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Abstract: Two new cyclodipeptide (CDP) derivatives (1–2) and another seven known cyclodipeptides
(3–9) were isolated from Streptomyces 26D9-414 by the genome mining approach combined with
genetic dereplication and the “one strain many compounds” (OSMAC) strategy. The structures
of the new CDPs were established on the basis of 1D- and 2D-NMR and comparative electronic
circular dichroism (ECD) spectra analysis. The biosynthetic gene clusters (BGCs) for these CDPs were
identified through antiSMASH analysis. The relevance between this cdp cluster and the identified
nine CDPs was established by genetic interruption manipulation. The newly discovered natural
compound 2 displayed comparable cytotoxicity against MDA-MB-231 and SW480 with that of
cisplatin, a widely used chemotherapeutic agent for the treatment of various cancers.
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1. Introduction

Actinomyces provide a rich source of natural products (NPs) with potential therapeutic
applications, and modern “omics”-based technologies have revealed their potent potential
for encoding diverse natural products [1]. Genome-guided discovery of clostrubin A [2],
closthioamide [3] and cytotoxic benzolactones [4] has reinvigorated NP research, making it
a more targeted and systematic research endeavor. To avoid the re-isolation of known NPs,
the “genetic dereplication” strategy [5] and the “one strain many compounds” (OSMAC)
approach [6] have been successfully used during large-scale culture for discovering NPs
with novel skeletons (such as alterbrassinoids A-D [7] and waikikiamides [8]) and novel
NPs derived from post-modifications (such as the branched cyclic peptide lyciumin [9] and
highly modified polytheonamide-like peptides [10]).

Cyclodipeptides (CDPs), also called 2,5-diketopiperazines (DKPs), are the smallest
cyclic peptides formed via the condensation of two α-amino acids. CDPs are mainly
produced by Streptomyces [11]. CDPs exhibit important and diverse biological proper-
ties, such as antibacterial, antifungal, antiviral, antitumor, immunosuppressive and anti-
inflammatory activities [12]. Owing to the great potential for activation of specific binding
sites in enzymes or proteins, CDPs have become important pharmacophores in pharmaceu-
tical chemistry [13]. Natural CDPs can be biosynthesized through two different machineries;
one is catalyzed by the large multi-modular nonribosomal peptide synthetases (NRPSs),
and the other is mediated by cyclodipeptide synthases (CDPSs) [14]. The former uti-
lizes free amino acids, and the latter hijacks aminoacyl-tRNAs (AA-tRNAs) from primary
metabolism [15]. Generally, CDPSs catalyze the production of representative 2,5-DKPs,
which then will be modified by cyclodipeptide-tailoring enzymes (such as methyltrans-
ferases, prenyltransferases, oxidoreductases and cytochrome P450 enzymes) to form their
intriguing molecular character [14,15].
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Aiming at mining more natural products with structural diversity and bioactivity,
the OSMAC strategy was carried out using Streptomyces hygrospinosus var. beijingensis,
which is rich in secondary metabolites including tetramycin [16], anisomycin [17], nystatin
and toyocamycin [18]. Among them, tetramycin, anisomycin and structurally related
derivatives were high-yield products in the wild-type strain. To avoid the rediscovery
of already characterized compounds and to reduce the interference effect of tetramycin
and anisomycin, the BGCs of those compounds were genetically deleted and the resultant
mutant strain (named S. hygrospinosus 26D9-414) was used as the starting strain in this study.
When S. hygrospinosus 26D9-414 was incubated in a new medium different from the one
used for tetramycin and anisomycin production, nine CDPs of two types, diketopiperazines
with phenylalanine (1 and 4–9) and pyrazinones with arginine (2 and 3), were successfully
identified. Among the identified CDPs, compounds 1 and 2 (argilein) were new compounds,
and compound 4 was reported as a natural product for the first time here. Compound 4 has
been used as an important substrate for antitumor spirotryprostatin B synthesis [19]. The
other six CDPs have been reported before and were known as argvalin (3) [20], albonoursin
(5) [21], 3,6-Dibenzylidene-2,5-dioxopiperazine (6) [22], 3-benzylidenepiperazine-2,5-dione
(7) [23], 3-benzylidene-6-methylpiperazine-2,5-dione (8) [24] and 3-Benzyl-6-benzylidene-
2,5-dioxopiperazine (9) [25], respectively. antiSMASH analysis of the genome sequence
revealed a possible cdp cluster for the nine CDPs, and genetic deletion of cdpA-C confirmed
the correlation of genes with compounds. Finally, the antibacterial and cytotoxic properties
of 1–5 were evaluated.

