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Abstract: Teicoplanin is a glycopeptide antibiotic effective against several bacterial infections, has
exhibited promising therapeutic efficiency against COVID-19 in vitro, and the rationale for its use in
COVID-19 is yet to be recognized. Hence, in this study a number of molecular modeling techniques
were employed to decrypt the mechanistic insight of teicoplanin interaction with several COVID-19
drug targets. Initially, molecular docking was employed to study the teicoplanin interaction with
twenty-five SARS-CoV-2 structural and non-structural proteins which was followed by molecular
mechanics/generalized Born surface area (MM/GBSA) computation for binding energy predictions
of top ten models from each target. Amongst all macromolecular targets, the N-terminal domain of
the nucleocapsid protein displayed the strongest affinity with teicoplanin showing binding energies of
−7.4 and−102.13 kcal/mol, in docking and Prime MM/GBSA, respectively. Thermodynamic stability
of the teicoplanin-nucleocapsid protein was further probed by molecular dynamics simulations
of protein–ligand complex as well as unbounded protein in 100 ns trajectories. Post-simulation
MM-GBSA computation of 50 frames extracted from simulated trajectories estimated an average
binding energy of −62.52 ± 12.22 kcal/mol. In addition, conformational state of protein in complex
with docked teicoplanin displayed stable root-mean-square deviation/fluctuation. In conclusion,
computational investigation of the potential targets of COVID-19 and their interaction mechanism
with teicoplanin can guide the design of novel therapeutic armamentarium for the treatment of
SARS-CoV-2 infection. However, additional studies are warranted to establish the clinical use or
relapses, if any, of teicoplanin in the therapeutic management of COVID-19 patients.
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1. Introduction

The outbreak of COVID-19 pandemic in China, caused by severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2) primarily spreads through close contact amongst
people by sneezing, coughing, or by communicating verbally. The primary symptoms of the
disease are fever, cough, fatigue, shortness of breath, and loss of smell. The complications
of this disease include viral pneumonias, respiratory distress, and hypoxia [1]. The world
is suffering due to lack of effective medicine. Therefore, there is an urgent need to figure
out efficient medicine through drug discovery efforts [2,3].

Drug repurposing strategy is often used for recognizing novel usages of approved
or investigational drugs because of several advantages such as lower risk of failure, re-
duced time for drug development, and lower investment needs [4]. Therefore, numerous
antimalarials, antibacterials, antiparasitic agents, and antivirals are currently prevalent in
pre-clinical as well as clinical investigations aimed at developing COVID-19 treatment by a
drug repurposing approach [5]. In particular, a widely available FDA-approved antibiotic,
teicoplanin (Figure 1), is among the molecule of interest as probable COVID-19 medicine.
It belongs to the glycopeptide class of antibiotic having low toxicity profile in humans
and hence routinely used in clinical practice for the treatment of bacterial infections. In-
terestingly, it has demonstrated antiviral efficacy against several kinds of viruses such as
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Ebola, MERS-CoV, and SARS-CoV [6]. Very recently, it has been reported that teicoplanin
can thwart the cellular entry of SARS-CoV-2 at an impressive 1.66-µM concentration [7,8].
Furthermore, IC50 value of 1.5 µM was recorded for inhibition of the SARS-CoV-2 main
protease by teicoplanin [9].
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Figure 1. Two-dimensional structural coordinate of teicoplanin (ACD/ChemSketch program version 2020.2.1, of Advanced
Chemistry Development, Inc., Toronto, ON, Canada, was used for drawing the chemical structure).

Computer-aided drug design methods are extensively employed in drug design and
discovery projects owing to several advantages such as rapid development process and
reduced cost [10–12]. In particular, molecular docking coupled with molecular dynamics
simulation studies are intended to decipher the mechanism of binding interactions at
the molecular levels [13]. Rapid mechanistic insight is vital for understanding structure–
activity relationship and leading to the optimization of the design and discovery of potential
molecules [14–16]. In this study, several computational techniques such as molecular
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docking, molecular mechanics/generalized Born surface area (MM-GBSA), and molecular
dynamics simulation were exploited to inspect the binding interactions between teicoplanin
and potential drug targets associated with SARS-CoV-2. The study is envisioned to assist
in finding potential leads and accelerating drug development process for the treatment of
novel coronavirus, COVID-19.

