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Abstract: Chronic wounds are a growing problem for both society and patients. They generate huge
costs for treatment and reduce the quality of life of patients. The greatest challenge when treating a
chronic wound is prolonged infection, which is commonly caused by biofilm. Biofilm makes bacteria
resistant to individuals’ immune systems and conventional treatment. As a result, new treatment
options, including nanomaterials, are being tested and implemented. Nanomaterials are particles
with at least one dimension between 1 and 100 nM. Lipids, liposomes, cellulose, silica and metal
can be carriers of nanomaterials. This review’s aim is to describe in detail the mode of action of
those molecules that have been proven to have antimicrobial effects on biofilm and therefore help to
eradicate bacteria from chronic wounds. Nanoparticles seem to be a promising treatment option for
infection management, which is essential for the final stage of wound healing, which is complete
wound closure.

Keywords: nanomaterials; biofilm; wound management

1. Introduction
1.1. Background Information

Chronic wounds are a huge burden, both for affected patients with pain and reduced
quality of life and for society. They are a major challenge for healthcare, as chronic wounds
stand for significant resource needs and costs for treatment. The European Wound Manage-
ment Association (EWMA) distinguishes between three main categories, namely 1. initial
costs for assessment of the wound; 2. treatment of the wound and 3. care and treatment
of the wound. Ragnarson et al. discovered that the weekly cost for treatment of patients
with venous leg ulcers in Sweden in 2004 was estimated at between SEK 600 and 1400,
depending on the size of the wound, and that the annual direct costs were between SEK
17,000 and SEK 26,500 per patient [1]. The treatment cost includes personnel resources
and materials for wound dressing, of which between 65 and 69 percent of costs consist of
the wound dressing itself. Guest et al. has estimated that the cost of treatment in the UK
per patient in 2012–2013 was between GBP 788 (healed wounds) and GBP 4772 (unhealed
wounds) per year to treat the wound and related diseases [2]. This represented 4% of the
total expenditure on publicly funded healthcare in the UK in 2013.

The economic aspect of wound management is not only a major problem in European
countries, but also worldwide. Sen et al. estimated that costs in the United States were ap-
proximately USD 50 billion per year for treatment of wounds, equivalent to 5% of their total
annual spending on both Medicare and Medicaid, combined with USD 25 billion annually
for the treatment of chronic wounds [3]. In addition, medical expenses in the United States
associated with venous ulcers in 2007 were estimated at between USD 6391–7086 per pa-
tient and per year; in addition, these patients had a greater rate of absence from work than
the control group.

The majority of chronic wounds do not heal due to a secondary infection, which
alters the repair process. Moreover, most of the wounds are infected with bacteria that
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are resistant to commonly used antibiotics. WHO estimated that around 500,000 people
worldwide are infected with multiresistant bacteria [4,5].

1.2. Biofilm

Prolonged healing is caused by uncontrolled bacterial growth supported by the preva-
lence of biofilms, which protect integral bacteria. Biofilm consists of microorganisms coated
with a self-produced protective extracellular matrix [6]. This is usually made of a mix of
bacteria, fungi, algae, yeasts, microbes and cellular debris. Biofilm formation is typically
clinically found in patients with nonhealing infections, such as chronic infected wounds,
osteomyelitis, chronic otitis media, chronic rhinosinusitis, recurring urinary tract infections,
endocarditis, lung infections due to cystic fibrosis and patients with all sorts of foreign
bodies including prosthetic implants [7]. All of these infections heal slower or do not heal
at all, even if treated with standard antibiotics. Notable for infected wounds is that they
tend to be more sloughy and have an unpleasant odour.

