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Abstract: Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholderia
pseudomallei. Due to the emerging resistance of B. pseudomallei to antibiotics including ceftazidime
(CAZ), the development of novel antibiotics and alternative modes of treatment has become an urgent
issue. Here, we demonstrated an ability to synergistically increase the efficiency of antibiotics through
their combination with silver nanoparticles (AgNPs). Combinations of four conventional antibiotics
including CAZ, imipenem (IMI), meropenem (MER), and gentamicin sulfate (GENT) with starch-
stabilized AgNPs were tested for their antibacterial effects against three isolates of B. pseudomallei.
The combination of each antibiotic with AgNPs featured fractional inhibitory concentration (FIC)
index values and fractional bactericidal concentration (FBC) index values ranging from 0.312 to
0.75 µg/mL and 0.252 to 0.625 µg/mL, respectively, against the three isolates of B. pseudomallei. The
study clearly showed that most of the combinatorial treatments exhibited synergistic antimicrobial
effects against all three isolates of B. pseudomallei. The highest enhancing effect was observed for
GENT with AgNPs. These results confirmed the combination of each antibiotic with AgNPs restored
their bactericidal potency in the bacterial strains that had previously been shown to be resistant to
the antibiotics. In addition, morphological changes examined by SEM confirmed that the bacterial
cells were severely damaged by combinations at the FBC level. Although bacteria produce fibers
to protect themselves, ultimately the bacteria were killed by the antibiotic–AgNPs combinations.
Overall, these results suggest the study of antibiotic–AgNPs combinations as an alternative design
strategy for potential therapeutics to more effectively combat the melioidosis pathogen.

Keywords: melioidosis; Burkholderia pseudomallei; antimicrobial agent; silver nanoparticles; syner-
gism; combination; multidrug resistance

1. Introduction

Melioidosis is an infectious disease caused by Gram-negative bacillus bacteria Burkholde-
ria pseudomallei; this organism is an important causative agent of septicemia and is
community-acquired. It is believed to be vastly underreported, with 165,000 cases world-
wide and the fatality rate of approximately 89,000 deaths per year [1]. The incidence of
melioidosis is the highest in Southeast Asia and northern Australia, with the fatality rate
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of 40% in northeast Thailand and 19% in Australia [2,3]. Currently, no licensed vaccine
against melioidosis has been established for clinical use. Melioidosis has been dubbed
“the great imitator” as it presents with great clinical diversity, and several of its symptoms
are often confounded with those of other diseases, such as tuberculosis [4]. Furthermore,
melioidosis can also sometimes be asymptomatic. Altogether, these features make the
disease difficult to diagnose.

The selection of antibiotics for the treatment of melioidosis is limited due to the bac-
teria’s resistance to several commonly prescribed antibiotics, including aminoglycosides,
fluoroquinolone compounds, and many β-lactam antibiotics [5,6]. Ceftazidime (CAZ),
a third-generation antibiotic of the cephalosporin family, is recommended as the first-line
therapy for the treatment of severe melioidosis [7–9]. CAZ works by interfering with
bacterial cell wall synthesis. Carbapenem antibiotics, such as imipenem and meropenem,
have also shown potent activity against B. pseudomallei [10,11]. Although the resistance
of B. pseudomallei to CAZ is rare, it has been demonstrated to occur both in vitro and
in vivo [6,12,13]. Moreover, as with any antibiotic, repeated exposure to the drug through
increased use elevates the risk of developing bacterial resistance over time. The increasing
prevalence of antibiotic resistance has become a serious public health problem world-
wide, and alternative therapies that can overcome resistance and prevent future resistance
are urgently needed. One approach to controlling bacterial resistance is through using
a combination of antibiotics with other agents that increase the efficacy of the antibi-
otic. These agents include other antibiotics [14–16], antimicrobial peptides [17,18], plant
extracts [19,20], and nanoparticles [21,22].

Nanoparticles are of great interest for researchers as they have unique physical, chem-
ical, and electrical properties that differ from bulk materials. Such properties are the result
of the shape and size of the nanoparticles which have a high surface area-to-volume ra-
tio due to their small size. Among the nanoparticles, silver nanoparticles (AgNPs) have
attracted the most attention because they have broad-spectrum efficacy against several
microorganisms, including bacteria, fungi, and viruses, with low cytotoxicity to mam-
malian cells [23,24]. AgNPs have multiple modes of action that lead to bacterial cell killing,
including the rupture of the bacterial cell membrane through AgNP adherence and the
penetration of AgNPs into the cell and the nucleus, resulting in binding interactions with
proteins and DNA and leading to ROS production and subsequently to cell death [25,26].
Due to the nonspecific nature of these mechanisms, AgNPs do not place selective pressure
on bacteria and have a much lower risk for the development of resistance compared to
conventional antibiotics.

