevant candidates for practical use.

Bacteriophage efficacy in disrupting bacterial cells is an excellent feature for their use as
microbiological tools in antibacterial strategies. However, within years of phage application,
other characteristics of bacterial viruses have been perceived as beneficial, particularly
compared to standard chemical antibacterial agents. Bacteriophages recognize and infect
only a particular bacterial host and therefore they do not affect the natural microflora of the
organism. As a result, they are better tolerated by the human body than antibiotics and
thus are considered a safer treatment option [19,20]. Moreover, frequently, a single dose of
bacteriophage preparation is sufficient to achieve the therapeutic effect [21,22]. This results
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from the unique phage ability of “auto-dosing”, which means that phages are capable of
increasing in number specifically where their hosts are located [23]. Bacteriophages are
inhabitants of humans as they are found in the respiratory or digestive tract. It is thought
that the first viruses enter the intestines within 4 days of birth [20]. This natural contact
with phages also indirectly supports the safety of the intended phage application. It is not
without significance that, compared to antibiotics, phage acquisition is easier, faster and
cheaper [24]. For applications in food safety of particular importance is that phages do not
impact organoleptic, rheological and nutritional properties of the product [25].

There are surely also limitations of phage use, such as the narrow spectrum of activity,
which may be a serious obstacle in production of universal preparations intended for use
on a large scale, or development of phage-resistant strains. However, both limitations
may be overcome by the use of phage cocktails, which may be composed of phages with
different specificity, broadening the lytic spectrum of the preparation, or with phages with
similar activity so that when bacteria acquire resistance to one phage from the preparation
they likely remain susceptible to another [24,26]. It is noteworthy that the effectivity of
phage cocktails is multifaceted and other factors, including the mobilization of virulence or
antibiotic resistance genes or phage coinfections have to be considered [27]. Limitations of
phage application are discussed more specifically later in this review.

1.2. Foodborne Pathogens

The first food infections were reported in the 5th century BC, when it was observed
that illnesses occurring at that time may be related to the consumed food [28]. Since
then, scientists have shown that pathogens that contribute to food contamination include
viruses, parasites and bacteria of which the latter are considered the most common cause of
foodborne infections [29]. Among the bacterial species of utmost importance are frequently
listed Salmonella spp., Listeria monocytogenes, Escherichia coli and Campylobacter jejuni [30,31].

Bacterial food-related pathogens are mainly mesophilic micro-organisms tolerating
temperatures in the range of 20–45 ◦C, so they can easily survive in the human body. Of
note, some pathogens, e.g., Y. enterocolitica, persist at temperatures lower than 10 ◦C, which
entails the need to adjust preventive methods to remove potentially occurring bacterial
cells. Production of spores by many bacterial species also hinders decontamination.

However, one of the most significant challenges is the ability of pathogens to form
a biofilm structure [28]. In a biofilm, cells are embedded in the extracellular polymeric
substance (EPS), also known as the extracellular matrix, providing micro-organisms re-
sistance to environmental factors [32]. Food is a particularly favorable matrix for biofilm
development. In the food production sector, biofilm structures may form directly on food
products as well as on equipment that may come into contact with food [33]. Foodborne
pathogens able to form biofilms are of particular concern for food producers as the use of
disinfectants and other antimicrobial agents is inefficient due to the limited penetration of
the product within the structure [34]. Even if the biofilm is cleared once, the contamination
likely returns [33]. Many foodborne pathogens, e.g., L. monocytogenes, S. enterica, C. jejuni
and E. coli, are able to form biofilms, so implementing antimicrobial strategies developed
to efficiently remove these highly resistant structures is urgently needed.

There are two routes for the development of a foodborne infection. The first route,
which is referred to as intoxication, is that a pathogen on the food surface or inside the food
product produces a toxin, which then enters the organism with the meal and affects its
metabolism. In the second case, a pathogen that has directly entered the digestive system
with food is able to adapt and multiply within cells [28].

The most comprehensive data related to food infections date back to 2016 when
the EFSA (European Food Safety Authority) published a summary report on trends and
sources of zoonoses, zoonotic agents and food-borne outbreaks in the preceding year [35].
According to presented data, in 2015, there were 45,874 cases of food-related illness within
the countries of the European Union. The number of outbreaks in which two or more
people were infected after consuming the same food was 4362 of which 33.7% were caused
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by bacteria, mainly Campylobacter spp. and Salmonella spp. Reported foodborne infections
were mainly related to contamination of products of animal origin, such as pork and eggs,
but also other products as shellfish, milk, and fish [28]. In the same year, the World Health
Organization (WHO) estimated the number of foodborne outbreaks across the globe. A
total of 31 infectious agents were identified to contribute to the illnesses of 600 million
people and the deaths of 420,000 people worldwide. Both reports conclude that special
attention should be paid to food safety at every stage of production in the so-called “farm
to fork” approach [36].

The possibility of food contamination depends on numerous factors, such as the type
of the product and the method of its production, the water content in food, or the amount
of accessible oxygen during the process which inhibits development of anaerobic bacteria
but at the same time creates conditions for development of aerobic strains. There are
various methods which are used as a standard to eliminate undesirable bacteria. These
include thermal treatment at low (chilling, freezing) and high temperatures (pasteurization,
sterilization), drying, reduction of water activity, fermentation, use of microbial growth
inhibitors or ozonation. However, use of the available sanitization methods frequently
influences sensory and organoleptic characteristics of the product (Figure 1) [37].
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It is worth emphasizing that a number of system procedures have been developed
and implemented to maintain standards of safety within food processing. These include
good manufacturing practices (GMP), sanitation standard operating procedures (SSOP)
and hazard analysis and critical control points (HACCP). The latter is the most widely
used strategy in maintaining production safety [38]. Nevertheless, despite implementing
different safety protocols, the final products must still be tested for microbial contamination
to ensure consumer safety and reduce the risk of disease [39].