Biofilm allows bacteria to survive in hostile conditions, therefore making them re-
sistant to antimicrobials and immune system response, leading to prolonged infections
and nonhealing wounds [8]. Bacteria within biofilm are notable for their adaptation skills,
as they can withstand anoxia and nutrient limitation by altering gene expression and
protein production of metabolism determining substances, therefore inhibiting metabolic
rate and reducing the rate of cell division. Biofilm formation itself is divided into four
stages: 1. irreversible bacterial attachment to the tissue surface; 2. microcolony formation;
3. biofilm maturation and 4. detachment or dispersion, which allows biofilm colonies to
invade other areas [9] [Figure 1].
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It is estimated that 60–80% of chronic infections treated in hospitals are caused by
biofilm abundance [10]. Biofilm infected wounds are difficult to treat as they are commonly
resistant to conventional antibiotic treatment, which explains the urgency for the develop-
ment of new, more effective treatment options. Until today, most of the infections caused by
biofilm have been treated with a wide spectrum of antibiotics. The biggest challenge of this
type of treatment is that low doses are ineffective, whereas high doses might be toxic. The
main modes of action of antibiotics are namely disruption of cell wall synthesis, translation
and DNA replication of bacteria. Bacteria have developed resistance mechanisms that
enable them to degrade antibiotics by enzymes such as β-lactamases, acetyltransferases
or aminoglycoside modifying enzymes or by efflux pumps that may result in multidrug
resistance. Nowadays, almost all bacteria have developed resistance against all antibiotics
that are in use. Furthermore, no new antibiotics have been discovered in the past decade.
Some enzymes such as proteases, DNAse, alginate lyase, amylase and cellulase have been
reported to hasten the biofilm detachment, therefore disinfecting agents containing those
enzymes seem to be a promising option of treatment of chronic wounds. Innovative biofilm
eradication methods are constantly tested and include application of antibiofilm nanoparti-
cles (NPs) [11,12]. NPs are promising as their mode of action is different that antibiotics,
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since it relies mostly on direct contact, therefore it is considered less possible that bacteria
will develop resistance towards them.

1.3. Nanoparticles

NPs’ applications have been studied for over 20 years. Lipids, liposomes, cellulose,
silica and metal can be carriers of NPs. What is more, NMs have been known since ancient
times, although without detailed knowledge of their properties [13]. There are a few
examples from classical antiquity potters and glassmakers, such as the Roman Lycurgus
cup of dichroic glass from 4th century CE or silver pottery from Mesopotamia from 9th
century CE, where silver and copper NPs were dispersed in glassy glaze. Furthermore,
NPs can be found in nature, as they are components of atmospheric pollution and are
ingredients in paints, plastics, metals, ceramics and magnetic articles. The field that studies
NPs is called nanotechnology and Michael Faraday is the key grounder of it. In 1857 he
was the first one to describe NPs and their optical properties. The 1970s and 1980s were
fundamental years for studies on NPs, then called ‘ultrafine particles’.

Oddly, the properties of NPs can differ very much from the same bulk materials before
their division. Their properties have been scrupulously researched and are mostly owing to
their large area–volume ratio [13]. The high surface area allows heat, ions and molecules to
diffuse into the particles at a higher and faster rate. When dissolved in a different medium,
the interfacial layer can change the chemical and physical properties of NPs. This layer
is often considered as an inseparable part of NPs and it is thought to be one of the main
reasons for their activity. The interaction between NPs’ surface and solvent also makes
it easier for NPs to gather into suspensions and avoid floating. NPs usually contain core
molecules and a shell that stabilizes the NPs and aids their function by preventing their
degradation, oxidation and by increasing their biocompatibility.

Moreover, core–shell NPs may gain both electric and magnetic properties, different
from their bulk derivatives, by upconverting and downconverting NPs and a shift in
different wavelength spectrum emission [14]. Core–shell NPs produced from two different
metals result in the formation of a core–shell structure where completely new properties
are found.

NPs have been proven to possess possible dangers both to the environment and
individuals treated, which are mostly caused by their high surface to volume ratio that
boosts their catalytic activity. Furthermore, they attach and aggregate on the phospholipid
layer and pass through the membrane. Their interaction within the cells remains unknown,
yet it is unlikely that they might cross cell nucleus, Golgi apparatus or endoplasmic
reticulum owing to particle size and aggregation susceptibility.