Combinations of AgNPs with antibiotics (e.g., with ampicillin, gentamicin, and van-
comycin) have been reported to have synergistic antibacterial effects toward both nonre-
sistant and resistant strains [27,28]. In addition, several studies examining the synergistic
activity of AgNPs in combination with other antibiotics have been reported: combinations
of AgNPs and cefotaxime or CAZ, MER, ciprofloxacin, or GENT strongly enhanced an-
tibacterial activity against multidrug-resistant β-lactamase- and carbapenemase-producing
Enterobacteriaceae [29]. AgNPs with enoxacin, kanamycin, neomycin, or tetracycline showed
greater bactericidal efficiency toward the drug-resistant bacteria Salmonella typhimurium [30].
Combinations of AgNPs with chloramphenicol or kanamycin resulted in synergistic bacteri-
cidal activity toward Pseudomonas aeruginosa, a virulent species sharing a common ancestry
with B. pseudomallei [31,32]. In this study, we investigated the synergistic antimicrobial
effects of antibiotics and AgNPs against B. pseudomallei which had not been reported be-
fore. AgNPs were combined with four types of antibiotics against B. pseudomallei from
three clinical isolates. The synergistic antibacterial effects were evaluated by measuring
the FIC indices and the FBC indices which were obtained by plate counts using the mi-
crodilution checkerboard method. The growth inhibition curve and the kinetics of killing
were assessed by UV–Vis spectroscopy and counting colony-forming units. Moreover, we
compared the changes in bacterial cell morphology between the treatment with individual
and combination therapies using scanning electron microscopy (SEM).
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2. Results
2.1. Characterization of Silver Nanoparticles

The colloidal starch-stabilized AgNPs (at a concentration of 1 mg/mL) used in this
study were purchased from a commercial source. The solution was diluted to 100 µg/mL
in deionized water, resulting in a yellowish solution (Figure 1a). The AgNPs were character-
ized by UV–Vis spectroscopy and TEM to observe their size, shape, and homogeneity. The
absorbance spectra showed a single strong peak at 404 nm, which indicated the presence of
spherical AgNPs (Figure 1b) [33]. A peak near 400 nm corresponds to smaller nanospheres,
while larger spheres exhibit increased scattering and have broadened peaks shifted towards
longer wavelengths as shown in previous reports [34,35]. A TEM micrograph confirmed
that the particles had a spherical shape and demonstrated monodispersity (Figure 1c). The
AgNPs had an average size of 15.20 ± 9.08 nm in diameter, as calculated using the Image J
software (Figure 1d).
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2.2. Antimicrobial Susceptibility

Individual antimicrobial activities of CAZ, IMI, MER, GENT, and AgNPs against
B. pseudomallei were determined. The first three are conventional antibiotics used in
melioidosis treatment, while B. pseudomallei is normally resistant to the GENT antibiotic.
As shown in Table 1, the MICs of CAZ, IMI, MER, and GENT were in the ranges of
4–128 µg/mL, 0.5–1 µg/mL, 2 µg/mL, and 16–64 µg/mL, respectively. As expected,
B. pseudomallei 1026b and H777, but not B. pseudomallei 316c, were susceptible to CAZ.
All three isolates were susceptible to IMI and MER and completely resistant to GENT.
According to a previous report, the B. pseudomallei antibiotic breakpoint used for in vitro
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susceptibility testing of CAZ was 32 µg/mL, and that of IMI, MER, and GENT was
8 µg/mL [6]. Of these, IMI and MER were the most effective for the treatment of the three
isolates of B. pseudomallei, while GENT had the lowest effectiveness.

Table 1. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations
(MBCs) of antibiotics and AgNPs against B. pseudomallei in three clinical isolates (serial dilution
plate count method). The data represent the average of three independent experiments which gave
identical values.

Bacteria
(Isolates)

MIC (µg/mL) MBC (µg/mL)

CAZ IMI MER GENT AgNPs CAZ IMI MER GENT AgNPs

* 1026b 4 1 2 32 8 64 2 4 512 16
** H777 8 1 2 16 16 32 2 4 256 32
*** 316c 128 0.5 2 64 16 512 1 4 512 32

The MIC value is the lowest concentration that inhibits≥ 99% of bacterial growth, and the MBC value is the lowest
concentration that inhibits 100% of the bacterial growth. CAZ, ceftazidime; IMI, imipenem; MER, meropenem;
GENT, gentamicin; AgNPs, silver nanoparticles. * CAZ-nonresistant isolate; ** moderately CAZ-resistant isolate;
*** highly CAZ-resistant isolate.

CAZ, IMI, MER, and GENT had MBCs in the ranges of 64–512 µg/mL, 1–2 µg/mL,
4 µg/mL, and 256–512 µg/mL, respectively (Table 1). The MBCs of CAZ and GENT were
much higher than the antibiotic breakpoints used for the B. pseudomallei susceptibility
testing. This indicates that all three isolates of B. pseudomallei are difficult to kill by CAZ
and GENT, but not by IMI and MER.

The MICs and MBCs of AgNPs against the three isolates of B. pseudomallei tested
were in the ranges of 8–16 µg/mL and 16–32 µg/mL, respectively. The MBC values of
AgNPs are lower than those of CAZ and GENT but higher than those of IMI and MER. In
addition, AgNPs had a higher antimicrobial activity against the CAZ-nonresistant isolate
than against the CAZ-resistant isolates.