2. Experimental Section

The methodology adopted in this study has been outlined as flowchart in Figure 2.
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Figure 2. An outline of the adopted methodology in this study. B3LYP: Becke’s three-parameter hybrid model, Lee–Yang–
Parr correlation functional method; DFT: density functional theory; MM/GBSA: molecular mechanics/generalized Born
surface area; ns: nano seconds; RMSD: root-mean-square deviation; RMSF: root-mean-square fluctuation.

2.1. Ligand Preparation

The molecular structure of teicoplanin was retrieved from PubChem database as two-
dimensional coordinate in sdf format and converted to its three-dimensional conformation
by means of Open Babel program [17]. Jaguar v10.9 of Schrodinger Suites 2020-3 was used
for density functional theory (DFT)-based optimization by Becke’s three-parameter hybrid
model, the Lee–Yang–Parr (B3LYP) method at the level of 6-31G [18,19]. The optimized
structure of teicoplanin is presented in Figure 3. Prepare_ligand4.py module of MGL Tools
1.5.6 [20] was used for the preparation of ligand in pdbqt format after merging all non-polar
hydrogens, defining rotatable bonds/torsion tree and adding Gasteiger charges.
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Figure 3. Teicoplanin structure optimized by density functional theory (DFT) with Becke’s three-parameter hybrid model,
the Lee–Yang–Parr (B3LYP) correlation functional method at 6-31G level (Jaguar v10.9 software of Schrodinger Suites 2020-3
was used). Color code: carbon—dark gray, hydrogen—light gray, nitrogen—blue, oxygen—red, and chlorine—green.

2.2. Protein Preparation

Twenty-five structural and non-structural protein targets related to SARS-CoV-2 were
downloaded from the RCSB PDB repository as listed in Table 1. The macromolecular
targets include main protease (MPro), papain-like protease (PLPro), RNA-dependent RNA
polymerase (RdRp-RTP site), RdRp-RNA site, spike protein-receptor binding domain
(RBD), spike trimer (open state), spike monomer (closed state), S2 protein in post-fusion
state, N-protein (C-domain), N-protein (N-domain), Nsp3-AMP site, Nsp3-MES site, Nsp7,
Nsp8, Nsp9, Nsp10, Nsp12, helicase (Nsp13-ADP site), helicase (Nsp13-NCB site), Nsp14
(N-terminal exoribonuclease; ExoN), Nsp14 (N7 methyltransferase; N7-MTase), Nsp15
(exoribonuclease), Nsp16 (GTA site), Nsp16 (MGP site), and Nsp16 (SAM site). All
the protein structures were processed in Biovia Discovery Studio Visualizer 2020 [21]
and PyMol 2.4.1 [22] for removing unwanted co-crystallized compounds including wa-
ter molecules. MGLTools 1.5.6 [20] was utilized for generating input receptor files in
pdbqt format.
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Table 1. Docking-predicted binding energy (∆GBind) and grid parameters used for docking of teicoplanin with 25 potential
COVID-19 drug targets.

Target
Number

Targets PDB ID
Grid Center for AutoDock Vina Program Docking

∆GBind (kcal/mol)x y z

1. Main protease 6LU7 −9.732 11.403 68.925 −5.4
2. Papain-like protease 6WUU 22.225 68.703 4.704 −5.4
3. RdRp (RTP site) 7BV2 91.776 91.560 104.863 −9.8
4. RdRp (RNA site) 7BV2 71.227 92.269 112.852 −7.7
5. Spike protein (RBD) 6M0J −36.193 37.260 −5.752 −6.1
6. Spike monomer 6VXX 219.061 220.947 261.311 −5.4
7. Spike trimer 6VYB 251.872 195.411 243.040 −6.9
8. S2 protein (post fusion state) 6LXT −0.641 11.084 28.359 −5.3
9. N-protein (C-domain) 6YUN −10.288 12.683 7.740 −5.6