Metal NPs have been the most studied in relation to antimicrobial potency in wound
healing. Among metal NMs, the most studied particles are silver NPs, yet metal oxide NPs
such as zinc oxide, copper oxide and iron oxide also seem promising as antimicrobial treat-
ments [15,16]. Due to their small surface area, NPs can penetrate biofilm and eventually
penetrate to intracellular bacteria. The high surface area to volume ratio of nanoparticles
allows drug loading, which can result in synergistic antibiofilm efficacy. NPs have antimi-
crobial properties thanks to oxidative stress, formation of reactive oxygen species, metal ion
release and nonoxidative mechanisms, enzymatic inhibition, DNA damage and bacteria
wall disruption [17–19] [Figure 2] [Table 1]. Inhibition of bacterial adhesion by NPs is a key
mechanism that enables them to prevent biofilm formation. In comparison to antibiotics,
NPs may infiltrate into the matrix, destroy the extracellular polymer substance (EPS) and
eventually destroy the bacteria within the biofilm.
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Table 1. Baseline characteristics of chosen nanoparticles and nanomaterials, that are described further in the article.

Nanoparticles/
Nanomaterials Mode of Action Synthesis

Methods
Possible Side

Effects

Silver NPs

ROS generation, lipid peroxidation,
inhibition of cytochromes of ETC,
cell wall disruption, inhibition of

cell wall synthesis, increase in
membrane permeability, disruption
of proton gradient resulting in lysis,

adhesion to cell surface causing
lipid and protein damage, ribosome

destabilization, damaging DNA,
disruption of biofilms

laser ablation, gamma irradiation,
electron irradiation, chemical

reduction, photochemical methods,
microwave processing and

biological synthetic methods, such
as extracts from Artemisia cappilaris,

extract
from aloe vera, extract

from Acalypha indica., leaf extracts
from Rhizopus oryzae,

extracts of Cocus nucifera

Might be toxic towards
keratinocytes and fibroblasts.

More resistance towards
AgNPs due to genetic

modifications in bacteria.
Ag NPs can deposit in liver,

spleen, lungs and other
organs and result in their

dysfunction.

Gold NPs

Loss of membrane potential,
disruption of respiratory chain,

reduced ATPase activity, decline in
subunit of ribosome for tRNA
binding, bacterial membrane

disruption

chemical, thermal, electrochemical
and sonochemical pathways

reduction by agents, biological
methods using different

bioreductant and capping agents
such as terpenoids, phenolic

compounds, proteins,
polysaccharides and nicotinamide

adenine dinucleotide (NAD
from Citrullus lanatusrind
from Plumbago zeylanica

Huge costs of production,
alternative production

methods should be searched,
cost effectiveness is not

known.

Metal oxide NPs

ROS production, disruption of
membrane, adsorption to cell

surface, lipids and protein damage,
inhibition of microbial biofilm
formation, DNA degradation,

antioxidant activity

Chemical polyol method,
microemulsions, thermal

decomposition, electrochemical
synthesis.

Physical methods: plasma, chemical
vapor deposition, microwave

irradiation, pulser laser method,
sonochemical reduction, gamma

radiation, biological methods using
extracts from Caltropis procera fruits
or leaves, leaf extract of lemongrass

The high toxicity of CuO NPs
causes oxidative lesions, while
ZnO and TiO2 can cause DNA

damage.
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Table 1. Cont.

Nanoparticles/
Nanomaterials Mode of Action Synthesis

Methods
Possible Side

Effects

Carbon
nanomaterials

Inhibition of bacterial adhesion, cell
membrane damage, leakage of
cytoplasmic contents, higher

oxygen consumption rate
Graphene ROS protein dysfunction,
oxidative stress, laddering of DNA,
membrane damage, disturbance of

the membrane permeability

Carbon nanomaterials arc
discharge, laser ablation, chemical

vapor deposition (CVD), ball
milling, the flame procedure,

solution mixing
Graphene chemical reducing

factors, thermal baking,
photoreduction and

microwave-assisted reduction

Insoluble in most solvents,
might be toxic.

