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Abstract: Artificial intelligence (AI) is a new technology that has been employed to screen and
discover new drugs. Using AI, an anti-diabetic treatment (Halicin) was nominated and proven to have
a unique antibacterial activity against several harmful bacterial strains, including multidrug-resistant
bacteria. This study aims to explore the antibacterial effect of halicin and microbial susceptibility
using the zone of inhibition and the minimum inhibition concentration (MIC) values while assessing
the stability of stored halicin over a period of time with cost-effective and straightforward methods.
Linear regression graphs were constructed, and the correlation coefficient was calculated. The new
antibacterial agent was able to inhibit all tested gram-positive and gram-negative bacterial strains,
but in different concentrations—including the A. baumannii multidrug-resistant (MDR) isolate. The
MIC of halicin was found to be 16 µg/mL for S. aureus (ATCC BAA-977), 32 µg/mL for E. coli (ATCC
25922), 128 µg/mL for A. baumannii (ATCC BAA-747), and 256 µg/mL for MDR A. baumannii. Upon
storage, the MICs were increased, suggesting instability of the drug after approximately a week of
storage at 4 ◦C. MICs and zones of inhibition were found to be high (R = 0.90 to 0.98), suggesting that
halicin has a promising antimicrobial activity and may be used as a wide-spectrum antibacterial drug.
However, the drug’s pharmacokinetics have not been investigated, and further elucidation is needed.

Keywords: halicin; zone of inhibition; disc diffusion; minimum inhibitory concentration; multidrug-
resistant bacteria; gram-positive; gram-negative bacterial strains

1. Introduction

The rise of antibiotic-resistant bacteria is considered a crucial health threat globally [1].
The World Health Organization (WHO) has reported annual mortality of more than half
a million people from antimicrobial-resistant infections [1]. Therefore, it is essential to
develop novel approaches to overcome such a menace; one possible solution is to advance
new antimicrobial drugs against multidrug-resistant (MDR) pathogens. This approach has
encouraged the scientific community to engage and address the threat through various
drug development methods. The process of discovering new applications for existing
drugs [2] and using computational approaches [3], such as artificial intelligence (AI), have
been utilized to find new antimicrobial agents. The latter approach generates and exploits
algorithms that can link different genes and compositions by recognizing active reagents
and observing their inhibition to microorganisms [4].

A team of scientists at MIT has recently reported using artificial intelligence to re-
purpose a new compound with antibacterial activities against broad spectrum bacteria,
including MDR [5,6]. The team used a machine-learning algorithm AI from the ZINC15
database, an online collection of nearly 1.5 billion chemical compounds, to discover a
previously developed anti-diabetic ‘Halicin’ (formerly known as SU-3327) with remarkable
antibacterial activity against MDR bacteria [4]. Halicin is a c-Jun N-terminal protein kinase
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(JNK) inhibitor, which displayed unusual antibacterial mechanisms involving the disrup-
tion of the transmembrane electrochemical gradient and the upregulation of bacterial genes
responsible for iron homeostasis, triggering the disturbance of the pH regulation across
the bacterial cell membrane, which will halt bacterial growth. Hence, the bacteria may not
be able to acquire resistance to this mechanism of action [7]. This discovery has opened
the path to using AI in repurposing drugs that the drug authorities have approved to treat
various infectious diseases, especially MDR bacteria.

As a result of a recent discovery, a couple of studies have evaluated the antibacterial
activity of the drug. Unfortunately, the standard guidelines reference lacks the antibacterial
activity of halicin against pathogenic bacteria, making it difficult to validate its antibacterial
efficacy. Here, halicin MIC was validated and determined. The results of the antibacterial
activity were correlated with the disc diffusion assay against gram-positive and gram-
negative bacteria, including multidrug-resistant bacterium, to construct linear regression
graphs of the halicin antibacterial drug.