2. Results and Discussion

The “genetic dereplication” strain Streptomyces 26D9-414 [18], in which BGCs of
tetramycin and anisomycin were deleted, was selected for OSMAC screening of new
natural products. The original medium for anisomycin production and the other ten liquid
media PYJ1-J10 were selected for the mining of new compounds. Comparative HPLC
analysis of the secondary metabolites was conducted, and the metabolic profile of the
PYJ1 medium gave many new peaks characteristic of absorption at 224 nm and 296 nm
(Figure S1). Repeat rounds of fractionation alternating between silica gel chromatography
and Sephadex LH-20 column chromatography followed by semi-preparative reversed-
phase HPLC afforded compounds 1–9 (Figure 1). Their structures were elucidated by
spectroscopic methods and HR-ESI-MS data.
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Figure 1. Structures of compounds 1–9. Figure 1. Structures of compounds 1–9.

Compound 1 was isolated as a white amorphous powder. The UV characteristic
absorptions (224 nm and 296 nm) were similar to those of the already-known compound 4.
The similarity suggested a diketopiperazine moiety within 1. Based on HR-ESI-MS ions at
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m/z 259.1079 [M + H]+, the molecular formula of 1 was determined as C14H14N2O3. Ac-
cording to the NMR data, it contained nine degrees of unsaturation. The diketopiperazine
nature of 1 was confirmed through the 1H and 13C spectroscopic data analysis (Table 1),
in which two amidic carbonyls (C-1 and C-4) were observed (Figure 1). The 1H NMR
combined with H-H COSY spectrum showed characteristic 4-hydroxyproline residues at
δH 3.71 (1H, dd, J = 12.7, 4.7 Hz), 3.32 (1H, d, J = 12.7 Hz), 4.34 (1H, m), 2.12 (1H, dd,
J = 12.6, 6.4 Hz), 2.01 (1H, td, J = 12.6, 4.4 Hz), 4.58 (1H, dd, J = 12.6, 6.4 Hz), 5.17 (1H, d,
J = 2.9 Hz). Meanwhile, the 13C and 2D NMR spectrum of 1 revealed an α,β-unsaturated
phenylalanine residue (δC 158.7, 133.5, 129.3, 128.6, 127.9, 114.7) (Table 1). Finally, according
to the HMBC correlations of H-2/C-9 and H-6/C-4, two fragments concatenated to form
diketopiperazine (Figure 2). Therefore, the planar structure of compound 1 was a new
pyrrolidine-containing and hydroxylated analog of compound 4.

Table 1. 1H (600 MHz) and 13C (150 MHz) NMR data for 1 and 2.

No.
1 2

δH, Mult (J in Hz) δC, Type δH, Mult (J in Hz) δC, Type

1 167.5, C 158.8, C
2 10.03, s 12.10, s
3 128.6, C 137.5, C
4 158.7, C 7.84, s 120.1, C
5

6
3.71, dd (12.7, 4.7) 54.5, CH2 156.0, C3.32, d (12.7)

7 4.34, m 66.6, CH 3.08, m 35.7, CH

8
2.12, dd (12.6, 6.4) 37.3, CH2

1.68, m 27.1, CH22.01, td (12.6, 4.4) 1.41, m
9 4.58, dd (12.6, 6.4) 56.8, CH 0.79, t (7.4) 11.9, CH3

10 1.07, d (6.9) 17.8, CH3
1′ 6.67, s 114.8, CH 2.43, t (7.5) 26.7, CH2
2′ 133.6, C 1.78, m 27.2, CH2
3′ 7.54, d (7.6) 129.4, CH 3.10, t (6.4) 40.1, CH2
4′ 7.40, t (7.6) 128.6, CH 156.9, C
5′ 7.30, t (7.6) 128.0, CH

7-OH 5.17, d (2.9)

See Supplementary Materials for NMR spectra. Spectra were recorded in DMSO-d6.
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trum (Figure 3A). The correlations between H-9 and 7-OH instead of H-9 and H-7 indi-
cated that H-7 is located on the opposite side of H-9. Based on the NOE cross-peaks be-
tween H-2 and H-3′, the configurations of the β,γ-unsaturated bond in 1 were assigned as 

Figure 2. COSY and key HMBC correlations of compounds 1 and 2.