Especially noteworthy is the problem of the industrial breeding of livestock, partic-
ularly on large farms in which there is an increased risk of microbial contamination and
eventually a disease outbreak due to hindered waste management control. It is commonly
known that abuse of antibiotics in husbandry has become a relevant global problem. The
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amount of these drugs applied in farming exceeds 50 million kilograms each year world-
wide [40]. Replacement of antibiotics is a critical challenge as abundant and virtually
uncontrolled release of these medicaments into the environment contributes to the rapid
development of resistant bacterial strains. Considering the demanding environment of
livestock farms and the specificity of animal breeding, development of new preventive
methods against microbial contaminations is critically needed.

1.3. Salmonella

Salmonella is a rod-shaped, Gram-negative bacterium belonging to the Enterobacteri-
aceae family. It is the cause of one of the most common foodborne diseases—salmonellosis.
The illness usually manifests with abdominal pain, vomiting, diarrhea, fever and headache.
Based on the EFSA report from 2020, the pathogen is transmitted through the soil, water,
feed, and feces, among others. Bacteria are typically found in meat and animal products,
which become the source of infection for humans. Chickens are the most frequently infected
animals, followed by cattle, turkeys, pigs, ducks, and geese. The most common cause of
infection are the two serotypes Salmonella Enteritidis and Salmonella Typhimurium [41].

The potential of bacteriophages in combating Salmonella infections has been confirmed
in numerous studies [25,42–44]. A recent example is the research of Yan et al. (2020), who
investigated the efficacy of the LYPSET phage in elimination of S. enterica in food products.
The experiments were carried out using milk and lettuce stored at two temperatures, 4 ◦C
and 25 ◦C. Samples contaminated with the pathogen were treated with phage lysate and the
number of bacteria was determined. In the case of milk samples, application of the phage
preparation allowed the number of bacteria to be reduced by 2.07 log CFU/mL at 4 ◦C and
by 3.67 log CFU/mL at 25 ◦C with an MOI = 1000. When the MOI was 10,000, the activity of
phages was slightly higher as the number of bacteria decreased by 2.19 log CFU/mL at 4 ◦C
and 4.33 log CFU/mL at a temperature of 25 ◦C. For lettuce samples only MOI = 10,000
was tested. The number of Salmonella cells decreased by 2.2 log CFU/mL at 4 ◦C and by
2.34 log CFU/mL at 25 ◦C. The results confirmed that application of phages may be a
promising approach in combating Salmonella contamination in food [45].

In similar studies of Islam et al. (2019) the effect of the phage cocktail composed
of three phages, LPSTLL, LPST94 and LPST153, on S. Typhimurium and S. Enteritidis
and their mixture in milk and in chicken meat was investigated. As in former studies,
the experiments were performed at temperatures of 4 ◦C and 25 ◦C. The results showed
that the number of S. Typhimurium cells in milk was reduced below the detectable limit
(<1 CFU/100 µL) after 3 h and 6 h at 4 ◦C with MOI of 10,000 and 1000, respectively. For the
mixture of Salmonella almost complete elimination of bacterial cells in milk was observed
after 6 h and 12 h at 4 ◦C with MOI of 10,000 and 1000, respectively. Of note, for a single
Salmonella strain or a mixture of Salmonella strains, the viable counts declined completely
after 6 h (MOI = 10,000) and 24 h (MOI = 1000) at 25 ◦C. Similarly, for the chicken meat,
there was complete elimination of bacteria after 3 h at 4 ◦C and 3 h and 6 h at 25 ◦C for MOI
of 10,000 and 1000. Furthermore, the authors tested the effect of bacteriophage cocktail on
biofilm structures formed by S. Typhimurium and the mixed culture of S. Typhimurium and
S. Enteritidis. The experiments were performed using a 96-well plate and a stainless steel
surface. Biofilm structures were formed and then treated with preparations with phage
titer of 7 log PFU/mL and 8 log PFU/mL. After 24 h, biofilm reduction was determined
for both matrices. In the case of the 96-well plate, reduction of S. Typhimurium biofilm
structure was 48.3% and 63.25% for both tested phage titers. In analogical experiments
with mixed biofilm the decrease was 44.28% and 63.25%. When using the steel surface and
a single S. Typhimurium strain, the biofilm decreased by 5.5 log and 6.42 log for respective
titers 7 log PFU/mL and 8 log PFU/mL. For a mixed biofilm, reduction of 44.28% and
51.17% compared to the control with no phage was achieved [46]. The results indicated
that phage cocktails may be potentially used as biological control agents against Salmonella,
including the removal of Salmonella biofilm structures from food-related equipment.
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In another study, the potential of the SE07 phage specific to S. enterica isolated from
chicken and beef meat intended for sale was tested. The effects of the phage in reducing
Salmonella contamination was evaluated for a variety of foods, including fresh eggs, beef,
poultry meat and fresh fruit juice. A significant reduction in the number of pathogens was
noted after 12 h of the experiment; however, after the following hours the further decline of
the bacterial count was negligible. In the example of beef, the number of bacteria decreased
from the initial concentration of 4.23 log CFU/mL to 2.32 log CFU/mL after 12 h following
phage application. Similarly, in the case of the chicken sample, the bacteria count dropped
from 4.16 log CFU/mL to 2.34 log CFU/mL in the 12th hour of the experiment [47].

SalmoFresh™ (Intralytix, Columbia, SC, USA) is a bacteriophage preparation against
Salmonella spp. which has been granted GRAS (Generally Recognize As Safe) status by the
US Food and Drug Administration (FDA, 2013; Intralytix, 2015). According to information
provided by the producer the product is specifically designed for treating foods that are at
high risk for Salmonella contamination. Red meat and poultry in particular can be treated
prior to grinding for significant reductions in pathogen count [48]. The preparation is
composed of six phages targeting different serotypes of Salmonella spp. In the studies of
Zhang et al. (2019), the surfaces of lettuce, mung bean sprouts and its seeds were covered
with SalmoFresh, whereas the control group was washed with chlorinated water. In an
additional experimental group, the food products were treated with a mixture of both
chlorinated water and the phage preparation. The findings demonstrated the effectiveness
of the cocktail in reducing Salmonella contamination on lettuce and sprouts as bacterial
counts decreased during storage of the products by 0.76 log CFU/g and 0.83 log CFU/g,
respectively. The results were inconclusive in the case of seeds as there was exponential
growth of bacteria observed after their germination. Surprisingly, the most effective method
turned out to be combined use of chlorinated water and a bacteriophage cocktail, which
gave satisfactory results in all trials [49].