2.3. Synergistic Antibacterial Effects

FIC and FBC indices (FICI and FBCI) are commonly used to define the synergistic
effects of agents for the inhibition and killing of bacteria [36]. Synergism is defined as
the FIC or FBC index values ≤ 0.5, and indifference is defined as the FIC or FBC index
values > 0.5 and ≤ 4. The FIC indices of CAZ, IMI, MER, and GENT in combination with
AgNPs against the three isolates of B. pseudomallei are shown in Figure 2a. The blue and
light blue bars in the graph represent combinations with an FIC index ≤ 0.5, while the
black bars in the graph represent combinations with an FIC index > 0.5. The FIC indices
of CAZ, MER, and GENT in combination with AgNPs indicate that these antibiotics have
a synergistic inhibitory effect (FIC index ≤ 0.5) with AgNPs against B. pseudomallei. The
combination of IMI with AgNPs, however, showed no synergism against B. pseudomallei
1026b and 316c (black bar graph, FIC index > 0.5). This indicates that cotreatment with
IMI and AgNPs does not improve the antibacterial efficacy against B. pseudomallei 1026b
and 316c.

Figure 2b shows the FBC indices of CAZ, IMI, MER, and GENT in combination with
AgNPs. The red and pink bars in the graph represent FBC indices≤ 0.5, while the black bars
represent FBC indices > 0.5. The FBC indices of CAZ, IMI, MER, and GENT in combination
with AgNPs are ≤ 0.5, which reveals that these agents have synergistic bactericidal effects
against B. pseudomallei in the three isolates, with the exception of IMI–AgNPs against
B. pseudomallei 316c, which showed indifference.
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Tables 2 and 3 show the lowest antibiotic concentrations that have a synergistic effect
with AgNPs. The MICs of the antibiotics alone, AgNPs alone, or of the combinations
of antibiotics with AgNPs are presented in Table 2. The concentrations of CAZ, IMI,
MER, and GENT in combination with AgNPs that inhibited bacterial growth were in
the ranges of 1–16 µg/mL, 0.25–0.5 µg/mL, 0.5 µg/mL, and 2–16 µg/mL, respectively.
The concentrations of AgNPs in combination with each antibiotic were in the range of
2–4 µg/mL. We demonstrated that the combination of antibiotics and AgNPs allows the
use of lower antibiotic concentrations to achieve equivalent antimicrobial efficiency. The
MIC concentrations of combinations with CAZ decreased up to 4–8-fold, with IMI—up to
2–4-fold, with MER—up to fourfold, and with GENT—up to 4–16-fold when compared
with the antibiotics alone. Furthermore, the MIC concentrations of combinations with
AgNPs decreased up to 2–4-fold compared with AgNPs alone.

Table 2. Minimum inhibitory concentrations (MICs; µg/mL) of the antibiotics alone or in combination with AgNPs. Fold
change in the MIC of the antibiotics in combination or alone.

Antibiotics
B. pseudomallei

Isolates
MIC (µg/mL) Decrease in the

Concentration (-Fold) FICI Type of Interaction
Alone Combination

Ceftazidime
1026b 4 1 (2) 4 0.5 S
H777 8 2 (2) 4 0.375 S
316c 128 16 (4) 8 0.375 S

Imipenem
1026b 1 0.5 (2) 2 0.75 I
H777 1 0.25 (4) 4 0.5 S
316c 0.5 0.25 (4) 2 0.75 I

Meropenem
1026b 2 0.5 (2) 4 0.5 S
H777 2 0.5 (2) 4 0.375 S
316c 2 0.5 (2) 4 0.375 S

Gentamicin
1026b 32 2 (2) 16 0.312 S
H777 16 4 (4) 4 0.5 S
316c 64 16 (2) 4 0.375 S

Synergy (S) was defined as an FIC index ≤ 0.5; antagonism (A) was defined as an FIC index > 4; and indifference (I) was defined as
an FIC index > 0.5 and ≤4. The FIC index is the fractional inhibitory concentration; (2) and (4) represent the concentrations of AgNPs
in combination with antibiotics of 2 µg/mL and 4 µg/mL, respectively. The data represent three independent experiments that all gave
identical values, and no standard deviation was observed.
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Table 3. Minimum bactericidal concentrations (MBCs; µg/mL) of the antibiotics alone or in combination with AgNPs. Fold
change in the MBC of the antibiotics in combination or alone.

Antibiotic
B. pseudomallei

Isolates
MBC (µg/mL) Decrease in the

Concentration (-Fold) FBCI Type of Interaction
Alone Combination

Ceftazidime
1026b 64 4 (4) 16 0.313 S
H777 32 8 (4) 4 0.375 S
316c 512 16 (8) 32 0.281 S

Imipenem
1026b 2 0.5 (4) 4 0.5 S
H777 2 0.5 (8) 4 0.5 S
316c 1 0.25 (4) 2 0.625 I

Meropenem
1026b 4 1 (2) 4 0.375 S
H777 4 1 (4) 4 0.375 S
316c 4 1 (4) 4 0.375 S

Gentamicin
1026b 512 1 (4) 512 0.252 S
H777 256 4 (8) 64 0.265 S
316c 512 16 (8) 32 0.289 S

Synergy (S) was defined as an FBC index ≤ 0.5; antagonism (A) was defined as an FBC index > 4; and indifference (I) was defined as
an FBC index > 0.5 and≤4. The FBC index is the fractional bactericidal concentration; (2), (4), and (8) represent the concentrations of AgNPs
in combination with antibiotics of 2 µg/mL, 4 µg/mL, and 8 µg/mL, respectively. The data represent three independent experiments that
all gave identical values, and no standard deviation was observed.