10. N-protein (N-domain) 6YI3 16.299 11.628 6.638 −7.4
11. Nsp3 (AMP site) 6W6Y 9.124 −8.677 16.220 −7.3
12. Nsp3 (MES site) 6W6Y 23.830 9.255 54.812 −5.9
13. Nsp7 7BV2 104.786 80.343 127.861 −4.4
14. Nsp8 7BV2 108.168 116.454 120.901 −5.9
15. Nsp9 6WXD 53.119 −10.095 22.482 −4.5
16. Nsp10 6WVN 64.644 15.650 9.522 −2.2
17. Nsp12 7BV2 97.382 97.966 93.920 −7.8
18. Nsp13 (helicase ADP site) 6JYT 405.020 47.480 62.350 −6.5
19. Nsp13 (helicase NCB site) 6JYT 423.816 33.797 56.132 −5.4
20. Nsp14 (ExoN) 5C8S −39.712 −50.654 15.5594 −7.1
21. Nsp14 (N7mtase) 5C8S −10.273 −42.259 −7.644 −3.0
22. Nsp15 (Exoribonuclease) 6WLC 94.134 −19.803 −25.857 −6.5
23. Nsp16 (GTA site) 6WVN 84.158 24.757 37.836 −6.2
24. Nsp16 (MGP site) 6WVN 100.029 38.995 18.481 −7.4
25. Nsp16 (SAM site) 6WVN 84.156 15.450 26.991 −6.5

ADP site: adenosine diphosphate binding site; AMP: adenosine monophosphate; C-domain: carbon-terminal domain; ExoN:
N-terminal exoribonuclease; GTA: P1-7-methylguanosine-P3-adenosine-5′,5′-triphosphate; MES: 2-(N-morpholino)-ethanesulfonic acid;
MGP: 7-methyl-guanosine-5′-triphosphate; N-domain: nitrogen-terminal domain; N7mtase: N7 methyltransferase; NCB site: nucleic acids
binding site; N-protein: nucleocapsid protein; Nsp: non-structural protein; PDB: protein data bank; RBD: receptor binding domain; RdRp:
RNA-dependent RNA polymerase; RNA: ribonucleic acid; RTP: remdesivir; SAM: S-adenosylmethionine.

2.3. Molecular Docking Simulation

The grid box of 30 × 30 × 30 size in x, y, and z directions with 1-Å spacing was con-
structed around the active site residues as demarcated by the bound co-crystallized ligands
(see Table 1 for grid points used for each receptor). However, blind docking, covering
the entire macromolecular target, was opted if binding site information was unavailable.
AutoDock Vina 1.1.2 [23] was used for molecular docking employing default parameters
for flexible ligand and rigid protein. Moreover, the exhaustiveness parameter was set to
12. Upon successful completion of docking simulation, ten best poses were individually
analyzed for intermolecular interactions using PyMol 2.4.1 [22] and Biovia Discovery Stu-
dio Visualizer 2020 [16,21,24] and further subjected to MM/GBSA computations in the
next step.

2.4. Prime MM-GBSA Calculations

MM-GBSA technique are frequently used to rationalize the findings of molecular dock-
ing and virtual screening. Prime MM-GBSA module of Schrödinger Suite 2020-3 [25–27]
was used to compute binding energy and relevant parameters as presented in Table 2. The
Prime MM-GBSA protocol amalgamates OPLS molecular mechanics energies, a VSGB
solvation model for polar solvation (GSGB), and a nonpolar solvation expression (GNP) in-
volving nonpolar solvent-accessible surface area (SASA) and van der Waals interactions [28].
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The binding-free energy (∆Gbind) of docked teicoplanin in complex with respective proteins
was calculated using the following equation [29]:

∆Gbind = ∆EMM + ∆Gsolv + ∆GS (1)

where ∆EMM is the difference in energy between the complex structure and the sum of
the energies of the protein with and without teicoplanin, ∆Gsolv is the difference in the
GBSA solvation energy of the teicoplanin–protein complex and the sum of the solvation
energies for the teicoplanin-bound and unbound protein, and ∆GSA is the difference in the
energy of surface area for the teicoplanin–protein complex and the sum of the surface area
energies for the ligand and un-complexed protein.