A relatively novel application of bacterial viruses is their use as components of detec-
tion systems for different bacteria. Minh et al. (2020) developed a method for the rapid
detection of Salmonella using NanoLuc reporter phages. The gene of luciferase was intro-
duced with homologous recombination downstream of the main capsid protein sequence.
Bacteria were incubated with modified phages SEA1.NL and TSP1.NL for two hours and
their presence was evaluated based on the luminescence production. A combination of
the two phages provided the best results since the TSP1.NL phage gave high intensity of
luminescence, while SEA1.NL showed high specificity. This method has been referred to as
PhageDx for Salmonella. PhageDx has been proved to work flawlessly for pure cultures, and
the question arose whether it could be effective for food matrices. Therefore, in subsequent
studies, possible application of the method in detection of Salmonella contamination on
ground turkey meat and a powder infant formula has been evaluated. PhageDx proved to
be effective for both matrices since no false positive results were noted [50]. This suggests
that application of bacteriophages in food safety may go beyond direct elimination of
bacteria and phages can be potentially important tools in preventive strategies including
microbiological detection systems.

1.4. Escherichia coli

Although E. coli is a natural inhabitant of the intestinal microflora of all mammals,
at the same time it is the cause of many serious intestinal and extraintestinal diseases,
including infant meningitis or sepsis [51]. There are two main groups of pathogenic strains
of E. coli. The first is diarrheal E. coli, also known as enteric pathogenic E. coli (IPEC),
which causes diarrhea or intestinal flu. This group includes well-known pathogens such
as enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli
(EPEC) and shigatoxigenic or Shiga toxin-producing E. coli (STEC) with the subgroup of
enterohemorrhagic E. coli (EHEC). The second group is extraintestinal pathogenic E. coli
(ExPEC), which contributes to infections outside the intestines [52]. The bacterium is highly
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contagious as even a small number of bacterial cells may cause a disease. It is transmitted
mainly by food and contaminated water [28].

In a recent study, Vengarai Jagannathan et al. (2021) investigated potential application
of a bacteriophage cocktail in reducing the growth of pathogenic E. coli O157:H7 on food
products. Fresh spinach leaves were rinsed for 10 min with sterile drinking water loaded
with a mixture of E. coli and bacteriophages (MOI 2:3). Compared to the control group in
which vegetables were dunk-washed with a water suspension of bacteria, a reduction in
pathogen count of 99% was achieved [53].

Mangieri et al. (2020) used bacteriophages specific to STEC to reduce bacterial con-
tamination of fresh cucumbers. A phage cocktail composed of three bacteriophages was
tested on vegetables at two temperatures of 25 ◦C and 4 ◦C for 24 h. The number of
pathogenic bacteria was reduced by 1.16 log CFU/g after 6 h and 2.01 log CFU/g after 24 h
at a temperature of 4 ◦C and 1.97 CFU/g after 6 h and 2.01 log CFU/g after 24 h at 25 ◦C.
The authors stated that phage cocktails may be potentially used in controlling bacterial
contamination in fresh vegetables [54].

These observations were confirmed in another study by Dewanggana et al. (2022),
who investigated the potential use of bacterial viruses to eliminate ETEC from different
food products (chicken meat, fish meat, cucumber, tomato, lettuce). Food samples were
rinsed with E. coli and then the phage lysate was used to remove the contamination. The
samples were incubated at 4 ◦C and the number of bacteria was determined after 24 h
and 6 days. For all food products a more significant effect was observed after 6 days of
incubation. The highest efficiency in reducing E. coli was observed for the chicken meat as
the number of bacteria decreased by 80.93% and 87.29% at days 1 and 6, respectively. The
effect was found to be the weakest for lettuce as bacterial contamination was reduced by
46.88% and 43.38% for both tested temperatures [55].

Importantly, phages are also effective in removing the biofilm structure formed by
E. coli on food. The influence of AZO145A bacteriophage on E. coli biofilms on beef was
investigated by Wang et al. (2020). Meat treated with ε-polylysine was used as a control.
The use of both phage and ε-polylysine showed beneficial effects in reducing biofilm trans-
mission between pieces of meat. The elimination of biofilm structure was comparable
for both disinfectants as phages reduced the bacterial count by 3.1 log CFU/coupon and
ε-polylysine 2.9 log CFU/coupon. However, it was found that without increasing the doses
of both preparations, biofilm reappeared in the trials. Such observations notwithstand-
ing, AZO145A phage may be considered a promising agent in combating E. coli in meat
products [56].

Choi et al. (2021) used a novel approach in reducing E. coli on raw beef meat. The
authors immobilized bacteriophages on the surface of the polymer film used as a standard
for food packaging. The objective of the study was to develop a material which would be
safe for use and at the same time would provide antibacterial safety. The bacteriophage T4,
which is probably the best known representative of phages specific to E. coli, was covalently
attached to a polycaprolactone (PCL) film. Then, portions of raw beef contaminated with
E. coli were packed in the packages with the phage. The bacterial growth was measured
after 30 min and compared with the standard packages with no phage. The reduction
of bacterial population was 2.44 log compared to the control group, demonstrating the
possibility of using phages in systems of food packaging [57].

1.5. Listeria

Listeria monocytogenes is a Gram-positive, anaerobic, rod-shaped bacterium [58]. It
is a foodborne zoonotic pathogen, which means that it is naturally transmissible from
vertebrate animals to humans. In humans it causes listeriosis, the symptoms of which
include encephalitis, meningitis, sepsis and gastrointestinal disorders. It is particularly
dangerous for pregnant women since it may lead to miscarriages [59].