The relative configuration of compound 1 was determined based on the NOESY
spectrum (Figure 3A). The correlations between H-9 and 7-OH instead of H-9 and H-7
indicated that H-7 is located on the opposite side of H-9. Based on the NOE cross-peaks
between H-2 and H-3′, the configurations of the β,γ-unsaturated bond in 1 were assigned
as (Z). The absolute configuration was established by electronic circular dichroism (ECD),
and the experimental ECD spectra matched well with the calculated ECD curves of 7R, 9S
(Figure 3B). Considering the biosynthetic origins, the S configuration at C-9 was consistent
with natural L-proline. Taken together, compound 1 was identified as (7R,9S)-3-((Z)-
benzylidene)-7-hydroxy-hexahydropyrrolo [1,2-a] pyrazine-1,4-dione.
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values of 0.25 mg/mL, 1.0 mg/mL and 1.0 mg/mL, respectively (Table S4). This finding 
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Compound 2 was detected as an intracellular product with different UV spectra
from compound 1. The UV characteristic absorptions of 2 (228 nm and 322 nm) were
more consistent with the known argvalin (3) [20]. Its molecular formula C12H21N5O was
established on the basis of HR-ESI-MS data m/z 252.1823 [M + H]+ (Cal. 252.1819), which
increased by 14 Da compared to 3. The 1D NMR data of 2 were similar to those of 3 except
for the two methyl groups with different chemical shifts and the presence of an extra
methylene at δC 27.1 (Table 1). These data suggest that isoleucine, rather than valine,
was condensed with arginine, leading to the formation of compound 2 as a new pyrazine
derivative. Considering the arginine origin, compound 2 was named argilein. This is the
third arginine-containing pyrazine derivative found in natural products. Similarly, the
absolute configuration of 2 was 7S, which was consistent with the L-isoleucine (Figure 4).
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The compounds 1–5 were evaluated for cytotoxicity against human lung carcinoma
(A549), human leukemia (HL60), human hepatocellular carcinoma (SMMC-7721), human
colon cancer (SW480) and human breast carcinoma (MDA-MB-231) cell lines by MTS
assay. Among the five compounds, only compound 2 exhibited selective inhibitory activity
against MDA-MB-231 and SW480, the IC50 values of which were 18.26 µM and 13.42 µM,
respectively (Table S3). The cytotoxicity of compound 2 was comparable with that of
cisplatin, which has been widely used as a chemotherapeutic agent for the treatment
of various cancers [26]. As to the antibiotic activity, all compounds showed no obvious
inhibitory activity against all tested bacteria and fungi, except for compound 2, which
exhibited weak activity against Xanthomonas albilineans, Candida albicans and Candida sake
with MIC values of 0.25 mg/mL, 1.0 mg/mL and 1.0 mg/mL, respectively (Table S4). This
finding was consistent with the reported weak antibacterial activities of CDPs (MICs of
0.5–10 mg/mL) [27,28].

To correlate BGCs with the isolated nine diketopiperazines, antiSMASH analysis of the
genome sequence of S. hygrospinosus var. beijingensis was conducted. The arrangement and
sequence of genes within the cdp cluster showed high similarity with those of the alb cluster,
which was reported to be responsible for albonoursin (5) production (Figure S2) [21]. albC
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encodes cyclodipeptide synthase (CDPS), which catalyzes the cyclic dipeptide precursor for-
mation. The heterologous expression of albC led to the synthesis of various cyclodipeptides,
including cyclo(Phe-Pro) [29,30], the possible precursor of compounds 1 and 4. The deletion
of cdpA-cdpC abolished the production of nine cyclodipeptides (Figures 5 and S4). To the
best of our knowledge, this is the first finding of a cyclodipeptide synthesized by CDPS
using arginine and also the first report of a proline-derived cyclodipeptide (compounds
1 and 4) from the original producing strain.
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Figure 5. HPLC analysis of metabolites in S. hygrospinosus 26D9-414 and in mutant S. hygrospinosus
∆alb. (A) The UV detection of piperazines were performed at 296 nm; (B) The UV detection of
pyrazinones at 322 nm.

