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Abstract: A single-use electrochemical screen-printed electrode is reported based on biomimetic
properties of nanoceria particles (CeNPs). The developed tool showed an easy approach compared
to the classical spectrophotometric methods reported in literature in terms of ease of use, cost,
portability, and unnecessary secondary reagents. The sensor allowed the detection of the total
antioxidant capacity (TAC) in wine samples. The sensor has been optimized and characterized
electrochemically and then tested with antioxidant compounds occurred in wine samples. The
electrochemical CeNPs modified sensor has been used for detection of TAC in white and red
commercial wines and the data compared to the 2,2"-azino-bis(3-ethylbenzthiazoline-6-sulphonic
acid (ABTS)-based spectrophotometric method. Finally, the obtained results have demonstrated that
the proposed sensor was suitable for the simple and quick evaluation of TAC in beverage samples.

Keywords: total antioxidant capacity; antioxidants; nanoceria; enzyme mimetic; SPE sensor;
disposable sensor; wine

1. Introduction

Antioxidant capacity is an ability of organisms or food to catch free radicals and prevent their
harmful effects. Substances with antioxidative properties are called antioxidants and have received
much attention in recent years. They have ability to fight against the oxidative processes [1], to promote
health and to prevent a wide variety of diseases: atherosclerosis, type 2 diabetes, neurodegeneration
(Alzheimer’s and Parkinson’s diseases) [2,3] and cancer [4]. Epidemiological studies recommend
to introduce in the diet substances as fruits, vegetables and less processed staple foods ensure the
best protection against possible diseases caused by oxidative stress, such as coronary heart disease,
obesity, hypertension, and cataracts [5]. The explanation consists in the beneficial health effect, due
to antioxidants present in fruit and vegetables [6]. In particular, polyphenols are naturally-occurring
antioxidants found widely in the fruits, vegetables, cereals, dry legumes, chocolate and beverages, such
as tea, coffee, or wine. Polyphenols and other food phenolics are the subject of increasing scientific
interest because offer a great hope for the prevention of human diseases [7].

Total antioxidant capacity (TAC) is the measure of the quantity of free radicals scavenged
by a test solution [8], for evaluating the antioxidant capacity in samples of different nature.
Several methods have been proposed for the determination of the TAC of body fluids [9-13],
of biological samples [14,15], and food extracts [16,17]. Usually, the antioxidant capacity is
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given as the Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) equivalent antioxidant
capacity (TEAC) [18,19], as the ferric reducing antioxidant power (FRAP) [20,21], as the cupric
reducing antioxidant capacity (CUPRAC) [22-24], as the oxygen radical absorption capacity
method (ORAC) [25,26], as the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS) [25],
and as the DPPH (2,2-diphenyl-1-picrylhydrazyl) method [27], respectively based on the different
spectrophotometric methods which have been used to estimated it.

Recently, also electrochemical methods have greatly contributed to measure of TAC based on
biosensors [28-31] and sensors [32,33]. They offer sensitivity, inexpensive instrumentation, fast
response, small volumes [34-37].

In the last years, the application of nanomaterials resulted in many advantages for the sensing
systems, including the observation of enhanced electrocatalytic phenomena with benefits in chemical
and biosensing and improving analytical performance of classical sensing platforms [37-46]. Some
authors reported nanomaterial based sensor for determination of polyphenols in foodstuffs [47-55].

Different kinds of nanomaterials have been used as stable and low-cost alternatives to
biomolecules in (bio)analytical methods. The materials comprise metal/metal oxides, metal complexes,
nanocomposites, porphyrins, phthalocyanines, smart polymers, and carbon nanomaterials [56,57].
Cerium oxide nanoparticles (CeNPs) or nanoceria particles have attractive catalytic and electrochemical
features [58]. Moreover, ceria is an excellent co-immobilization material for a variety of oxidase and
peroxidase enzymes such as horseradish peroxidase [59,60], glutamate oxidase [61]. Its catalytic activity
can be exploited to develop highly sensitive, enzymeless H,O, sensors [62] and for the fabrication
of third generation biosensors [63]. Ceria has high oxygen mobility at its surface [64,65] and a large
oxygen diffusion coefficient, which facilitates the conversion between valance states Ce** /Ce3* [66]
that allow oxygen to be released or stored in its crystalline structure [67,68].