The recent findings confirm that bacteriophages may show high activity against
L. monocytogenes strains found in meat and meat-derived products. Importantly, it has
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been observed that they do not have a detrimental effect on the natural microflora of
the consumers. Moreover, phages have also been proven to be stable under refrigerated
storage [60]. Undoubtedly, the aforementioned features are among those that have led to
the extensive development of Listeria targeting commercial bacteriophage products.

Currently available phage preparations against Listeria include Phage LM-103a, Phage
LMP-102a, Phage Ply511, ListShield (all of them Intralytix, USA), and Listex P-100 (Micreos
Food Safety B.V.; The Netherlands) [61,62]. The effectiveness of these preparations in control-
ling Listeria contamination in different food products has been confirmed in several studies.

ListShield (formally known as LMP-102) was the first phage-based preparation to
receive FDA approval, in 2006, for direct application on meat and poultry products that
meet the ready-to-eat definition [63]. ListShield is a cocktail composed of six bacteriophages
with high lytic activity against Listeria strains. It was shown that it significantly reduces the
presence of pathogens in various types of RTE foods, with the efficiency of 82–99% [64].
Ishaq et al. (2022) reported that in the case of smoked salmon, the use of ListShield
completely inhibited the growth of L. monocytogenes on naturally contaminated samples
as well as those infected in an in vitro experimental model. Importantly, there were no
organoleptic changes in the tasted samples, which is important from the perspective of
the consumers. Moreover, ListShield has also been found to have bactericidal properties
on surfaces, which may be of great importance in the context of protecting, for example,
processing plants in the food industry against Listeria contamination [3].

Shortly after the ListShield approval, another Listeria-targeting preparation, Listex
P100, was given GRAS status by the FDA and a positive opinion by the EFSA, which
stated that the product is not only safe but also effective [65]. Listex P100, is composed of
six L. monocytogenes specific phages and it is recommended for the reduction of bacterial
contamination on RTE products of animal origin [66]. The product showed high speci-
ficity in trials performed at different temperatures. The largest decrease in bacterial count
achieved was 4.44 log CFU/mL when the inoculum count was 3 log CFU/g [64]. Impor-
tantly, Listex P100 has also been proved to be effective in reducing the biofilm structure
formed by L. monocytogenes on stainless steel with a reduction of 3.5–5.4 log CFU/cm2

compared to a control group in which no antibacterial agent was applied [67]. Compared
to standard antibacterials, such as nisin and sodium lactate, Listex P100 has been proved to
be more effective in eliminating L. monocytogenes on ready-to-eat, sliced ham [68]. Notably,
former observations were confirmed that application of the preparation does not affect the
organoleptic properties of the product [66].

Going beyond products of animal origin, potential application of phages in combating
Listeria contamination on fruits has also been investigated. Phages were administered by
injection into the pulp of contaminated melons and apples or evenly spread on the surface
of the fruits. Bacterial contamination in melons decreased by 4 log units compared to the
control group in which fruits were treated with nisin. Notably, in the case of apples, the
amount of bacteria declined by only 0.4 log units compared to bacteriocin treated products.
Furthermore, the effectiveness of nisin should be noted, as on fruits protected with this
preparation the number of Listeria declined by 6 log units in the case of melon and by 2 log
units in the samples with apples compared to the control group in which no disinfectant
was applied [69].

1.6. Campylobacter

Campylobacter jejuni, one of the best known representatives of the Campylobacteraceae
family, is one of the most important foodborne pathogens. It naturally inhabits the intestines
of birds and mammals. However, in particular conditions, it may cause gastroenteric
infections called campylobacteriosis, and hence C. jejuni is among the most common
causes of zoonotic illnesses worldwide [28]. Infections are frequently caused by drinking
contaminated water or raw milk and eating contaminated meat, especially chicken or beef,
and other animal-derived products. The most common symptom of infection is diarrhea,
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but infected people may sporadically develop secondary diseases, such as Guillain–Barré
or Miller–Fisher syndrome [70].

Thung et al. (2020) explored the potential use of bacteriophages as microbiological
tools to control C. jejuni contamination in chicken meat and mutton. The meat was sliced
and infected with bacteria, then incubated and sprayed with the phage preparation. The
samples were stored at 4 ◦C for 2 days and the amount of C. jejuni was determined. The
authors observed a decrease of bacterial number by 1.68 CFU/g and 1.70 CFU/g for chicken
meat and mutton, respectively. These findings suggest the possibility for use of bacterial
viruses in strategies against C. jejuni in meat products [71].

This hypothesis was supported by the results of another study in which two phages,
Φ7-izsam and Φ16-izsam, were used to counteract the development of antimicrobial-
resistant C. jejuni in poultry. First, animals were tested in terms of natural infections
with the bacterium. Then, uninfected birds were orally given a C. jejuni suspension.
Bacteriophages were provided to the animals prior to slaughter. Compared to the control
group, bacterial counts in cecal content of animals treated with phage preparations were
significantly reduced. The number of C. jejuni decreased by 1 log CFU/g and 2 log CFU/g
for two groups of animals in which the phage preparation was given at different time
points [72].

In a similar study of Richard et al. (2019), bacterial viruses were used to control C.
jejuni in broiler chickens. Four days after the birds were infected, bacteriophages CP20
and CP30A were orally administered to the animals. The chickens were sacrificed every
24 h and Campylobacter counts in the intestinal lumen were determined. As a result,
a remarkable reduction in a bacterial number in phage-treated groups was observed.
The most significant effect was noted 2 days after the bacteriophage application, as the
bacterial number decreased by 2.4 log CFU/g compared to the control group of infected,
untreated animals. An important objective of the study was to investigate the influence
of the phage treatment on the gut microflora of the animals. The results indicated that
bacteriophages did not affect birds’ microbiota, which supports previous observations
regarding the safety of phage treatment [73]. Of note, recent studies on bacteriophages of
different specificity showed that phage application influences the microbiological balance
in birds’ intestines [74–77]; however, reliably answering whether this influence is harmful
or harmless for the animals requires further, comprehensive research.