Table 2. Results of molecular mechanics/generalized Born surface area (MM/GBSA) computations for teicoplanin in
complex with 25 potential COVID-19 targets.

Target
Number Target ∆GBind

a ∆GCoul
b ∆GHBond

c ∆GLipo
d SolvGB e ∆Gvdw

f Lig SE g

1. Main protease −97.55 −19.11 −0.68 −59.81 44.25 −68.46 3.87
2. Papain-like protease −78.75 −39.06 −3.33 −58.73 54.34 −42.74 39.85
3. RdRp (RTP site) 75.76 −124.58 −4.94 −91.90 209.45 −17.65 184.45
4. RdRp (RNA site) −86.33 −68.97 −6.24 −13.97 78.93 −83.45 10.54
5. Spike protein (RBD) −95.76 −32.67 −2.13 −54.25 48.60 −66.71 18.19
6. Spike monomer −68.38 −61.51 −4.39 −13.35 55.98 −50.51 12.74
7. Spike trimer −66.87 −27.37 −4.11 −21.53 53.95 −65.20 11.90
8. S2 protein (post fusion state) −36.93 −23.22 −2.74 −14.11 55.19 −61.27 24.45
9. N-protein (C-domain) −42.31 −30.82 −5.06 −16.05 64.88 −62.43 26.93
10. N-protein (N-domain) −102.13 −40.95 −6.98 −24.95 61.07 −78.69 −0.90
11. Nsp3 (AMP site) −58.33 −42.82 −4.38 −25.86 64.42 −71.09 32.93
12. Nsp3 (MES site) −57.60 −12.61 −2.42 −30.13 34.62 −75.40 37.34
13. Nsp7 −66.61 −54.39 −4.15 −19.17 55.49 −60.78 8.43
14. Nsp8 −67.93 −10.55 −2.28 −25.51 28.75 −68.85 16.42
15. Nsp9 −66.83 −43.87 −3.59 −19.55 46.75 −57.02 10.15
16. Nsp10 −47.56 −29.62 −2.47 −23.97 57.87 −62.53 40.47
17. Nsp12 −87.84 −96.33 −8.48 −19.26 135.75 −108.20 8.52
18. Nsp13 (helicase ADP site) −41.57 −63.94 −7.00 −19.36 88.70 −53.79 16.23
19. Nsp13 (helicase NCB site) −53.99 −42.21 −4.05 −26.40 87.73 −78.57 7.39
20. Nsp14 (ExoN) −49.41 −32.04 −4.56 −20.91 64.52 −80.34 28.66
21. Nsp14 (N7mtase) −38.83 −21.49 −4.69 −15.49 47.57 −44.45 1.51
22. Nsp15 (Exoribonuclease) −64.40 −48.67 −6.39 −23.20 47.29 −55.77 43.43
23. Nsp16 (GTA site) −63.57 −55.69 −5.17 −12.18 65.46 −62.63 8.44
24. Nsp16 (MGP site) −58.04 −31.42 −3.89 −22.67 59.61 −79.15 30.67
25. Nsp16 (SAM site) −54.88 −34.65 −4.69 −21.69 74.67 −74.43 15.52

All the energy values are given in kcal/mol; a: binding-free energy; b: Coulomb energy; c: hydrogen-bonding correction; d: lipophilic
energy; e: generalized Born electrostatic solvation energy; f: Van der Waals energy; g: ligand strain energy. ADP site: adenosine diphosphate
binding site; AMP: adenosine monophosphate; C-domain: carbon-terminal domain; ExoN: N-terminal exoribonuclease; GTA: P1-7-
methylguanosine-P3-adenosine-5′,5′-triphosphate; MES: 2-(N-morpholino)-ethanesulfonic acid; MGP: 7-methyl-guanosine-5′-triphosphate;
N-domain: nitrogen-terminal domain; N7mtase: N7 methyltransferase; NCB site: nucleic acids binding site; N-protein: nucleocapsid
protein; Nsp: non-structural protein; RBD: receptor binding domain; RdRp: RNA-dependent RNA polymerase; RNA: ribonucleic acid;
RTP: remdesivir; SAM: S-adenosylmethionine.