Mesoporous silica
NPs

Inhibition of adhesion onto surfaces
and thus the prevention of biofilm
formation, physical damage to cell
membranes, ROS production and

endolysosomal burden. Mostly
used as nanocarriers as they

increase drug solubility,
pharmakinetics and

pharmadynamics, also reducing
systemical toxicity.

Sol–gel process, reverse
microemulsion and flame synthesis.

Toxicity,
protein fouling and

immunogenicity are possible.

Owing to multiple modes of antimicrobial action of NPs, they have a high potential to
reduce the prevalence of multiresistant bacteria in patients with chronic wounds [20,21].
Furthermore, they can also protect the drugs from enzymatic degradation in biofilm
environment [22]. Therefore, they can be used alone if they have antimicrobial properties
or as nanocarriers of antibiotics to help them reach therapeutic concentration in the infected
tissue [23,24].

There is still, however, a lack of data on pharmacokinetics and pharmacodynamics
of NPs therapy, especially in terms of clinical trials and possible applications separately
and in combination therapy with antibiotics. Possible NPs resistance and adverse effects
are other challenges for NPs that await to be discovered in order to implement NPs-based
treatment options for the management of nonhealing infected wounds.

This review’s aim is to describe in detail the mode of action of those molecules that
have been proven to have an antimicrobial effect on biofilm and therefore help to eradicate
bacteria from chronic wounds [25–27].

2. Presentation of NPs
2.1. Silver NPs

Silver NPs (Ag NPs) are the most widely used and known NPs, though their exact
mode of action remains unknown [28]. Multiple mechanisms have been suggested as
direct interaction with the bacterial membrane inhibiting cell wall synthesis or excavation
leading to cell lysis [29–31]. Silver particles have been known for their intrinsic antibiofilm
properties that are owing to their surface functional groups and ion release that can interact
with biofilm.

It has been proven that Ag NPs have antibacterial activity due to continuous genera-
tion of Ag+ ions that release reactive oxygen species (ROS) [32]. Ag+ ions are bonded to
thiol-containing proteins and inhibit those that also boost ROS production [33–35]. They
also prevent the penetration of amines, thiols and carboxylates to biofilm [36]. Further-
more, they hasten the wound healing by downregulation of metalloproteinases, which
belong to the collagenase enzyme group and are essential for wound healing. Their over-
expression and therefore higher load leads to underexpression of key growth factors and
fibronectin [37]. By lowering the metalloproteinase secretion and enhancing cell apoptosis,
NPs regulate the inflammatory reaction in the wound bed and eventually shorten the first
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phase of the healing pathway. Moreover, NPs in wound dressings have been shown to
control TNF-α expression that further shortens the inflammatory stage of wound healing,
as they inhibit wound necrotization [38].

A study by Kalishwaralal et al., 2010 found that Ag NPs at a concentration of 100 nM
prevented biofilm formation by P. aeruginosa and S. epidermidis by preventing bacterial
adhesion to the surface [39]. Mohanty et al., 2012 confirmed that Ag NPs decreased P.
aeruginosa biofilm by 65% and S. aureus biofilm by 88% [40]. Martinez-Gutierrez et al., 2013
showed that Ag NPs prevented the formation of P. aeruginosa biofilm and killed bacteria in
already existing biofilm [41]. Another study showed that Ag NPs are also effective against
Mycobacterium spp. biofilms [42].

Ag NPs can also boost the antibacterial effect of antibiotics. There are studies that
support the synergistic effect between Ag NPs and aztreonam, ampicillin, kanamycin,
streptomycin and vancomycin against E. Coli and P. aeruginosa [43]. Ag NPs with citrate
and aztreonam showed antibiofilm efficacy against P. aeruginosa, whereas treatment with
Ag NPs with ampicillin, oxacillin and penicillin inhibited and reduced MRSA biofilm by
94% [44,45].