The efficacy of bacteriophages in eliminating C. jejuni in chicken meat was also con-
firmed in the studies of Zampara et al. (2017). The authors isolated phages capable of
reducing C. jejuni at a chilled temperature and then created a phage cocktail composed of
two phages with the highest lytic spectrum. The cocktail reduced the number of bacteria by
0.73 log units compared to the control group. Remarkably, the results confirmed that phages
may be used in protecting the chicken meat against C. jejuni also at lower temperatures [78].

It is noteworthy that campylophages, compared to other bacterial viruses, have some
features which make their application difficult. Żbikowska et al. (2020), in a recent review
on potential use of phages in the poultry industry, listed in this regard: (i) the problems
associated with the optimization methods for phage isolation, propagation and purification;
(ii) difficulties with appropriate selection of phage candidates for application due to the
significant differences between Campylobacter phages within groups, even they are geneti-
cally very similar; (iii) evidenced phage resistance of Campylobacter after phage treatment;
and (iv) the cost of production [79]. Notwithstanding these limitations, phage treatment of
Campylobacter infections remains an appealing option.

1.7. Yersinia

Yersinia enterocolitica is a Gram-negative bacillus-shaped bacterium, which belongs
to the Enterobacteriaceae family [80]. To date, 28 species have been identified, 3 of which
are pathogenic to humans [81]. Yersinia spp. are heterogeneous species represented by
six biotypes (1A, 1B, 2, 3, 4, 5) and different serogroups showing specific virulence factors
correlated with the geographic region in which the bacteria occur [80]. This pathogen is
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mainly transmitted through raw food or water sources, causing gastrointestinal disease
also known as yersinosis in humans. It is the fourth most frequently reported foodborne
bacterial disease and a huge threat to human life [82]. The main symptoms of yersiniosis
are fever, often hemorrhagic diarrhea, lymphadenitis, abdominal pain, and nausea [83].
Combating yersinosis is a great challenge since numerous representatives of this species
have developed resistance to many frontline antibiotics such as penicillin, ampicillin,
cephalosporine and macrolides [84]. Clearance of Yersinia contamination in food and food
processing equipment is also difficult due to the ability of this pathogen to form biofilm
structures [85].

Compared to phages specific to other foodborne pathogens, the knowledge regarding
Yersinia phages is rather scarce. Jun et al. (2018) isolated and characterized four virulent
bacteriophages specific to Yersinia enterocolitica. Bacteriophage fHe-Yen3-01 was assigned to
the family Podoviridae, while three other phages (fHe-Yen9-01, fHe-Yen9-02 and fHe-Yen9-
03) were assigned to the Myoviridae family. In subsequent tests, isolated viruses were used
to reduce contamination in selected food products. Raw pork and milk were contaminated
with the Y. enterocolitica O:9 Ruokola/71 strain, a genetically modified strain of Yersinia for
use in in vitro tests. The bacterial count during the experiment decreased in raw pork from
2.3 × 103 CFU/g to 2.12 × 102 CFU/g and in milk from 4.15 × 103 CFU/mL below the
detection limit (<10 CFU/ml). In the case of RTE pork, the reduction of bacterial count was
from 2.1 × 103 CFU/g to 3.8 × 10 CFU/g. Furthermore, potential application of phages
against Yersinia contamination on kitchen utensils, such as cutting boards, wooden spoons
and kitchen knives, has been evaluated. Tools were immersed in a bacterial inoculum
with the concentration of 104 CFU/mL, then they were exposed to phages directed against
Y. enterocolitica. The highest efficiency was demonstrated for the fHe-Yen9-01 phage, which
reduced the number of bacteria by 1/3 compared to the initial bacterial count. These
findings suggest potential use of phages to control the growth of Y. enterocolitica in food
and everyday kitchen items [86].

Yersinia bacteriophages have also been used for the development of a selective tool
for identification of this bacteria. Immune separation (IMS) was considered a promising
approach in identifying Yersinia spp.; however, due to the existence of numerous serotypes
of the pathogen, the method did not eventually find practical application. Therefore, many
attempts have been made to modify this technique. One of them is based on use of magnetic
microparticles together with RNA binding proteins (RBPs) Gp17, Gp47 and Gp37 of phages
to selectively “capture” the epidemiological serotypes of Y. enterolytica. In the case of
microparticles coated with RBP Gp17, it was possible to detect the O:3 type, which is the
most virulent serotype causing yersiniosis. Moreover, use of Gp47 and Gp37 allowed for the
identification of serotypes O:3, O:5, 27, O:8 and O:9. Notably, compared to the method based
on antibodies, the modified IMS technique is stable to physical–chemical interactions [83].
The results confirm the potential of phages in the development of identification systems for
different bacterial species, including food-related pathogens.

2. Perspectives

Microbial safety is one of the priority issues in the food industry as it directly affects
consumers’ health. Currently applied antibacterial strategies have their limitations and
thus solutions that are easy to implement, do not influence product quality, and are safe
and cheap are eagerly anticipated.