2. Materials and Methods
2.1. Materials

Halicin was purchased from Carbosynth (Carbosynth Ltd., Compton, UK), while
Mueller-Hinton broth was bought from Scharlab (Scharlab, S.L., Barcelona, Spain). Distilled
water was generated through Milli Q (Millipore Corporation, Bedford, MA, USA) and had
been used throughout this study. The measurement was made with CytationTM 3 Cell
Imaging Multi-Mode Reader (BioTek Instruments, Winooski, VT, USA).

2.2. Preparation of Bacterial Suspensions

The American Type Culture Collection (ATCC) bacteria were used in this study
and MDR clinical isolate. Muller-Hinton broth was used to revive the bacterial strains,
Staphylococcus aureus (S. aureus; ATCC BAA-977), Escherichia coli (E. coli; ATCC 25922), and
Acinetobacter baumannii (A. baumannii; ATCC BAA-747 as a control, and 3086 as an MDR
clinical isolate from the Carbapenem-resistant patients in Saudi Arabia—resistant against
beta-lactams, aminoglycosides, quinolones, tetracycline, and trimethoprim/sulfonamide).
Bacterial suspensions were adjusted to a turbidity equivalent to that of a 0.5 McFarland
Standard and incubated overnight under aerobic conditions at 37 ◦C. The media were
prepared according to the manufacturer Scharlab’s recommendations [8].

2.3. Minimum Inhibitory Concentration (MIC) and Zone of Inhibition Assay

The MIC of halicin was determined by preparing a serial twofold dilution of the drug,
ranging from 256 to 0.125 µg/mL, in Mueller–Hinton broth, and filtered by a 0.22 µm filter
and added into 96-well plates containing bacterial suspensions. The total culture volume
was 200 µL. A final bacterial inoculum of 1 × 106 colony-forming-unit/mL (CFU/mL) was
used, and incubated overnight at 37 ◦C with a continuous shaking speed of 120 RPM [8].
In addition, a similar serial dilution of halicin was prepared and stored at 4 ◦C for almost a
week to assess the antibacterial efficacy upon reserving. The minimum concentration at
which there was no bacterial growth (i.e., lack of turbidity) was considered the MIC; the
plate was measured at 600 nm absorbance using CytationTM. This test was performed in
independent duplicates.

The zone of inhibition assay was performed with discs impregnated with halicin
solutions, at a twofold concentration range of 128 to 16 µg/mL against S. aureus (ATCC
BAA-977) and E. coli (ATCC 25922), while the concentration range was 256 to 16 µg/mL
against A. baumannii (ATCC BAA-747 and 3086 MDR isolate), according to the MIC results.
A final concentration of 1 × 106 CFU/mL inoculum was equally distributed on the Mueller-
Hinton agar surface. The diameters of the clear areas of no growth were recorded in
millimeters (mm). This test was performed in independent triplicates.
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2.4. Statistical Analysis

The mean, standard deviation (SD), regression equation, correlation coefficient, and
(R) coefficient of determination (R2) were calculated using Microsoft Excel 2016 software
(Microsoft Corporation, Redmond, MA, USA). A t-test was used to compare the results’
variance, in which p < 0.05 was considered as statistically significant.

3. Results and Discussion

Drug repurposing is crucial in drug discovery, and it implicates comprehensive testing
of drug activities pertinent to the disease occurrence. We aimed to demonstrate the an-
tibacterial effect of halicin as an active ingredient against gram-positive and gram-negative,
including MDR bacteria, by the zone of inhibition and MIC assays. These assays showed
that the bacterial growth was suppressed or inhibited by the action of the tested substrate
‘halicin’. Simulating through the Clinical and Laboratory Standards Institute (CLSI) helped
clarify the MIC with a sensitive inhibition zone diameter. Furthermore, these assays are
characterized by their simplicity; they are fast and cost-effective compared to other micro-
biological tests. All of these factors are essential for the reproducibility of the data, mainly
when testing different phenotypic bacteria.