Traditionally Ag NPs are synthesized by a chemical reduction process with the help of
reducing agents in the presence of stabilizers in a suitable solvent. Recently, scientists have
tried to find sustainable methods to prepare Ag NPs using plants, biological, or microbial
agents as reducing and capping agents [46]. Ag NPs produced by green chemistry offer a
new alternative for wound treatment without excessively polluting the environment.

Gurunathan et al. synthesized Ag NPs with leaf extract of Allophylus cobbe. Those
Ag NPs have been more effective against P. aeruginosa and S. aureus biofilm when combined
with ampicillin and vancomycin then when using either antibiotics or NPs separately [47].
Other studies have shown that AgNPs with rhizome extract from Rhodiola rosea signifi-
cantly inhibited P. aeruginosa and E. Coli biofilm formation [48].

Ferreres et al. manufactured new metal-enzyme NPs against biofilm, that consists of
α-amylase and silver. Results are promising, as approximately 80% of S. aureus and E. Coli
biofilm was eradicated [49].

2.2. Gold NPs

Gold NPs (Au NPs) as Ag NPs exhibit antibacterial and antibiofilm activity by inter-
acting with sulfur-containing constituents in the cell membrane and leading to disruption
of the cell wall [50–52]. Au NPs cause structural damage to the biofilm, kill sessile cells
and mechanically disperse the cells in the suspension. Both Au and Ag NPs have cat-
alytic activity as peroxidase, glucose oxidase and superoxide dismutase altogether [53].
This activity explains how they lead to oxidative stress in bacteria by increasing ROS
production [54,55]. Moreover, positively charged NPs disrupt metabolic processes and
lead to perforation and leakage through negatively charged bacterial membrane [56–58].
An additional advantage of Au NPs is that they inhibit intracellular ATP synthesis and
tRNA binding [18,59]. Au NPs’ photothermal properties enable them to inhibit biofilm
formation and ablate bacteria [60]. Au NPs synthesized with Mentha piperita (peppermint)
have been effective against Gram negative E. Coli strains, but not against Gram positive S.
aureus [61]. Au NPs produced by Euphorbia hirta have also showed inhibition of 88% of
E. Coli strains, 86% of P. aeruginosa and 94% Klebsiella pneumonia [62]. Au NPs were also
proven to be effective against Salmonella typhi and Enterococcus faecalis [63]. Au NPs also
exhibit some antifungal properties [64–66].

Furthermore, gold is stable against oxidation, which makes it nontoxic. However, Au
NPs are costly, difficult to store and do not have a high antibacterial spectrum [67].

2.3. Metal Oxide NPs

Metal oxide NPs such as iron oxide (Fe3O4), zinc oxide (ZnO), copper oxide (CuO),
magnesium oxide (MgO) and titanium dioxide (TiO2) are known to have antibacterial
properties over both Gram positive and Gram negative bacteria [68–70]. Their mode of
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action is based on ROS release through the Fenton reaction, intrinsic photocatalytic activity
and the release of metallic ions [71,72].

Antimicrobial activity of NPs in general can be due to two main modes of action,
namely the properties of the NPs themselves and the properties of the released metal
ions, both of which can have a major influence on their antibacterial activity. The rate of
dissolution is crucial for toxicity, as NPs with a higher rate of dissolution usually show
increased toxicity. Similarly, the smaller the NPs and the higher their surface–volume ratio,
the higher the toxicity towards bacteria they have, supposedly owing to their increased
mobility [73]. Metal ions are the major reason for NPs’ toxicity towards bacteria, whereas
NPs are helping to increase the metal ion concentration at the target place.

As already mentioned, metal ion NPs may have a different mode of antibacterial
action than the free metal. Some NPs as CuO or ZnO present bactericidal mechanisms that
are far different than Cu or Zn properties. This has been proven as a nonredox molecule
may become redox-active as NPs and catalyze ROS production [74,75]. Earlier named
CuO and ZnO NPs are able to produce ROS outside the cell and lead to cell damage by
lipid peroxidation. Small NPs then can pass inside the cells and may further influence the
bacterial DNA/RNA, protein, carbohydrate, lipids or ATP production and modifications.