Likewise, the MBCs of the antibiotics alone, AgNPs alone, or the antibiotics with
AgNPs are presented in Table 3. The bactericidal concentrations of CAZ, IMI, MER, and
GENT in combination with AgNPs were in the ranges of 4–16 µg/mL, 0.25–0.5 µg/mL,
1 µg/mL, and 1–16 µg/mL, respectively. The concentration of CAZ in combination de-
creased up to 4–32-fold when compared with CAZ alone, of IMI, MER, and GENT—up
to 2–4-fold, fourfold, and 32–512-fold, respectively. Furthermore, the MBC concentrations
of AgNPs in combination were in the range of 2–8 µg/mL, i.e., decreased up to 4–16-fold
compared with AgNPs alone. As a result, the decrease in the concentration of the antibi-
otic needed to achieve the same inhibition activity in combination with AgNPs was in
the following order: GENT > CAZ > MEM > IMI. The greatly decreased MBCs for the
antibiotic–AgNPs combinations imply that the combination increased the susceptibility of
B. pseudomallei to antibiotics.

2.4. Growth Curve of B. pseudomallei in the Presence of a Combination

The growth curve of the bacteria treated with the antibiotics alone and in combination
is shown in Figure 3. As shown in Figure 3a, the growth curve of B. pseudomallei in the
presence of CAZ alone, AgNPs alone, and CAZ–AgNPs in combination exhibited inhibited
bacterial growth throughout 24 h. Only at 1–2 µg/mL of the CAZ–AgNPs combination
(FIC) the growth of the bacteria was observed after 9 h. As a result, the data indicated
that AgNPs alone, CAZ alone, and 4–4 µg/mL of CAZ–AgNPs (FBC) could reduce the
bacterial intensity compared with the untreated control at 24 h (p < 0.001). In the same
way, in Figure 3b, the bacteria treated with GENT alone and with AgNPs alone and in
combination exhibited inhibited bacterial growth throughout 24 h. However, at 32 µg/mL
of GENT alone (MIC) and 2–2 µg/mL of GENT–AgNPs (FIC), an increasing number of
the bacterial cells was observed after 6 h and 15 h, respectively. These results indicated
that AgNPs alone, 512 µg/mL of GENT (MBC), and 1–4 µg/mL of GENT–AgNPs (FBC)
were able to reduce the bacterial intensity compared with the untreated control at 24 h
(p < 0.001).
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2.5. Time-Dependent Killing Efficiency of Combinations

The kinetics of bactericidal activity of the antibiotics alone, AgNPs alone, and antibiotic
–AgNPs combinations against B. pseudomallei are presented in Figure 4. As shown in
Figure 4a,b, AgNPs alone, CAZ alone, and GENT alone were able to reduce the bacterial
colonies by more than 3 log10 when compared to the initial inoculum (p < 0.001). These
results of AgNPs alone, CAZ alone, and GENT alone indicated the bactericidal effect within
1 h, after 6 h and within 6 h, respectively. The combinations of CAZ with AgNPs and GENT
with AgNPs reduced the number of the bacterial cells by more than 3 log10 when compared
to the initial inoculum (p < 0.001), indicating the bactericidal effect after 6 h and within
3 h, respectively. AgNPs alone exhibited the fastest bactericidal effect, followed by the
GENT–AgNPs combination and the CAZ–AgNPs combination. Moreover, the combination
of GENT with AgNPs exhibited a faster bactericidal activity than GENT alone, whereas
CAZ with AgNPs exhibited bactericidal activity at the same time as CAZ alone.

2.6. Cell Morphological Change

To evaluate the morphology of the bacterial cells under different treatment conditions,
we observed the morphological changes of B. pseudomallei 1026b treated with CAZ, IMI,
MER, or GENT alone or in combination with AgNPs using SEM (Figure 5). The SEM
images showed that the untreated control cells appeared intact, plump, and typically
rod-shaped, with a smooth exterior (Figure 5a). In contrast, the bacterial cells exposed to
antibiotics alone or in combination with AgNPs at the MIC and FIC levels exhibited loss of
membrane integrity, especially in the case of treatment with beta-lactam antibiotics (CAZ,
IMI, MER) at the MIC level. The cell walls became loose and porous, distorted from their
normal shape, or even ruptured (Figure 5b–j). Furthermore, we noticed that the treatment
of the bacteria with the antibiotics alone and in combination with AgNPs resulted in more
elongated cells compared to the control cells.

We further observed the morphology of the bacteria treated with combinations of the
antibiotics with AgNPs at the FBC (Figure 5k–n). The results clearly show that the bacterial
cells were more severely damaged with this combination than with those at the MIC and
FIC. At the FBC, microscopic analysis of the bacterial cells revealed gross leakage and holes
on the outer surface, with a bulgy, disfigured, and fragmented shape. Surprisingly, under
these conditions, the bacterial cells produced a substantial amount of fiber which appeared
within 1 h.
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3. Discussion