Bacteriophage effectivity against foodborne pathogens has been confirmed in numer-
ous studies, and the potential of bacterial viruses in strategies against this group of bacteria
has been noted by many scientists (Table 1) [42,60,87]. It is worth emphasizing that this
review presents recent studies on the effectiveness of bacterial viruses in combating only
selected food-related bacteria, and research studies in this field are much more advanced.
They also include such other important foodborne pathogens as e.g., Shigella sp. [49,88],
Staphylococcus aureus [89,90], Pseudomonas [91,92] and Vibrio [87].
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Despite the fact that food safety is the industrial area in which commercialization
of bacteriophage-based products shows the fastest progress, popularization of phage
application is still in its infancy (Table 2). Over the last 12 years, the number of accept-
able bacteriophage preparations approved for use in the food industry has increased. In
2006, the FDA issued the first approval for a bacteriophage cocktail against L. monocy-
togenes on RTA meat and poultry products, which was the aforementioned ListShield
(LMP-102) (Intralytix, Columbia, USA). Later, approvals by the FDA were issued for other
preparations such as PhageGuard and Listex (Micreos Food Safety B.V., Wageningen, The
Netherlands), EcoShield (Intralytix, Columbia, USA), ShigaShield (Intralytix, Columbia,
USA) and SalmoFresh (Intralytix, Columbia, USA). GRAS status was given to SalmoFresh
(Intralytix, Columbia, USA) and PhageGuard (Micreos Food Safety B.V., Wageningen,
The Netherlands) [93]. Currently 13 phage preparations for food safety applications have
been approved by different North American or European institutions, most of them dedi-
cated to fighting E. coli (6) and Salmonella spp. (4). Other preparations are active against
L. monocytogenes (2) and Shigella spp. (1) [25]. It is worth noting a phage-based prepara-
tion dedicated for applications in agriculture, AgriPhage, offered by Omnilytix (USA), is
active against Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato
and is available for sale [94]. Importantly, there are also preparations which have not
yet received acceptance by western institutions but have been commercialized on the
Asian market. As an example, BAFASAL (Proteon, Łódź, Poland), available as a feed
additive and targeting S. Typhimurium and S. Enteritidis, still awaits commercialization
on the European market [95].

Despite the many advantages of bacteriophage-based antibacterial strategies, there
are also some drawbacks, which have to be considered particularly in the context of
widespread phage application. One of the best known is the phage ability to randomly
transfer fragments of the bacterial genetic material in the process called transduction [96].
Obviously transduction may include potentially harmful genes of virulence or antibiotic
resistance contributing to the environmental spread of the strains of increased risk for
public health. Clearly, this potential threat has to be considered with respect to intended
application of bacterial viruses.

Furthermore, the direct influence of phages on the human organism has not been com-
prehensively investigated. Notably, the assumption regarding safety of the use of phages
results primarily from many years of clinical experience rather than scientific knowledge.
Numerous research studies suggest the ability of bacterial viruses to interact with mammalian
cells [97–99]; consequently, such mutual interactions should be thoroughly investigated.

As mentioned above, phage specificity is also a substantial limitation in widespread
application of bacteriophages, particularly when food products are contaminated with
different foodborne pathogens. However, this may be easily overcome by using a phage
cocktail with a broad lytic spectrum and targeting different bacteria. Phage resistance
may influence activity of a phage preparation, but including several phages with similar
specificity into one cocktail should ensure activity of the product. From a purely practical
point of view, isolation, propagation and application of phages for food safety are rather
easy. Nevertheless, for development on a conventional product all the procedures have
to be well established, standardized and repeatable. This, together with the extremely
rigorous requirements concerning newly registered products, makes the pace of approval
of commercial phage preparations still insufficient.
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The question of whether commercialization of phage application in food safety can
be expedited remains open. On one hand, there is an emerging global problem of drug
resistance of many bacterial strains which demands new solutions for fighting microbial
contamination. This issue also naturally concerns the food industry. On the other hand, we
are at a point in history when mankind is about to face a major food crisis. Improving the
safety of food and thus safeguarding it from wastage seems to be a critical challenge. Un-
doubtedly, multifaceted application of bacteriophages in combating foodborne pathogens
is an important option.

Table 1. Exemplary studies on bacteriophage use against selected foodborne pathogens.

Bacteria Symptoms Transmission Phages Results References

Campylobacter
jejuni

Fever, muscle
aches, headaches,

arthralgia,
abdominal pain

and cramps,
weakness, bloody
diarrhea, gastric or

intestinal pain,
occurrence of
Guillain-Barré

syndrome

Poultry meat, milk,
contaminated

water, swimming
in contaminated

water bodies,
contact with

animal.

CJ01

Mutton and chicken meat were
stored at 4 ◦C and injected with

5 mL of C. jejuni with a
concentration of 104 CFU/mL.
The samples prepared in this
way were incubated for 4 h.

Then, they were sprayed with 5
mL of bacteriophage with

PFU/mL, and the samples were
again incubated for 48 h. The
final result was 102 CFU/g.

[4]

Φ7-izsam
Φ16-izsam

The influence of bacteriophages
on naturally or artificially
contaminated poultry was

investigated. Bacteriophages
were given to the animals

before slaughter and resulted in
a reduction of 1 log10 CFU/g

and 2 log10 CFU/g for both test
groups.

[72]

CP20 and
CP30A

Poultry were infected and
bacteriophages were

administered 4 days later.
Chickens were sacrificed every
24 h and the intestinal pathogen

concentration was examined.
The most prominent result was
obtained on the second day of

incubation and caused a
decrease of bacteria by 2.4 log

CFU/g in relation to the control.

[73]

12673, P22,
29C;

The contaminated skin of
chickens was examined. The

level of the pathogen decreased
by 2 log units when using the

MOI of the phage 100:1 or
1000:1.

[100]
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Table 1. Cont.

Bacteria Symptoms Transmission Phages Results References

Escherichia coli

Vomiting,
headaches,

stomach pain,
low-grade fever or

fever, diarrhea,
weakness, bloody
stools, hemolytic
uremic syndrome,

neonatal
meningitis,

pneumonia, sepsis

Pork, poultry,
contaminated

ruminants such as
goats, deer, sheep,

elk, water, milk
and dairy

products, direct
contact with

animals

FM10, DP16
and DP19

The phage cocktail was tested
on fresh intubated cucumber at
two temperatures of 4 ◦C and
25 ◦C for 24 h. The number of

bacteria was reduced by
1.97–2.01 log CFU/g and

1.16–2.01 log CFU/g at 25 ◦C
and 4 ◦C.

[54]

DW-EC

It was tested on many matrices,
such as chicken meat, lettuce
meat, fish meat, and tomato.

The samples were contaminated
with bacteria, then they were
subjected to the phage section.