Wound management is one of the most innovative fields of medicine, where ongoing
research is revolutionizing the field every day. There are numerous wound dressings that
are made of nanofibers, hydrogels, hydrocolloids, alginates, gels and foams that differ from
one another by their mode of action on the wound bed. Metal oxide NPs can be coated into
wound dressings made of polyvinyl alcohol, chitosan, polycaprolactone or cellulose [76,77].
These dressings not only enhance the antibacterial effect of NPs, but also accelerate wound
healing. These dressings would be a promising alternative for conventional treatment.

2.3.1. Zinc Oxide NPs

ZnO NPs are recognized as safe by the US Food and Drug Administration (21 CFR
182.8991) [78]. Their properties have been carefully studied, as they show the highest
toxicity against multiresistant bacteria [79,80]. Their toxicity does not only depend on
destroying bacterial cell wall and bacterial death, yet they also liberate ROS in the biofilm
microenvironment and induce their solubility [81–84].

Zn is commonly used in cosmetics and pharmaceutical products due to its antimi-
crobial, anti-inflammatory and hygroscopic properties. It has collagenolytic activity and
reduces necrotic material and annihilates infections in the wound bed, stimulates epithe-
lialization and hastens complete wound closure. ZnO NPs applied in Unna boots have
been shown to reduce inflammation and reduce wound size [85]. Furthermore, another
interesting mode of action of ZnO NPs is inhibition of bacterial kinase that, in a simple
way, leads to bacteria apoptosis.

Azam et al. compared the antibacterial effects of ZnO, CuO and Fe2O3 NPs and
showed that ZnO NPs are the most effective against Gram positive S. aureus, Bacillus
subtilis and Gram negative E. coli, P. aerogenosa. ZnO NPs had a maximum inhibitory
effect at relatively low concentration. Another experiment of Azam et al. proved that ZnO
inhibited 72% more E. Coli, 80% S. aureus, 88% P. aeruginosa and 84% of B. subtilis than CuO
or Fe2O3. A study by Beak and Wang et al. supported the initial results of Azam et al. [86].

2.3.2. Iron Oxide NPs

Aside from ROS generation through the Fenton reaction, iron oxide NPs exhibit
magnetic properties [87]. By electrostatic interaction between positive NPs and negatively
charged bacteria, drug resistant S. aureus and E. Coli can be trapped. Thereafter, bacteria are
killed by a radiofrequency current owing to the loss of membrane potential and disruption
in membrane channels [88]. Iron oxide NPs, through the Fenton reaction, produce free
radicals that degrade EPS and kill bacteria within biofilm.

Another study showed that the iron oxide NPs coating nisin, activated by both electric
and electromagnetic fields, increased the antibacterial efficiency of nisin that is known to be
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inefficient against Gram negative bacteria. Activation of NPs led to increased permeability
and local hyperthermia and resulted in synergistic antimicrobial effects on both Gram
positive Bacillus subtilis and Gram negative E. Coli [89].

Iron oxide NPs exhibit peroxidase-like activity only at specific pH characteristics, for
example for S. mutans, so that healthy tissues are spared [70,90].

2.3.3. Magnetite NPs

In addition to other metal oxide NPs, Fe3O4 does not show any antibacterial effect, yet
it has no cytotoxic effect and has superparamagnetic properties, which makes it an ideal
nanocarrier [91]. Drugs that are carried with such NPs can target the biofilm at highest
concentration. Due to positive charge and large surface area, it can cause mechanical
disruption of the negatively charged bacterial wall [92–94].