In this study, we demonstrated the ability to synergistically increase the efficiency of
antibiotics through their combination with AgNPs to overcome antibiotic-resistant bac-
teria. The starch-stabilized AgNPs solution was obtained from the manufacturer (Prime
Nanotechnology Co., Ltd., Bangkok, Thailand) with the average size of 15.20 ± 9.08 nm
in diameter; previous studies have indicated that AgNPs of 10–20 nm in diameter have
antimicrobial efficiency against B. pseudomallei [37]. The antibiotics and AgNPs alone
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were then evaluated for their antimicrobial susceptibility against the three isolates of
B. pseudomallei. It can be observed that the antibiotics and AgNPs have different antimicro-
bial efficiency against B. pseudomallei (Table 1). Antimicrobial susceptibility of the antibiotics
and AgNPs alone showed that B. pseudomallei resisted CAZ and GENT, but it was still
susceptible to IMI and MER. These results are the same as in a previous study that reported
that B. pseudomallei was susceptible to IMI and MER but extremely resistant to GENT [38].
We found that AgNPs have a strong antimicrobial effect against these bacteria. The MICs
and MBCs of AgNPs were lower than those observed for B. pseudomallei in a previous study,
which reported the MICs and MBCs of AgNPs against B. pseudomallei in these three isolates
in the ranges of 32–48 µg/mL and 96–128 µg/mL, respectively [37]. This was because
some properties of the AgNPs, such as size and shape, were slightly different. The smaller
the size, the higher the antimicrobial activity. These differences can cause uncertainty in
biological activity [39].

After an antimicrobial susceptibility test, a synergism assay was performed. Combina-
tions of each antibiotic with AgNPs revealed that all the antibiotics, when in combination
with AgNPs, have strong synergistic effects on inhibiting the growth and killing (FICI and
FBCI ≤ 0.5) of B. pseudomallei in the three isolates. AgNPs enhanced antibacterial activity
of all the antibiotics at the concentrations far below the MIC and MBC of the antibiotics
alone (Tables 2 and 3). In particular, GENT with AgNPs clearly showed a large decrease
in the dose of GENT needed to kill the bacteria (decrease in the MBC concentration up
to 512-fold). AgNPs restored the bactericidal activity of GENT, an inactive antibiotic for
B. pseudomallei. Our results are similar to many reports that have shown combinations of
GENT with AgNPs to have bactericidal activity against S. epidermidis, P. aeruginosa, and
A. baumannii [40,41]. Since no previous reports have been made on the use of combinations
of CAZ, IMI, MER, or GENT with AgNPs against B. pseudomallei, we could only compare
the combinations with the results reported for other Gram-negative bacteria. Our results
are similar to those of Panácek et al. AgNPs showed strongly enhanced bactericidal activity
and restored bactericidal activity of inactive antibiotics (CAZ, MER, and GENT) against
both antibiotic-susceptible and multidrug-resistant Enterobacteriaceae [42]. Another study
showed a strong synergistic antibacterial effect of the IMI–AgNPs combination against
IMI-resistant K. pneumonia [29].

These increases in antimicrobial activity could be due to several reasons for the
possible mechanism between AgNPs and the beta-lactam antibiotics (CAZ, IMI, and MER);
a previous study of a beta-lactam antibiotic (amoxicillin) indicated that the synergistic
effect may be caused by a bonding reaction between the antibiotic and AgNPs. This
suggests that the concentration of antimicrobial groups at particular points on the cell
surface may increase the severity of damage to the bacterial cell [43]. Another study
demonstrated that the synergistic effect may be the action of the “AgNPs’ drug carrier.”
Moreover, membrane phospholipids and glycoproteins have been targeted by hydrophobic
AgNPs, with amoxicillin being transported to the cell surface to damage the cell [44,45].

For GENT with AgNPs, there was a previous report that suggested that Staphylococcus
aureus can be killed through the interaction of GENT and AgNPs. Hydroxyl and amide
groups of GENT easily react with AgNPs, and they can then deliver the drug to the cell [46].
Another previous report studied the effects of combining GENT with AgNPs against S.
aureus, E. coli, and GENT-resistant E. coli; a dual role for GENT was found in which it
increased the dissolution of AgNPs and facilitated the attachment of AgNPs onto the
surface of the bacteria, thereby enhancing the antibacterial activity of AgNPs [27].

However, among all the conditions tested, only one combination showed no synergis-
tic effect: IMI in combination with AgNPs against B. pseudomallei 1026b and 316c. This result
could imply that the action of antibiotics with AgNPs depends on the bacterial isolates
because of the cell membrane component of each B. pseudomallei isolate [47,48]. In a similar
study, a combination of antibiotics including ampicillin, chloramphenicol, or kanamycin
with AgNPs showed differences in activity between the two isolates of Escherichia coli
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tested. The combinations showed synergism and partial synergism in inhibiting and killing
E. coli ATCC 43895 and E. coli ATCC 25922, respectively [31].

As mentioned above, based on these results, a combination of each antibiotic with
AgNPs increased the susceptibility of B. pseudomallei, confirming that combinations of
antibiotics with AgNPs can lead to an increase in their antimicrobial activity. Next, we
observed the bacterial growth curve and kinetic killing of beta-lactam (CAZ) or aminogly-
coside (GENT) combinations with AgNPs to evaluate bacterial growth inhibition and the
rate at which bacteria are killed by the combination. The results of the bacterial growth
curve imply that the combination of CAZ or GENT with AgNPs can inhibit and slow down
the bacterial growth in a dose-dependent manner. The combination at the FIC level of CAZ
or GENT with AgNPs showed bacterial regrowth because these concentrations could not
eradicate all the bacterial cells unlike the FBC.