Consistent with previous studies, halicin was able to inhibit the growth of gram-
negative and gram-positive bacteria, including MDR strains [8]. The MICs of halicin were
measured at 16 µg/mL for S. aureus (ATCC BAA-977), 32 µg/mL for E. coli (ATCC 25922),
128 µg/mL for A. baumannii (ATCC BAA-747), and 256 µg/mL for MDR A. baumannii (MDR
3086), as shown in Figure 1. These values were consistent with our previous study [8].
This variation in the MIC values is due to the different bacterial susceptibilities against the
tested drug. Upon storage at 4 ◦C, the MICs were significantly increased to be 32 µg/mL
for S. aureus, significantly increased to be 64 µg/mL for E. coli, insignificantly changed
from 128 µg/mL for A. baumannii, and significantly increased to be ≥256 µg/mL for MDR
A. baumannii (Figure 1). This result indicates that the efficacy of the halicin solution can be
affected during its storage, as the p < 0.05 value presented. Hence, a stability evaluation is
further required.

Due to the ease of its application and its low cost, the inhibition zone test is usually
used to determine the sensitivity of the microbe that affects clinical decision-making. The
result can be linked either to the ATCC strain samples, or compared with the CSLI or
the European Committee on Antimicrobial Susceptibility Testing (EUCAST) reference
platforms. On the other hand, the MIC test is relatively expensive since a higher amount of
a drug is required to be measured. There is no reference evidence for halicin effectiveness
against bacteria; hence, standard strains were used in this study to estimate the MIC and
determine the region of inhibition on agar plates [9].

The inhibition zones demonstrated that halicin could inhibit all tested gram-positive
and gram-negative bacterial strains, but with variable efficacy. The diameter of the zone of
inhibition at a halicin concentration of 128 µg/mL was recorded as 29 mm for strains of
S. aureus BAA-977, 20 mm for E. coli ATCC 25922, and 20 mm for A. baumannii ATCC BAA-
747. However, the MDR A. baumannii was only sensitive at >128 µg/mL, with a diameter
of 22 mm for a halicin concentration of 256 µg/mL. Table 1 summarizes the result of this
assay. The correlation coefficient (R) for the zone of inhibition against all tested bacterial
strains was determined, as shown in Table 1, to compare the diameters of the zones with
dilution values of halicin, in which a value of ≥0.9 is considered a strong correlation.
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Figure 1. The line charts for minimum inhibitory concentration (MIC) values of fresh and old halicin against four types of
bacteria showing the efficiency of halicin. The MICs of freshly prepared halicin were measured at 16 µg/mL for S. aureus
ATCC BAA-977 (A), 32 µg/mL for E. coli ATCC 25922 (B), 128 µg/mL for A. baumannii ATCC BAA-747 (C), and 256 µg/mL
for MDR A. baumannii MDR 3086 (D). In comparison, they doubled for the old-prepared halicin, which increased to be
32 µg/mL for S. aureus, 64 µg/mL for E. coli, 128 µg/mL for A. baumannii, and ≥256 µg/mL for MDR A. baumannii.

Table 1. The zone of inhibition diameters of halicin discs at a concentration range of 128 to 16 µg/mL against S. aureus
ATCC BAA-977 and E. coli ATCC 25922, while the concentration range was 256 to 16 µg/mL against A. baumannii ATCC
BAA-747 and 3086 MDR isolate. Halicin was effective against all the ATCC bacterial strains at all concentrations, while it
was only effective at >128 µg/mL for the MDR A. baumannii. The data show a strong correlation coefficient between the
MICs and their bacterial inhibitory activity. The results represent the mean (±SD) of n = 3.

Bacterial Strain Halicin Concentration
(µg/mL)

Zone of Inhibition (mm)
Mean ± SD (n = 3) Correlation Coefficient (R)

S. aureus ATCC BAA-977

16 17 ± 1

0.90
32 21 ± 0

64 27 ± 1

128 29 ± 1

E. coli ATCC 25922

16 11 ± 1

0.98
32 14 ± 1

64 16 ± 1

128 20 ± 0
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Table 1. Cont.