Magnetite NPs boost the action of antibiotics against biofilm, especially penicillin,
streptomycin, erythromycin, kanamycin and cefotaxime against S. aureus and amphotericin,
and nystatin against Candida spp. biofilms has been recorded [95]. Furthermore, oleic acid
magnetite NPs inhibited abundance of S. aureus, Saccharomyces cerevisiae, C. tropicalis, C.
albicans, C. famata, C. krusei and C. glabrata [83].

Scientists are trying to combine naturally abundant plants with antibacterial properties
and NPs. In a study where Rosmarinus officinalis oil and magnetite NPs were coated on
prosthetic devices, Candida albicans biofilm was significantly reduced to approximately
2% within 72 h [96].

NPs with the use of chitosan and polypyrrole, which is a conductive polymer, were
proven to inhibit formation of biofilm of P. aeruginosa. This particle directly inhibited the
formation of virulence factors such as pyocyanine, rhamnolipids and pyroverdine and
inhibited motility of bacteria [97].

2.3.4. Titanium Dioxide NPs

For a long time, titanium dioxide has been known for its antimicrobial activity and is
therefore widely used as a disinfecting ingredient in cosmetics. It has been shown to be
bactericidal against both Gram positive and Gram negative bacteria, making it a perfect
compound for wound treatment as those are usually infected with a mix of bacteria [98].

Titanium surfaces coated with TiO2 nanotubes by anodization route boosted antibac-
terial properties [99–101]. Recent studies showed a 70% decrease in bacterial adhesion
after 90 min incubation and significant inhibition of biofilm formation after 24 h of incuba-
tion [102,103]. Such titanium surfaces significantly disrupt bacterial adhesion, mainly by
inhibition of surface topography [104].

Several studies have shown that titanium surfaces reduce inflammation, acceler-
ate bone regeneration and help platelet adhesion and activation, which makes them a
promising agent in wound healing [105–108]. Addition of TiO2 reduced inflammation
and swelling around the wound site and increased thermal stability while decreasing the
scaffold pore size of the material [109].

2.4. Carbon NPs

Carbon can be an ingredient of organic nanomaterials (NMs), as it has shown di-
verse properties. Carbon dot is a term for various carbon NMs such as polymers, rods,
sheets, fullerenes and graphene [110]. Carbon-based NMs can be synthesized separately or
ennobled with metal based NMs.

2.4.1. Carbon Nanotubes

Carbon nanotubes (CNT) have an incredibly large surface area which allows high drug
load and adsorption both inside the tube and on the outer surface. This eventually helps to
overcome bacterial resistance mechanisms such as multidrug efflux pumps or permeability
regulation and protects the antimicrobial substance from pH or enzymatic degradation.
CNTs are promising since they can stabilize the drug by encapsulation and reduce the
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drug’s toxicity by deacceleration of its release [111]. Nanocarriers can help antibacterial
agents penetrate through biofilm, reduce biofilm abundance and bacteria viability.

Isoniazid loaded chitosan+CNTs hastened the wound healing in guinea pigs with
secondary bone tuberculosis initially infected subcutaneously with Mycobacterium tu-
berculosis. Secondary infections are even more difficult to treat than primary wound
infections [112]. Those NMs were reported to decrease CD3+ and CD4+ T cell count and
eventually muted the immunological response. Scientists reported 94.6% higher relative
reduction in ulcers’ size than with isoniazid alone, which directly implies that CNTs might
boost the response of several antimicrobial agents compared to the same antimicrobials
used alone.

Another study’s results have shown that functionalized multiwall CNTs in polyvinyl
alcohol conjugated with glucose oxidase express antibacterial properties due to generation
of hydrogen peroxide from the oxidase [113]. Furthermore, it is worth noticing that
CNTs yield increased wound healing rate by their ability to promote cell migration when
embedded in hydrogels. The latter is widely used to produce wound dressings thanks
to their biocompatibility, mechanical rigidness and hydrophilicity. A recent study testing
multiwall carboxylic functionalized CNTs in fibrous hydrogels showed better healing
outcomes than pure hydrogel. CNTs are thought to enhance adhesion of, for example,
fibroblasts that might migrate and yield granulation of the wound bed, leading to hastened
wound closure [114].