Cyclodipeptide oxidases (CDOs) AlbA and AlbB usually catalyze the dehydrogenation
of cyclodipeptides to form dehydrogenated cyclodipeptide derivatives [31]. Whether the
hydroxyl group in 1 and pyrazinone in 2 are catalyzed by CDO candidates CdpA and CdpB
still awaits discovery. CDPSs and CDOs both possess broad substrate selectivity and can
be used to synthesize various dehydrogenated cyclodipeptide derivatives, which serve as
important precursors for the development of pharmaceutical intermediates [30,32]. Gene
c-blast analysis revealed that cdp gene analogs were mainly distributed in Streptomyces
and Nocardiopsis, and a few were also found in Nonomuraea, Goodfellowiella, Bailinhaonella,
Saccharopolyspora and Actinomadura (Figure S5).

3. Conclusions

Modern “omics”-based technologies have revealed the potent potential of Actinobacte-
ria for encoding natural products with diverse structures and biologically active compounds.
To reveal the diversity of NPs encoded by Streptomyces hygrospinosus var. beijingensis, the
“genetic dereplication” strategy and OSMAC approach were used in this study. Nine
CDP derivatives of two types were identified from S. hygrospinosus 26D9-414 through the
genome mining strategy. The relevance between the cdp cluster and all the isolated CDPs
was confirmed by genetic manipulation. These findings increase the repertoire of natural
DKPs and reveal a CDPS with a broad range of substrates that could be developed as a
biocatalyst for the future development of therapeutic agents.

4. Material and Methods
4.1. General Experimental Procedures

Optical rotations were recorded with a JASCO P-2000 digital polarimeter. UV spectra
were recorded on a Thermofisher Evolution 300 UV-vis spectrophotometer. The 1D-NMR
and 2D-NMR spectra were obtained on a Bruker AVANCE III 600 MHz spectrometer with
TMS as an internal standard. HR-ESI-MS spectra were recorded on an Agilent 1290 HPLC
system coupled to a 6230 TOF system mass spectrometer. ECD spectra were recorded using
a JASCO J-1500-150ST. HPLC analysis and semi-preparative HPLC were performed with
Agilent 1260 HPLC system using an Agilent ZORBAX SB-C18 column (5 µm, 4.6 × 250 mm)
and an Agilent ZORBAX SB-C18 column (5 µm, 9.4 × 250 mm), respectively. All compara-
tive studies of crude extracts obtained based on the OSMAC strategy were based on HPLC
analysis, the mobile phases were CH3OH-H2O and 1‰ formic acid or trifluoroacetic acid in
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the water. The gradient was chosen as CH3OH-H2O: 5% 0–5 min, 5–50% 5–30 min, 50–95%
30–45 min, 95% 45–50 min, 95–5% 50–51 min, 5% 51–60 min, 0.5 mL/min. The HPLC
methods used for the separation of compounds 1–9 are described in detail in Section 4.5.
Silica gel (100–200, 200–300 mesh, Qingdao Haiyang Chemical Co., Ltd., Qingdao, China)
and Sephadex LH-20 gel (Uppsala, Sweden) were used for column chromatography (CC).
Precoated silica gel GF254 plates (Qingdao Marine Chemical Ltd., Qingdao, China) were
used for TLC monitoring combined with UV light and 10% H2SO4 in EtOH. Taq DNA poly-
merase and KOD-plus high-fidelity polymerase were obtained from Takara. All restriction
enzymes were purchased from Thermo Scientific or Vazyme Biotech Co., Ltd. E.Z.N.A. Gel
Extraction Kit and Plasmid Mini Kit were purchased from OMEGA. PCR primers were
synthesized by GENEWIZ. All solvents used for CC were of analytical grade (Shanghai
Chemical Reagents Co., Ltd., Shanghai, China), and solvents used for HPLC were of HPLC
grade (Sigma-Aldrich, St. Louis, MO, USA).