2.5. Molecular Dynamics Simulation

The best ranked conformation of teicoplanin in complex with N-protein–N-domain
furnished by MM-GBSA experiments was further assessed for their thermodynamic be-
havior and stability by employing molecular dynamics (MD) simulation. Desmond 6.1
program integrated with Maestro (Schrödinger, Inc. LLC, New York, NY, USA) was used for
MD simulation studies [30,31]. In addition, apo form of the N-protein–N-domain was also
simulated in order to understand the conformational changes upon teicoplanin binding.
The teicoplanin–protein complex was placed into an orthorhombic box of 10 × 10 × 10 Å
size, filled with 7210 water molecules by means of simple point charge (SPC) model
implemented in system setup protocol. An OPLS3 force field was applied for the MD
computations [32]. The system was neutralized using 20 and 26 Na+ and Cl− ions, respec-
tively, with a salt concentration of 0.15 M that represents the physiological concentration
of monovalent ions. An isothermal–isobaric (NPT) ensemble was utilized with temper-
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ature and pressure attuned to 300 K and 1.01325 bar, respectively. A simulation time of
100 ns was adjusted, whereas trajectories were saved at every 100 ps. A cut-off radius of
9.0 Å was used for short-range van der Waals and Coulomb interactions. Nose–Hoover
thermostat [33] and Martyna–Tobias–Klein [34] methods were employed for maintaining
the system temperature and pressure, respectively. In order to integrate the equations of
motion, an RESPA integrator was used with an inner time step of 2.0 fs for bonded as well
as non-bonded interactions within the short-range cut-off [35]. The system was minimized
and equilibrated with the default protocols of the Desmond. Simulation event analysis,
simulation quality analysis, and simulation interaction diagram protocols of the Desmond
package was exercised to analyze the trajectory files.

2.6. Post-Simulation MM-GBSA Analysis

Post-simulation MM-GBSA analysis was performed by using the thermal_MMGBSA.py
script of the Prime/Desmond module of the Schrodinger suite 2020-3 [25,26]. From each
MD trajectory, every tenth frame was extracted from the last 50 ns of simulated trajectory,
averaging over 50 frames, for binding free energy calculations of teicoplanin in complex
with N-protein–N-domain. The Prime MM-GBSA method uses the rule of additivity
wherein total binding free energy (kcal/mol) represents a summation of individual energy
modules like coulombic, covalent, hydrogen bond, van der Waals, self-contact, lipophilic,
solvation, and π–π stackings of ligand and protein [36].

3. Results and Discussion
3.1. Validation of Docking Protocol

The co-crystallized ligand of main protease, N3, was redocked into the inhibitor
binding cavity of the enzyme and docked conformation of the ligand was compared with
that of the crystal structure in order to validate the docking protocol implemented in
AutoDock Vina. The root-mean-square deviation (RMSD) was less than 2 Å between
the docked and X-ray crystal structure conformations of N3, which authenticated the
scoring functions implemented in the docking program (data not shown). According to
the reported protocols, a successful docking computation should furnish the RMSD of
≤2.0 Å [10,14]. Therefore, AutoDock Vina used in this study was deemed reliable for
studying teicoplanin interaction with potential SARS-CoV-2 targets.

3.2. Molecular Docking of Teicoplanin with Potential Targets of SARS-CoV-2

Molecular docking is a computational method of accelerating the early stages of drug
discovery through unravelling the precise mechanism of intermolecular interactions of
potential drug candidates by comparing their energetic compatibility and molecular shape
with the target proteins [11,37]. With the aim of inspecting the interaction of teicoplanin
with putative drug targets of SARS-CoV-2, docking studies was performed on the recep-
tors/targets constituting both non-structural and structural proteins with prospective to be
used in the drug discovery field [38,39]. Docking-predicted binding energies of teicoplanin
with twenty-five COVID-19 drug targets are given in Table 1, whereas comprehensive
intermolecular interactions have been listed in Table S1 in the Supplementary Information.