2.4.2. Graphene

Recently, graphene-based NMs have been studied for their ability to shorten wound
healing time and control the local infection in the wound bed. Graphene is an allotrope of
carbon that consists of a single layer of atoms arranged in a two-dimensional honeycomb
lattice that gives it a large surface area [115]. Graphene is the strongest known material,
harder than diamond yet more elastic than rubber. Graphene as other carbon derivatives
can also be incorporated in hydrogels to facilitate better cellular adhesion and differential-
ization. Due to the fact that graphene can maintain moisture within other environments,
it is widely used for the production of drug carriers, biosensors, microelectromechani-
cal systems (MEMS), biomimetic micro-and nanorobots and microfluidic devices [116].
Graphene-bearing Ag NPs have shown synergistic effects of both antimicrobial compounds
in shortening wound healing time [117]. Furthermore, graphene can act as a photocatalyst
and photodegrading agent in daylight and cleave biofilm polysaccharide linkages, disrupt
biofilm and kill bacteria within it.

2.4.3. Carbon Quantum Dots

Carbon quantum dots (CQD) are the newest invention from carbon-based NMs.
This group stands for zero-dimensional carbon materials. They have been proven to
have antibacterial and, most interestingly, antibiofilm properties. Their role in wound
healing is mainly worth noting as reducing the inflammation and promoting collagen
deposition, granulation tissue development [110]. A study on CQDs embedded in chitosan
dextran hydrogel showed promising results that might encourage scientists to develop
new formulas with CQD and test their pharmacokinetics and bioavailability [118].

2.5. Mesoporous Silica NPs

Mesoporous silica NPs (MSNPs) are used as vehicles for antibacterial agents such
as antibiotics. The main advantages of MSNPs are their high loading capacity, simple
production, biocompatibility, high degree of tunability, morphology and pore diameter.
They are able to shield the active particle and increase its bioavailability. Furthermore,
they enable sustained release of the active substance, which helps to maintain an optimum
drug level in the bloodstream. What makes them special is that they can be produced in
big quantities and in a wide variety of morphologies using diverse strategies [119,120].
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In this sense, they can carry more than one active substance simultaneously and act as a
combined therapy.

MSNPs carrying levofloxacin showed high efficacy and high penetration within S.
aureus biofilm, destroying it almost completely [121]. Bacterial biofilm is known to be a
physical barrier for antibiotic penetration through the bacterial wall. That is why scientists
are working on developing systems that enable antibacterial substances to penetrate it.
MSNPs with levofloxacin and coated with concanavalin A were invented. Concanavalin A
increases the efficiency of antimicrobial agents to internalize into the biofilm and eventually
penetrate the mesopores and kill bacteria. Furthermore, this treatment option has been
shown to have less side effects than conventional treatment for biofilm infections [122]. In
another study, MSNPs with levofloxacin were grafted with third generation polycationic
polypropylene imine dendrimer to provide the capability to interact with the bacterial
membrane. Results confirmed that this combination provides an efficient antibiofilm effect
on Gram negative bacteria [123].

3. Conclusions

Chronic wounds are a challenge for physicians worldwide, as infections of the wound
bed are more and more difficult to eradicate due to antibiotic-resistant bacterial strains.

NPs seem to be a promising treatment option for infection management, which is
essential for the final stage of wound healing, which is complete wound closure. NPs can
enhance an antibiotic’s mode of action by increasing its solubility and easing its transport
into the cells or can be directly bacteriostatic or bactericidal. Research suggests that NPs
might either protect conventional antibiotics from degradation by pH or enzymatic activity
of biofilm microenvironment or decrease biofilms resistance to the eradication. There are
no data on storage, administration and mucous interaction, as well as blood clearance and
long-term results, safety and side effects. Undoubtedly, randomized controlled in vivo
trials are needed to state the efficiency and place of NPs within novel medical treatment.
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