Bacterial Strain Halicin Concentration
(µg/mL)

Zone of Inhibition (mm)
Mean ± SD (n = 3) Correlation Coefficient (R)

A. baumannii ATCC BAA-747

16 10 ± 1

0.98

32 11 ± 1

64 14 ± 0

128 20 ± 0

256 25 ± 1

A. baumannii MDR 3086

16 0

0.93

32 0

4 11 ± 1

128 14 ± 1

256 22 ± 1

The statistical coefficient of determination (R2) between halicin MIC and its bacterial
inhibitory effect was also shown in Figure 2 [10]. This statistical model is based on the
proportion of the total variation of outcomes explained by the model, and it showed
the relation between halicin concentration and its bacterial inhibitory effect, which is
considered strong (R2 ≥ 0.95) against E. coli ATCC 25922 and A. baumannii ATCC BAA-
747, and fairly strong (R2 ≥ 0.8 and <0.9) against S. aureus ATCC BAA-977 and MDR
A. baumannii MDR 3086.
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Figure 2. The line charts for the coefficient of determination (R2) values show the efficiency of halicin against four types of
bacterial strains. The R2 of halicin was generally considered strong (R2 ≥ 0.9) against E. coli ATCC 25922 (B; R2 = 0.9544)
and A. baumannii ATCC BAA-747 (C; R2 = 0.9524), and fairly strong (R2 ≥ 0.8 and <0.9) against S. aureus ATCC BAA-977
(A; R2= 0.8087) and A. baumannii MDR 3086 (D; R2 = 0.8717).
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Many factors might affect the reproducibility, susceptibility, and accuracy of the agar
diffusion assay. Therefore, the interpretations consider all the variable factors [11]. The
correlation of results from both assays can improve the accuracy and reproducibility of the
data, and compensate for the breakpoint variations in the susceptibility testing that might
occur due to handling error [12]. However, to compare between the halicin MIC and the
antibacterial effect using zone of inhibition, Table 2 shows that S. aureus was sensitive to
halicin at an inhibition diameter of ≥17 mm compared with the MIC (16 µg/mL), while
E. coli was sensitive at a diameter of ≥14 mm at MIC 32 µg/mL. The A. baumannii ATCC
strain was also sensitive at an inhibition diameter of ≥20 mm at MIC 128 µg/mL. In
contrast, the MDR strain was resistant at the same concentration but sensitive at a higher
concentration (265 µg/mL), which gave an inhibition diameter of >20 mm. These variable
data suggest that the pharmacokinetics of the halicin drug may behave differently with
sensitive and drug-resistant bacteria.

Table 2. The zone of inhibition diameters of halicin discs compared with MIC for S. aureus (ATCC
BAA-977), E. coli (ATCC 25922), and A. baumannii (ATCC BAA-747 and 3086 MDR isolate).

Bacterial Strain MIC (µg/mL) Sensitive (mm) Resistant (mm)

S. aureus ATCC BAA-977 16 ≥17 ≤15

E. coli ATCC 25922 32 ≥14 ≤11

A. baumannii ATCC BAA-747 128 ≥20 ≤14

A. baumannii MDR 3086 256 ≥22 ≤14

4. Conclusions

Halicin is effective against the tested gram-positive and gram-negative bacteria; S. au-
reus’s sensitivity was ≥16 mm, while both A. baumannii strains demonstrated a sensitivity
of ≥20 mm. The E. coli’s sensitivity was ≥14 mm. Therefore, this study could be a refer-
ence for halicin antibacterial activity that will offer a guide when evaluating this drug’s
pharmacological and toxicological windows. Nevertheless, the absence of a substantial
analytical study and stability study is unexpected. Therefore, there is a need for a thorough
investigation before the clinical use of halicin against MDR infections.
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