The time-dependent killing efficiency of the combinations displayed improving kinetic
killing of GENT but not of CAZ. AgNPs improved the bactericidal activity of GENT, which
caused the complete killing of bacterial cells within 3 h, in a shorter time than with
GENT alone. On the other hand, AgNPs did not improve the time-dependent killing
efficiency of CAZ in the combination, with the complete killing after 6 h, the same as
with CAZ alone. These results demonstrate the different mechanisms of action of the
beta-lactam and aminoglycoside combinations with AgNPs. The synergism of GENT and
AgNPs might occur through the interaction of GENT and AgNPs as mentioned earlier [46],
which can then deliver the drug to the cells, resulting in the GENT–AgNPs combinations
presenting a shorter time than GENT alone but a longer time than AgNPs alone. For the
CAZ–AgNPs combination, a previous study showed that the synergism of beta-lactam
antibiotics with AgNPs could be through an inhibition of beta-lactamase by AgNPs at
sub-MIC; hydrolysis of the antibiotics does not occur, therefore the antibiotics remain
effective against bacteria [29]. This corresponds to the time-dependent killing efficiency of
CAZ–AgNPs that showed complete killing after 6 h, the same as for CAZ alone.

The morphology of the bacterial cells under different treatment conditions was ana-
lyzed to confirm death and morphological changes of B. pseudomallei. The results showed
distinct features for the MIC. Beta-lactams have a mechanism of action on bacterial cell
wall inhibition, resulting in the cells clearly shrinking due to loss of membrane integrity.
At the FIC, all the conditions were similar due to the AgNPs added. The bacterial cells
were more severely damaged at the FBC than at the MIC and FIC because at the MIC and
FIC, the agents could only inhibit bacterial growth, whereas at the FBC, the bacteria were
killed. Moreover, at the FBC, the bacterial cells exhibited massive damage, especially in the
case of the GENT–AgNPs combination which produced holes in the bacterial cells. These
might be caused by different mechanisms for each antibiotic because beta-lactam inhibits
cell wall synthesis while GENT inhibits bacterial protein synthesis. Moreover, observing
the fibers produced under such harsh conditions at the FBC could be exopolysaccharides,
or EPS (also known as extracellular polysaccharides), which are part of the biofilm found
in the extracellular medium surrounding the bacteria [49]. Normally, B. pseudomallei can
produce a biofilm to protect them from proximal unsuitable environments, but it can also
produce large biofilms in severe conditions [50,51]. The EPS in biofilms are a variety of
macromolecules, including proteins, DNA, lipids, and polysaccharides (the main structural
component). Polysaccharides are produced first during biofilm production to allow the
bacterial cell to adhere to the surface. Subsequently, the bacteria proceed to create suitable
conditions for survival that protect them against the dangerous environment [52,53].

We demonstrated that the FBC is a severely stressful level that causes B. pseudoma-
llei to produce large amounts of fibers within 1 h to protect the cells. Several studies
have shown that at subminimal inhibitory concentrations (sub-MIC; 1/2 MIC), an antibi-
otic can establish stress conditions to bacteria that stimulate bacterial biofilm formation
in vitro [54–56]. As shown in Figure 5l for an IMI–AgNPs combination, this condition
evidently exhibited fiber production. IMI concentration for bactericidal synergism (FBC)
is 0.5 µg/mL which is sub-MIC of IMI alone (1 µg/mL) against B. pseudomallei 1026b, the
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same as for MER in Figure 5m; bactericidal synergism occurs at 1 µg/mL that is sub-MIC of
MER alone (2 µg/mL). These results are also similar to the report of Pier Carlo Braga et al.
that CAZ induces widespread production of filamentous forms at levels ranging from 1/2
to 1/8×MIC [57]. Numerous studies have reported that antibiotics such as beta-lactams
that induce cell lysis can stimulate biofilm formation [58,59]. In the same way, GENT and
other aminoglycosides have significant biofilm formation at the sub-MIC as well [60,61].
Meanwhile, much research has proven that the sub-MIC of AgNPs can stimulate biofilm
development [62,63]. These phenomena can be explained by one of the mechanisms of
action of AgNPs, formation of reactive oxygen species (ROS), which cause oxidative stress.
As shown in Figure 5k,l,n, a combination of AgNPs at the sub-MIC (4 µg/mL) with each
antibiotic showed fiber production. Therefore, the production of bacterial fiber at the FBC
could be an effect of the antibiotic or AgNPs at the sub-MIC.

Previous studies have indicated that the biofilm of B. pseudomallei is not a virulence
factor, but is associated with melioidosis relapse because of its facilitation of antibiotic
resistance development [64,65]. Importantly, high levels of EPS in biofilms have been
demonstrated to inversely correlate with the ability of antibiotics and nanoparticles to
penetrate B. pseudomallei [66]. It is possible that the fiber production observed at the FBC
may be a relapsing factor that causes bacterial resistance to a combination of antibiotics
with AgNPs in the future. However, although the bacteria tried to produce fiber to protect
the cells, in the end, they were killed by the antibiotic–AgNPs combination. This might be
because AgNPs can penetrate the biofilm and because of the synergism effect to enhance
anti-biofilm activities of AgNPs with antibiotics, as in the report of Gurunathan et al. [67].
However, to extend understanding of this phenomenon, more elaborate experimental
evidence could be required in future works.