3.3. Prime MM-GBSA Calculations of Docked Complexes

Though several docking experiments are routinely employed to emphasize the binding
mode and the affinity of a ligand relative to the protein, lack of accurate scoring function
is one of the drawbacks of these algorithms. Therefore, MM-GBSA computations are
routinely employed as a post-docking analysis in order to avoid false negatives as well as
false positives [40,41]. The top ten conformations of protein–teicoplanin-docked complexes
of each target were subjected to molecular mechanics/generalized Born surface area (MM-
GBSA) computation for estimation of more accurate free binding energies. Table 2 enlists
the MM-GBSA computed energies of best conformation of teicoplanin in complex with
each target. Several other energy components such as Coulomb energy, hydrogen-bonding
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correction, lipophilic energy, generalized Born electrostatic solvation energy, Van der Waals
energy, and ligand strain energy were also computed. Moreover, an elaborated MM-GBSA
calculation of all poses has been listed in Table S2 in the Supplementary Information.

As presented in Figure 4, nucleocapsid protein N-terminal domain ranked top among
all studied targets exhibiting ∆Gbind = −102.13 kcal/mol followed by main protease and
spike protein-RBD with binding energies of −97.55 and −95.76 kcal/mol, respectively.
However, MM-GBSA binding energy of teicoplanin-main protease complex obtained from
AutoDock 4.2 has been recently reported as -68 kcal/mol. Interestingly, RdRp-RTP site
was rendered as least promising for teicoplanin in this study, demonstrating 75.8 kcal/mol
binding energy. The most promising target also hosted ample non-bond interactions with
teicoplanin within the active site of N-domain of the N-protein. Moreover, appreciable
intermolecular forces were established with all other targets. It is evident that the N-domain
of the N-protein hosts nucleic acid substrates during processing of the viral genome into a
ribonucleoprotein unit. Therefore, targeting this protein by teicoplanin can interrupt crucial
steps of the SARS-CoV-2 life cycle such as transcription and translation processes [42].
Several proteins such as Nsp12, RdRp-RNA site, and papain-like protease were ranked as
moderately favorable targets, whereas variable affinity was noted against the rest of the
targets. The chemical structure of teicoplanin represents a unique blend of polar groups in
the form of several amino acid fragments, carbohydrate cores such as N-acetylglucosamine,
β-D-glucosamine and mannose, and non-polar fragments such as fatty acyl side-chain and
numerous aromatic rings. These moieties enabled teicoplanin to interact with diverse drug
targets of COVID-19 which warrants further experimental validation and may be useful
in drug design based on teicoplanin template. Intermolecular interactions observed after
MM-GBSA computation of all studied targets are presented in Figures S1–S4 and Table S1
in the Supplementary Information.

Antibiotics 2021, 10, x FOR PEER REVIEW 9 of 16 
 

 

Figure 4. Bar plot showing comparative affinity of teicoplanin against drug targets associated with COVID-19 (please refer 

to Table 2 for target names against respective numbers). The analysis is based on molecular mechanics–generalized Born 

surface area (MM-GBSA) computed binding energy (ΔGBind) in kcal/mol. 

3.4. Molecular Dynamics Simulation Studies 

Dynamic and thermodynamics parameters of living systems under specific condi-

tions of physiological environments can be estimated by the application of molecular dy-

namics (MD) simulation, a widely employed computer-aided drug design technique 

[11,13,14,43]. Therefore, the best docked pose of teicoplanin in complex with SARS-CoV-