4.2. Bacterial Strains, Plasmids, Primers and Culture Conditions

The strains, plasmids and primers used in this study were listed in Tables S1 and S2.
Streptomyces and its derivatives were grown at 30 ◦C on solid SFM medium (2% mannitol,
2% soya flour and 1.5% agar) for sporulation and conjugation, and in TSBY liquid medium
(3% tryptone soy broth, 10.3% sucrose and 0.5% yeast extract) for the isolation of chromo-
somal DNA [33]. All E. coli strains including DH10B and ET12567/pUZ8002 were grown
in liquid Luria–Bertani (LB) medium or on LB agar at 37 ◦C. Apramycin (50 µg/mL) and
trimethoprim (50 µg/mL) were used when necessary. All plasmid subcloning experiments
were performed in E. coli DH10B following standard protocols. General procedures for E. coli
or Streptomyces manipulation were carried out according to the published procedures [34].

4.3. Construction of S. hygrospinosus ∆cdp Mutant

To construct the cdpA-cdpC deletion mutant, the 1624 bp DNA fragment covering total
cdpA-cdpC was substituted by aac(3)IV + oriT cassette (AprR gene), amplified from pIJ773
primers cdp-apr-P1/P2 and cdp-apr-P1/P2 (Table S2). Two homologous arms of 2004 bp
and 1964 bp containing the upstream and downstream regions flanking cdpA-cdpC were
amplified by PCR with primers cdp-L-P1/P2 and cdp-R-P1/P2, respectively (Table S2).
The entire PCR product was cloned into the BamHI/EcoRI-digested pJTU1278, generating
the recombinant plasmid vector pZDS-1, using the Vazyme one-step cloning kit (Vazyme
Biotech Co., Ltd., Nanjing, China). The resultant plasmid was firstly transferred into
E. coli ET12567/pUZ8002 and then introduced into S. hygrospinosus 26D9-414 strain for the
construction of cdpA-C-deleted strain S. hygrospinosus ∆cdp. According to the previously de-
scribed procedure [35], the double-crossover strains were obtained through antibiotic selection
and confirmed by PCR verification using primers cdp1-P1/P2 and apr-P1/P2 (Table S2).

4.4. Strain Fermentation and Chemical Analysis

The mutant S. hygrospinosus 26D9-414 was cultivated in TSBY liquid medium at 30 ◦C
for 2 days to afford seed broth. The seed broth was next inoculated into a fermentation
medium (5% (v/v)) and incubated at 30 ◦C with shaking for a further 6 days. Ten different
fermentation liquid media (Table S4) including the original medium (containing 1% corn
starch, 2% soluble starch, 1% soya flour, 0.02% KH2PO4, 0.3% NaCl, 0.3% NH4Cl and
0.4% CaCO3 per liter) were selected for tetramycin and anisomycin production [36]. The
EtOAc extracts of all fermentation broths were analyzed by high-performance liquid
chromatography (HPLC). For the accumulation of nine CDPs, medium PYJ1 (containing
3% soluble starch, 4% glucose, 1% glycerin, 1.5% tryptone soy broth, 1% beef extract,
1% peptone, 0.65% yeast extract, 0.05% MgSO4, 0.1% NaCl and 0.2% CaCO3 per liter)
was used.
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4.5. Fermentation and Isolation