Overall, we showed that most of the examined antibiotics have a synergistic effect with
AgNPs. The advantage of combinations improves both concentration and time to overcome
bacteria that could reduce side effects by enabling the use of a lower dose of antibiotics
and AgNPs. The reduction of time to kill the bacteria might be useful to reduce the risk
of bacterial resistance induction. Moreover, we noticed the combinations of antibiotics
with AgNPs at the sub-MIC that might trigger EPS production by bacteria. However, the
aforementioned sub-MIC of the antibiotics and AgNPs in combination could be optionally
selected to avoid an inapplicable condition.

4. Materials and Methods
4.1. Materials and Cell Culture

The antibiotics were purchased from their respective manufacturers and dissolved
according to the recommendations. The antibiotics tested were CAZ (Reyoung Pharma-
ceutical Co., Ltd., Shandong, China), IMI (JW Pharmaceutical Corporation, Seoul, Korea),
MER (Siam Bheasach Co., Ltd., Bangkok, Thailand), and GENT (Sigma-Aldrich, St. Louis,
MO, USA). Starch-stabilized AgNPs were obtained by our collaborative company Prime
Nanotechnology Co., Ltd. (Bangkok, Thailand) with a stock concentration of 1000 mg/L.
For AgNP solution preparation in our experiments, 1 mg/mL as a stock solution was
prepared in sterile deionized water. AgNPs were then serially diluted by twofold dilution
in the range of the final concentration of 1–512 µg/mL, then kept at room temperature until
use. The following isolates were used in this study: B. pseudomallei 1026b (CAZ-nonresistant
isolate), B. pseudomallei H777 (moderately CAZ-resistant isolate), and B. pseudomallei 316c
(highly CAZ-resistant isolate). They were provided by the Melioidosis Research Center,
Khon Kaen University. All the strains were isolated from the blood of patients [68–70].
These bacteria were stored at −70 ◦C in 20% glycerol in microcentrifuge tubes until
use. The bacteria were streaked on Ashdown’s medium (a selective culture medium
for the isolation and characterization of B. pseudomallei) and then cultured at 37 ◦C for
48–72 h. The colonies were picked and inoculated in 5 mL Mueller Hinton broth (MHB) at
37 ◦C overnight and then subcultured in 5 mL of the same medium at 37 ◦C in a 180 rpm
shaker/incubator for 3 h to yield a mid-logarithmic growth phase culture [71].
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4.2. Preparation and Characterization of Silver Nanoparticles

Starch-stabilized AgNPs with diameters of 10–20 nm were obtained from Prime
Nanotechnology, Bangkok, Thailand. The samples were resuspended in deionized water
at the concentration of 1 mg/mL. The UV–Vis spectra of the AgNPs were recorded using
a SpectraMax M5 fluorescence microplate reader (Molecular devices, San Jose, CA, USA).
The dimensions of the AgNPs were confirmed using a transmission electron microscope
(FEI/TECNAI G2 20, FEI Company, Hillsboro, OR, USA) operating at 200 kV. The sizes
of the silver nanoparticles were directly obtained from the TEM image using the Image J
software, a Java program developed by the National Institute of Mental Health, Bethesda,
Maryland (MD), USA.

4.3. Determination of the Minimum Inhibitory Concentration (MIC) and the Minimum
Bactericidal Concentration (MBC)

The MICs and MBCs of the antibiotics (CAZ, IMI, MER, and GENT) and AgNPs
were determined by the plate count method measured by serial dilutions as previously
described [37]. Briefly, a range of concentrations of AgNPs (4–64 µg/mL) and the antibiotics
(0.25–1024 µg/mL) was prepared in a 96-well plate by serial dilution. The solutions
were then added to an equal volume of the bacterial suspension (100 µL) in each well of
a 96-well plate, with the final cell concentration ranging from 106 to 107 CFU/mL. The
plates were incubated at 37 ◦C for 24 h. Then, 50 µL of each treated solution were collected
for a serial tenfold dilution plate count with sterile water, and 10 µL of each dilution were
dropped on Mueller Hinton agar in triplicate and incubated overnight at 37 ◦C to count the
bacterial colonies formed. Bacteria with no treatment were used as the control. The MIC was
defined as the lowest concentration that inhibits 99% of bacterial growth, and the MBC was
defined as the lowest concentration that inhibits 100% of the bacterial growth. The percent
inhibition was calculated using the following formula: (1 − (CFU sample/CFU control)) × 100.

4.4. Determination of Synergistic Antibacterial Effects

The synergistic antibacterial effects were evaluated using the FIC index and the
FBC index, which were obtained by plate counting using the microdilution checkerboard
method. Briefly, a range of concentrations of AgNPs (4–64 µg/mL) and the antibiotics
(0.5–1024 µg/mL) was prepared by serial dilution, and then 50 µL of each sample of
AgNP and antibiotic concentration were transferred to each well of a 96-well plate (total
100 µL of each antibiotic–AgNPs combination). After that, 100 µL of the cell suspension of
each bacterial isolate (final cell concentration range of 106–107 cells/mL) were added in
each well of the 96-well plate containing the antibiotic–AgNPs mixture. The plates were
incubated at 37 ◦C for 24 h. Due to the inherent absorbance of the silver solution, we
needed to determine antimicrobial activity using the plate count method. After 24 h of
incubation, 50 µL of each treated condition were collected for a serial 10-fold dilution plate
count with sterile water in triplicate for the determination of the MIC and the MBC.