2 nucleocapsid protein N-terminal domain was subjected to MD simulation study in order 

to investigate the stability of the ligand–protein complex as well as main intermolecular 

interactions during the simulated trajectory. MM-GBSA-optimized pose bearing mini-

mum binding energy was selected for MD simulation study. Desmond software was em-

ployed for the MD simulation of 100 ns in explicit solvent system. The resulting trajecto-

ries of the simulated complex was inspected for different standard simulation parameters 

such as backbone RMSDs for alpha-carbons, side chains, and heavy atoms. In addition, 

the root-mean-square fluctuations (RMSFs) of individual amino acid residue and inter-

molecular interactions involved were also evaluated. Figure 5A shows the RMSD of Cα 

atoms of apo protein whereas the complex of teicoplanin bound to N-protein–N-domain 

is presented as Figure 5B. The analysis of RMSD of teicoplanin-bound protein indicates 

that the simulated system fluctuated initially during 0–22 ns but acquired stability during 

rest of the simulated time. However, fluctuations can be clearly seen in the RMSD plot of 

the apo protein alone (Figure 5A). Therefore, it seems logical to infer that upon teicoplanin 

binding, the protein maintains its conformational stability when simulated for 100 ns pe-

riod. The conformational changes observed during simulated path has been visualized by 

the snapshots taken at the intervals of every 20 ns and presented in Figure 6.  

The MM-GBSA method exploits molecular mechanics, the generalized Born solva-

tion models and a solvent accessibility approach to estimate the free energies of binding 

based on snapshots obtained from MD simulations [40,44]. MM-GBSA computation was 

Figure 4. Bar plot showing comparative affinity of teicoplanin against drug targets associated with COVID-19 (please refer
to Table 2 for target names against respective numbers). The analysis is based on molecular mechanics–generalized Born
surface area (MM-GBSA) computed binding energy (∆GBind) in kcal/mol.



Antibiotics 2021, 10, 856 9 of 16

3.4. Molecular Dynamics Simulation Studies

Dynamic and thermodynamics parameters of living systems under specific conditions
of physiological environments can be estimated by the application of molecular dynamics
(MD) simulation, a widely employed computer-aided drug design technique [11,13,14,43].
Therefore, the best docked pose of teicoplanin in complex with SARS-CoV-2 nucleocapsid
protein N-terminal domain was subjected to MD simulation study in order to investigate
the stability of the ligand–protein complex as well as main intermolecular interactions
during the simulated trajectory. MM-GBSA-optimized pose bearing minimum binding
energy was selected for MD simulation study. Desmond software was employed for
the MD simulation of 100 ns in explicit solvent system. The resulting trajectories of the
simulated complex was inspected for different standard simulation parameters such as
backbone RMSDs for alpha-carbons, side chains, and heavy atoms. In addition, the root-
mean-square fluctuations (RMSFs) of individual amino acid residue and intermolecular
interactions involved were also evaluated. Figure 5A shows the RMSD of Cα atoms
of apo protein whereas the complex of teicoplanin bound to N-protein–N-domain is
presented as Figure 5B. The analysis of RMSD of teicoplanin-bound protein indicates that
the simulated system fluctuated initially during 0–22 ns but acquired stability during rest
of the simulated time. However, fluctuations can be clearly seen in the RMSD plot of the
apo protein alone (Figure 5A). Therefore, it seems logical to infer that upon teicoplanin
binding, the protein maintains its conformational stability when simulated for 100 ns
period. The conformational changes observed during simulated path has been visualized
by the snapshots taken at the intervals of every 20 ns and presented in Figure 6.

The MM-GBSA method exploits molecular mechanics, the generalized Born solvation
models and a solvent accessibility approach to estimate the free energies of binding based
on snapshots obtained from MD simulations [40,44]. MM-GBSA computation was per-
formed for the last 50 snapshots of 100 ns simulation, which estimated an average binding
energy of −62.52 ± 12.22 kcal/mol.

The local conformational alterations along SARS-CoV-2 nucleocapsid protein
N-domain were investigated by analyzing the RMSF during simulation time. Termi-
nal residues fluctuated most in both bound and unbound states. Maximum fluctuation
was noted with Gly1 as 13.29 Å which was declined upon teicoplanin binding at 7.00 Å
(Figure 7). Key residues involved in hydrogen bonding showed fluctuations at 3.74, 2.97,
1.76, 1.54, 4.12, 0.96, and 2.68 Å by Asn7, Asn8, Thr9, Ser11, Arg55, Tyr69, and Pro111,
respectively.