Large-scale fermentation for the isolation and purification of DKPs was conducted
according to the standard method described before. A total of 10 L fermentation broth was
centrifuged to afford the mycelia and the liquid phase. The liquid phase was extracted
with an equal volume of EtOAc three times at room temperature. The EtOAc crude extract
was concentrated under reduced pressure to yield dark brown matter (2.6 g). The crude
extract was separated using a column of silica gel eluted with CHCl3/MeOH (from 100:1
to 1:1, v/v) to obtain eight fractions (Fr.A-Fr.H). Then Fr.B was directly separated by semi-
preparative HPLC (CH3OH-H2O: 10% 0–5 min, 10–90% 5–40 min, 1.5 mL/min, 296 nm) to
afford compounds 1 (22.4 mg, tR = 23 min) and 7 (16.8 mg, tR = 22 min); Fr.C was subjected
to Sephadex LH-20 column chromatography and elution with CHCl3/MeOH (1:1, v/v) to
give four fractions (Fr.C1-C4); Fr.C3 was separated by semi-preparative HPLC (CH3OH-
H2O: 5% 0–5 min, 5–80% 5–40 min, 1.5 mL/min, 296 nm) to afford compounds 4 (16.6 mg,
tR = 27 min), 5 (6.3 mg, tR = 34 min), 6 (2.6 mg, tR = 36 min), 8 (12.1 mg, tR = 26 min) and
9 (3.2 mg, tR = 30 min). The mycelia were extracted with acetone (1 L) and ultrasound
for 2 h, and the organic solvents were dried under vacuum to yield a dark brown crude
extract (1.1 g). The extract was separated into six fractions (Fr.a-Fr.f) by silica gel column
chromatography using CHCl3/MeOH mixtures of increasing polarities (100:1 to 5:1, v/v).
Fr.e was separated by semi-preparative HPLC (CH3OH-H2O: 5–50% 30 min, 1.5 mL/min,
322 nm, 1‰ TFA in water) to afford compounds 2 (7.4 mg, tR = 22 min) and 3 (5.5 mg,
tR = 20 min).

Compound 1: white powder; [α]25
D +13.5 (c 0.2 MeOH); UV (MeOH) λmax (log ε)

214 (3.31), 299 (3.32) nm; 1H NMR (600 MHz, DMSO-d6) and 13C NMR (150 MHz, DMSO-
d6) data in Table 1; HR-ESI-MS m/z 259.1079 [M + H]+ (calcd for C14H15N2O3

+, 259.1077).
Compound 2: pale-yellow powder; [α]25

D −12.1 (c 0.2 MeOH); UV (MeOH) λmax (log ε)
230 (3.12), 323 (3.17) nm; 1H NMR (600 MHz, DMSO-d6) and 13C NMR (150 MHz, DMSO-d6)
data in Table 1; HR-ESI-MS m/z 252.1823 [M + H]+ (calcd for C12H22N5O+, 252.1819).

4.6. ECD Calculations

Conformational analyses for compounds 1–2 were performed via Spartan’14 software
using the MMFF94 molecular mechanics force field calculation. Conformers within a
10 kcal/mol energy window were generated and optimized using DFT calculations at the
B3LYP/6-31G(d) level. Conformers with a Boltzmann distribution over 1% were chosen
for the ECD calculations in MeOH at the B3LYP/6-311 + G (2d, p) level. The IEF-PCM
solvent model for MeOH was used. The calculated ECD spectra were obtained by DFT and
time-dependent DFT (TD-DFT) using Gaussian 09 and analyzed using SpecDis v1.71.

4.7. Cytotoxicity Assays

To determine the cytotoxicity of compounds 1–5, five human cancer cell lines (HL60,
A549, SMMC-7721, SW480, MDA-MB-23) were evaluated by MTS assay. Each cell line
was exposed to the tested compounds at concentrations of 40, 8, 1.6, 0.32 and 0.064 µM in
triplicate. Cell viability was determined using MTS Kit according to the manufacturer’s
instructions [37].

Supplementary Materials: The following supporting information is free of charge and can be
downloaded at: https://www.mdpi.com/article/10.3390/antibiotics11111463/s1. Figure S1: HPLC
analysis of fermentation products of S. hygrospinosus 26D9-414 from eleven different mediums.
Figure S2: Biosynthetic analysis of CDPs. Figure S3: Schematic construction and PCR verification
of S. hygrospinosus ∆cdp mutant. Figure S4: HPLC analysis of metabolites in S. hygrospinosus
26D9-414 and in S. hygrospinosus ∆cdp mutant. Figure S5: Distribution statistics of putative cdp
gene analogues. Figures S6–S12: 1D and 2D NMR, HR-ESI-MS, and UV spectra of compound 1.
Figures S13–S20: 1D and 2D NMR, HR-ESI-MS, and UV spectra of compound 2. Table S1: Strains
and plasmids used in this study. Table S2: Primers used in this study. Table S3: Cytotoxicity assay of
compounds 1–5. Table S4: Antibacteria activity assay of compounds 1 and 2. Table S5: Ten mediums
in this study. References [18,21,38–46] are cited in Supplementary Materials file.
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