A significant result was
obtained at 6 days of incubation.
The best effect was seen in the

chicken feed samples where the
pathogen value decreased by
80.93% after the first day and
87.29% after the 6th day. The

weakest effect was observed on
lettuce leaves.

[55]

AZO145A

The effect of phage on the
biofilm was investigated.

Exposure to bacteriophage at a
concentration of 1010 PFU/cm2

for 2 h resulted in a
4.0 log 10 PFU/mL reduction in

biofilm on stainless steel.
However, on the surface of beef,
at 48 h incubation, the pathogen
decreased by 3.1 log10 CFU/g.

[56]

T4

The aim of the study was to
design an antimicrobial package
by using the immobilization of
T4 phage (105 CFU/mL) on the

surface of the PCL foil.
Contaminated beef was placed
in this package. The bacterial
concentration applied to the

meat was 107 CFU/mL. After
48 h of incubation, the

concentration of bacteria was
reduced by 3 log CFU/mL.

[84]

FAHEc1

Contaminated raw beef as a test
matrix; after using phage, the

concentration of bacteria
decreased by 2 or 4 log units at

the appropriate storage
temperatures, 24 ◦C and 37 ◦C.

[101]
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Table 1. Cont.

Bacteria Symptoms Transmission Phages Results References

Listeria
monocytogenes

Fever, chills,
muscle aches,

headaches, nausea
and vomiting,

confusion, local
infections,

inflammation of
the lymph nodes,
inflammation of
the lungs, joints,

bone marrow,
pericarditis and

myocarditis,
inflammation of

the eyeball,
gastrointestinal

infections.

Raw vegetables
and fruit,

unpasteurized
dairy products

(milk, cheese, ices
cream), raw,

cooked and frozen
poultry meat, raw
and smoked fish,

delicatessen
products,

semi-finished
products, fast-food

products, soil,
sewage, water,
rotting plants,

silage, wild and
farm animals.

FWLLm1

Bacterial levels dropped by
2 log units on the surface of the

chicken that had become
contaminated with Listeria. The

samples were stored in a
vacuum package at 4 ◦C and
30 ◦C. A positive result was

observed only for the sample
kept at 30 ◦C.

[7]

A511

Bacterial levels were tested in
milk chocolate, mozzarella and

brie cheese. The phage were
given and incubated at 6 ◦C.

Bacteria concentration dropped
by 5 log units.

[102]

Pseudomonas spp.

Pneumonia, fever,
chills, severe

shortness of breath,
cough, confusion,

chronic lower
respiratory tract
infection, Roth’s

spots, i.e.,
petechiae on the

retina, small
painless

erythematous
changes on the

hands and
feet—Janeway

symptom, painful
reddish lumps

on the
fingers—Osler’s

nodules,
subungual
petechiae

Water, soil, human
and animal

digestive tract.

UFJF_PfDIW6,
UFJF_PfSW6

The lyophilized phage cocktail
was incubated with raw milk at

4 ◦C for 7 days. After the
incubation period, the
Pseudomonas bacterial

population decreased by
3.2 log CFU/mL.

[103]

V523, V524,
JG003

Three bacteriophages used
separately and together as a

cocktail were used to biocontrol
bacteria in the water. The effect
of the phages was tested against

two bacteriophage strains:
PAO1 and the environmental

strain 17V1507. Of all the
bacteriophages, V523 was most
effective in reducing the PAO1
strain (>2.4 log10). The other
strain was sensitive only to

JG003, resulting in its reduction
by 1.2 log10. The phage cocktail
resulted in higher reductions in
PAO1 (>3.4 log10) compared to
using them alone. In contrast,

the same reduction was
observed in 17V1507 as with

JG003 alone.

[104]
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Table 1. Cont.

Bacteria Symptoms Transmission Phages Results References

Salmonella spp.

Abdominal pain,
vomiting, diarrhea,

fever, headache,
chills, reduced

urine output, dry
mucous

membranes,
excessive

sleepiness, apathy.

Chicken, turkey,
pig, duck, goose
meat, eggs, soil,

water, cheese, milk,
fruit, vegetables,

contact with
contaminated

animals

LPSTLL,
LPST94,
LPST153

The use of the bacteriophage
cocktail decreased the

concentration of bacteria by
3 log units. Chicken breasts
were inoculated using an

inoculum. The influence on the
biofilm created by Salmonella

was also examined, the
administered cocktail effectively
inhibited the growth after 72 h,
the microplates decreased by

5.23 log units.

[46]

LYPSET

The biocontrol was tested in
milk and on lettuce leaves. In

milk samples there was a
decrease of bacteria by

2.19 log CFU/mL at 4 ◦C and
4.3 log CFU/mL at 25 ◦C.
However, in the samples

containing lettuce, there was a
decrease of 2.2 log CFU/mL at
4 ◦C and 2.34 log CFU/mL at

25 ◦C at MOI = 10,000.

[45]

SE07

The effects of phage on eggs,
beef and poultry meat were

tested. The best effect for beef
was obtained after 48 h of

incubation; the bacterial value
dropped from 4.23 log CFU/mL
to 2.11 log CFU/mL, while for

chicken the effect was even
better as there was a decrease

from 4.16 log CFU/mL to
2.14 log CFU/mL also at 48 h.

[47]

SJ2

The use of phage resulted in a
significant reduction of bacteria in
the soft pork and eggs. Incubation

was carried out at 4 ◦C.

[105]

BSPM4,
BSP101,
BSP22A

The phages were presented as a
cocktail. The reduction of

bacterial colonies was tested on
lettuce leaves and fresh
cucumber. There was a

reduction of 4.7 log for lettuce
and 5.8 log for cucumber.

[106]
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Table 1. Cont.

Bacteria Symptoms Transmission Phages Results References

Shigella sp.

Vomiting, anorexia,
abdominal cramps,

bowel urgency,
severe watery
diarrhea, fever,

diarrhea with an
admixture of

mucus and blood,
rapid breathing,
heart rate, low
blood pressure,
dry mouth and

skin (dehydration),
pain on palpation
of the abdomen

Touching skin of
contaminated

person, oral cavity
(fecal–oral route),

contaminated
water and food,
sexual contact,
swimming in
contaminated

water, by insects,
such as housefly.