Simulation interactions diagrams presented in Figures 8 and 9 during entire simula-
tion time signifies a comprehensive intermolecular interaction profile of teicoplanin with
nucleocapsid protein N-domain. The modus of interaction pattern of teicoplanin illustrates
that only fewer docking-predicted main contacts were retained upon MD simulation time
of 100 ns. Figure 8 presents intermolecular interactions observed in first and last frames of
the teicoplanin bound to nucleocapsid protein N-domain. Residues participating in both
hydrogen bonding and water bridges include Asn7, Asn8, Thr9, Ser11, Thr51, Arg53, Arg55,
Tyr71, Pro111, and Asn114. In addition, Thr51, Arg53, Arg55, and Arg67 also contributed
in ionic bond interaction. However, amino acid residues Ala10, Ala50, Tyr69, and Ala112
were noted to be important for hydrophobic interaction.
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Figure 9. Protein interactions with teicoplanin, monitored throughout the simulation trajectory. These interactions are
clustered by type and summarized in bar diagram including hydrogen bonds (H-bonds), hydrophobic, ionic, and water
bridges. Ala: alanine; Arg: arginine; Asn: asparagine; Asp: aspartic acid; Cys: cysteine; Gln: glutamine; Glu: glutamic acid;
Gly: glycine; His: histidine; Leu: leucine; Met: methionine; Phe: phenylalanine; Pro: proline; Ser: serine; Thr: threonine; Tyr:
tyrosine; Val: valine. The number of corresponding amino acid residue is according to the crystallographic information
obtained from the protein data bank.
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4. Conclusions

By using computer-aided drug design techniques, the current study explained the
intermolecular interaction of the antibacterial drug, teicoplanin, with potential drug targets
of SARS-CoV-2. Molecular docking studies employing AutoDock Vina highlighted the
importance of hydrophilic and hydrophobic interactions in supporting the teicoplanin
molecule inside the nucleocapsid protein N-domain binding cavity. MM-GBSA analysis
and molecular dynamics simulation results not only reinforce the credibility of the docking
results, but also authenticate the stability of the simulated system. This study is expected
to assist lead optimization and design of COVID-19 drugs based on molecular skeleton of
teicoplanin. However, the requirement of additional experimental and clinical validation
is an obvious limitation of this study. Nevertheless, findings of this study justify further
exploration of teicoplanin repurposing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10070856/s1, Figure S1: MM/GBSA optimized complexes of teicoplanin (displayed
as stick) showing non-bond interactions with main protease (A), papain-like protease (B), RdRp-RTP
site (C), RdRp-RNA site (D), spike protein-RBD (E), and spike monomer (F). Broken green lines
enumerate hydrogen bonds whereas purple lines justify hydrophobic interactions; Figure S2. Non-
bond interactions of teicoplanin (portrayed as stick style) with spike trimer (A), S2 protein-post
fusion state (B), N-protein–C-domain (C), Nsp3-AMP site (D), Nsp3-MES site (E), and Nsp7 (F) in
MM/GBSA optimized complexes. Hydrogen bonds are shown by broken green lines and purple lines
enumerate hydrophobic interactions; Figure S3. Intermolecular interactions of teicoplanin (shown in
stick style) with Nsp8 (A), Nsp9 (B), Nsp10 (C), Nsp12 (D), Nsp13 helicase-ADP site (E), and Nsp13
helicase-NCB site (F) after MM/GBSA computations. Hydrogen bonds are represented by broken
green lines and purple lines specify non-polar interactions; Figure S4. Intermolecular complexes
of teicoplanin (shown as sticks) with Nsp14 N-exoribonuclease (A), Nsp14 N7-methyl transferase
(B), Nsp15 exoribonuclease (C), Nsp16-GTA site (D), Nsp16-MGP site (E), and Nsp16-SAM site (F)
resulted after MM-GBSA analysis showing hydrogen bonds (broken green lines) and non-polar
contacts (purple lines); Table S1: Intermolecular interactions observed in MM/GBSA optimized
complexes of teicoplanin and 25 potential COVID-19 targets (AutoDock Vina 1.1.2 was used for
molecular docking); Table S2. Computation of MM/GBSA energies of top ten docked poses of
teicoplanin in complex with 25 potential COVID-19 targets.
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