The FIC or FBC index was calculated to evaluate the combined antimicrobial effect of
the antibiotics and AgNPs:

FICI =
MIC o f drug A in the combination

MIC o f drug A alone
+

MIC o f drug B in the combination
MIC o f drug B alone

FBCI =
MBC o f drug A in the combination

MBC o f drug A alone
+

MBC o f drug B in the combination
MBC o f drug B alone

Synergy, antagonism, and indifference were defined as the FIC or FBC indices ≤ 0.5,
>4, and >0.5 and ≤4, respectively [72].

4.5. Bacterial Growth Curve of an Antibiotic with AgNPs Combination

Mid-log-phase cultures of B. pseudomallei 1026b were prepared in MHB broth with the
final cell concentration ranging from 106 to 107 CFU/mL. Then, the bacteria were incubated



Antibiotics 2021, 10, 839 13 of 17

with CAZ, GENT, the combination of CAZ or GENT with AgNPs at the MIC, MBC, FIC,
and FBC in a 96-well plate. The plate was measured at 630 nm every 30 min for 24 h using
a microplate reader (UT-2100C, MRC Ltd-laboratory equipment, Holon, Israel). The
bacteria without adding agents were used as the positive control.

4.6. Killing Kinetic Assay

Kinetic changes in the antimicrobial effect of each combination were examined by the
serial dilution method. B. pseudomallei 1026b at the inoculum of 106–107 CFU/mL were
treated with AgNPs, the antibiotics, and the antibiotic–AgNPs combinations at the final
concentration equal to the MIC, MBC, FIC, or FBC. The bacteria were incubated at 37 ◦C
using a shaking incubator at 180 rpm. At 0, 0.5, 1, 3, 6, and 24 h of incubation time, 50 µL of
each treated condition were collected for plate counts in triplicate. The bactericidal effect
was defined as a ≥3 log10 reduction in the CFU/mL compared with the initial inoculum.

4.7. Evaluating the Morphological Changes of the Bacterial Cells

The morphological changes of the treated bacterial cells were observed using scanning
electron microscopy (SEM). The colonies of B. pseudomallei 1026b were grown in MHB
for 24 h at 37 ◦C and then subcultured in 10 mL of the same medium for 3 h to yield
a mid-logarithmic growth phase culture. Subsequently, the bacteria were washed three
times with deionized water and resuspended in the same solution to the final concentra-
tion of 1 × 107 CFU/mL. The cells were treated with AgNPs or the antibiotics alone or
the antibiotic–AgNPs combinations at the MIC and FIC for 5 h and at the FBC for 1 h,
respectively. All the cells were washed two times with deionized water and then fixed with
2.5% glutaraldehyde for 1 h and dehydrated in a gradient of ethanol (30%, 50%, 70%, and
90%) for 10 min followed by rinsing in 100% ethanol twice. The cells were coated with gold
and observed by scanning electron microscopy (LEO 1450VP, Carl Zeiss AG, Oberkochen,
Germany) [73].

5. Conclusions

Due to the increasing problem of antibiotic resistance, B. pseudomallei infections have
become harder to treat. To address this problem, we offer alternative ways to potentially
combat the bacteria. In this study, we evaluated the synergism of antibiotics with AgNPs
against B. pseudomallei, which has not been previously reported. B. pseudomallei was
susceptible to IMI, MER, and AgNPs but was completely resistant to GENT. We found
that only B. pseudomallei 316c was resistant to CAZ, an antibiotic recommended as the
first-line therapy for severe melioidosis. We then combined CAZ, IMI, MER, and GENT
with AgNPs and found that the combinations presented synergistic or indifferent effects,
but no antagonism was found against all the three isolates of the B. pseudomallei tested.
Additionally, a combination of an antibiotic with AgNPs can improve kinetic killing of
bacteria to shorten the time. In correlation with the results provided in this work, we
concluded that certain combinations of antibiotics with AgNPs are able to enhance the
antimicrobial effect of antibiotics by reducing the antibiotic dose that is needed for bacterial
growth inhibition. AgNPs showed strongly enhanced bactericidal activity and restored
bactericidal activity of inactive antibiotics (CAZ and GENT) against B. pseudomallei. These
findings support the study of antibiotic–AgNPs combinations as an alternative design
strategy for new therapeutics to more effectively overcome melioidosis. Clinically, these
mixtures of antibiotics with AgNPs could be used through topical routes of administration
for skin abrasion exposure to B. pseudomallei. Furthermore, given the optimal distribution
of AgNPs administered intravenously, preformed mixtures of these antibiotics with AgNPs
could also be given through the IV route, as is the standard of care with CAZ for septicemic
melioidosis. While further in vivo characterizations of efficacy and toxicity are necessary
in future works, these results clearly demonstrate the potential for restoring potency of
antibiotics against B. pseudomallei through their combination with AgNPs and provide
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an important tool for overcoming drug resistance as new CAZ-resistant strains continue
to rise.
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