SSE1, SGF3,
SGF2,

The influence of the SFE3 phage
and its combination as a

cocktail with other phages on
the reduction of biofilm on
polystyrene surfaces was

investigated. It was found that
the single SGF2 phage (isolated

from wastewater) had the
greatest impact on the

development of biofilm; it
caused growth inhibition by

26.6%. The lowest results were
obtained for SGF3, while

adding it to a phage cocktail
increased its effectiveness by

25%. The phage is active against
strains such as S. dysenteriae,
S. baumannii, and S. flexneri.

[107]

SD-11, SF-A2,
SS-92

The number of pathogens was
decreased by 4 log in chicken

meat, when they applied phage
cocktail. It was stored at 4 ◦C.

[108]

Staphylococcus sp.

Infections of the
skin and

subcutaneous
tissue, which are
characterized by
the presence of

purulent discharge,
impetigo,

folliculitis, boils,
furunculosis

(multiple boils),
abscesses,

inflammation of
the sweat glands

and inflammation
of the mammary
gland, high fever,

drop in blood
pressure, organ

dysfunction

Transmission
mainly by direct
contact. Patients
after surgery are

most at risk

MDR, ME18,
ME126

Reducing biofilm in UHT milk
at 25 ◦C using ME18 (MOI = 10)
and MDR. They reduce biofilm

in milk. However ME126
(MOI = 10) at 37 ◦C reduces

CFU/mL by 87.2% compared to
control sample.

[109]

Vibrio
parahaemolyticus

Watery diarrhea,
abdominal cramps,
nausea, vomiting,

fever or chills,
abscess formation,
otitis media, otitis

media and
conjunctivitis

Contact with
contaminated

water, fruit,
seafood

PVP1 and
PVP2

They treated sea cucumber
contaminated with pathogen.
MOI = 10 or MOI = 100. Test

were performed at in 20 ◦C and
it increased survival of sea

cucumber to 80% compared
with control sample without

phage cocktail treatment, which
was only 30%.

[110]
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Table 1. Cont.

Bacteria Symptoms Transmission Phages Results References

Yersinia

Mild or high fever,
cramping

abdominal pain,
loose stools often

with mucus or
blood, vomiting,

right-hand
stomach pain,

tenderness when
examining the

abdominal cavity,
fast heartbeat, joint

pains, mainly in
the knee, ankle
and wrist, rapid

breathing

Pork and pork
offal, milk, water,

raw vegetables and
fruits.

fHe-Yen3-01
fHe-Yen9-01,
fHe-Yen9-02

and
fHe-Yen9-03

Infected raw pork and cooking
tools with the Rukola/71 strain.

The kitchen tools were
immersed in an inoculum at a
concentration of 104 CFU/mL.

The best effect was obtained for
the phage fHe-Yen9-01, which

reduced the number of bacteria
by 1/3.

[86]

PY100

The given phage reduced the
amount of bacteria in the meat

MOI = 102 by 3 log10 units after
24 h incubation and at a

MOI = 104 by 5 log10 units after
1.5 h incubation at 37 ◦C.

However, when incubated at
4 ◦C, the bacteria count

decreased by 2 log
units after 24 h.

[111]

Table 2. Selected commercial bacteriophage preparations.

Company Product Target Reference Regulatory & Certifications

Micreos Food Safety
(The Netherlands)

PhageGuard Listex Listeria sp. [65,112,113]

Halal, OMRI, Kosher, Skal, FSSC
2200;

FDA, GRN 198/21, EFSA; Swiss
BAG; Israel Ministry of Health;

Health Canada

PhageGuard S Salmonella enterica [114]
Halal, FSSC 22000;

FDA, GRN 468; USDA, FSIS
Directive 7120.1, Swiss BAG

PhageGuard E Escherichia coli O157:H7 - FSSC 22000

Intralytix (USA)

ListShield Listeria monocytogenes [3,66,115–117] Kosher; Halal; OMRI; FDA, 21
CFR 172.785; FDA, GRN 528;

SalmoFresh Salmonella enterica [5,49,118–120]
Kosher; Halal; OMRI

FDA, GRN 435; USDA, FSIS
Directive 7120.1

ShigaShield Shigella sp. [88,121,122] FDA, GRN 672

EcoShield PX Escherichia coli [9,123–125] FDA, GRN 834; USDA, FSIS
Directive 7120.1

CampyloShield Campylobacter spp. [126] GRAS

Proteon Pharmaceuticals
SA (Poland)

Bafasal Salmonella enterica [96,127] -

Bafador Pseudomonas sp.,
Aeromonas sp. - -

Passport Food Safety
Solutions Finalyse E. coli O157:H7 - USDA, FSIS Directive 7120.1

Phagelux SalmoPro Salmonella spp. - FDA, GRN 603; USDA

FINK TEC GmbH
(Hamm, Germany) Secure Shield E1 E. coli [93] FDA,GRN 724

Arm and Hammer Animal
& Food Production (USA) Finalyse SAL Salmonella [128] -
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3. Conclusions

Food products are one of the main routes of transmission of infectious diseases
throughout the human population. Therefore, effective, safe and easily implemented
methods ensuring protection of consumers are highly desired.

Bacteriophages have properties that make them excellent candidates in antibacterial
approaches, especially in the food safety sector. Numerous studies confirm the high
efficiency of phages in eliminating various foodborne pathogens. This includes drug-
resistant bacteria and highly stable biofilm structures, both representing a particular concern
for food producers. At the same time, application of phages does not influence the quality of
food products and is easy and safe. Although commercialization of phage-based products in
food safety has been steadily progressing, much still needs to be done to achieve widespread
use of phage preparations. Nevertheless, considering the limitations and nearly exhausted
potential of currently applied antibacterial methods, new strategies are highly desirable.
Undoubtedly, application of phage products may be considered an attractive choice.
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