Recently, CeNPs have also been reported to have multienzyme, including superoxide oxidase,
catalase and oxidase, and mimetic properties [69-71], and have emerged as a fascinating material
in biological fields, such as in bioanalysis [72-74], biomedicine [75-77], and drug delivery [78,79].
Catalytically active nanoceria offer several advantages over natural enzymes, such as controlled
synthesis at low cost, tunable catalytic activities and high stability against severe physiological
conditions [80].

In the present work, we developed an electrochemical disposable sensor modified with nanoceria
particles for determination of total antioxidant capacity (TAC) in real samples. Firstly, the sensor
was characterized electrochemically and then has been tested for some common antioxidants present
in wines, such as gallic acid, caffeic acid, ascorbic acid, quercetin, trans-resveratrol and, finally, for
the detection of TAC in six white and red commercial wine samples. The results relative to wine
samples obtained with the electrochemical method were compared to those carried out with the
spectrophotometric method (ABTS-based method). The modification procedure was demonstrated
to be very simple and the developed sensor resulted to be easy-to-use, robust and cheap without
involving labeled reagents.

2. Materials and Methods

2.1. Chemicals and Reagents

All chemicals used were analytical grade and were used as received without any further
purification. In particular: sodium monobasic phosphate (NayHPOy,), sodium dibasic phosphate
NaH;POy, potassium chloride (KCl), potassium ferricyanide (III) (K3[Fe(CN)¢l), cerium (IV)
oxide NPs (20 wt% colloidal dispersion in acetic acid 2.5 wt%, d = 30-60 nm), gallic acid
(GA), caffeic acid (CA), quercetin (Q), trans-resveratrol (t-R), ascorbic acid (AA), and dimethyl
sulfoxide were purchased from Sigma-Aldrich (Buchs, Switzerland). For the TEAC assay:
2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and potassium persulfate (K,S,0g)
were also supplied by Sigma-Aldrich (Buchs, Switzerland).



Biosensors 2018, 8, 108 3o0f15

All the solutions were prepared in phosphate buffer 0.1 M, KCl1 0.1 M, pH 7.4 (PBS bulffer)
high-purity deionized water (resistance: 18.2 MQ x cm at 25 °C; TOC < 10 ug L) obtained from
Millipore (Molsheim, France) has been used to prepare all the solutions.

A solution of 1.1 mM Ks[Fe(CN);] in PBS buffer was used in cyclic voltammetric experiments for
determination of electroactive area using the Randles-Sev¢ik equation. Stock solutions of 10 mM of
several phenolic (GA, CA, Q and t-R) and not phenolic antioxidants (AA) were prepared daily before
use: all substances in PBS buffer only the quercitin had need of few drops of DMSO.

The value of pH 7.4 was chosen because from early studies in literature was reported that at this
value the particles have the highest oxidase-like activity against phenolic compounds [81]. Moreover,
all the experiments were carried out at room temperature, approximately 25 °C.

2.2. Electrochemical Measurements

Electrochemical measurements were performed using a portable PalmSens potentiostat (PalmSens,
Houten, The Netherlands) controlled by means of the PSTrace 4 program (Vers. 4.4 PalmSens BV).
All the experiments were conducted using a three screen-printed electrodes system from Orion High
Technologies S.L. (Parla, Madrid, Spain). In particular: Nanostructured carbon (OHT-000), carboxylic
acid functionalized multi-walled carbon nanotubes (OHT-069) and Carboxylic acid functionalized
multi-walled carbon nanotubes-Fe3O4 superparamagnetic nanoparticles (OHT-102) screen printed
electrodes, respectively. The working electrodes were different for each sensor (with a surface diameter
of 4 mm) but the counter electrode (graphite) and the reference one (Ag/AgCl) were the same for all
the SPEs.

All absorbance measurements were made at the specified wavelength (731 nm) of the selected
spectrophotometric method (ABTS-based method) using a T60U Spectrometer PG Instruments Ltd.
(Wibtoft Leicestershire, Lutterworth, UK).

2.3. Electrochemical Method

The procedure of square wave voltammetry (SWV) was carried out as analytical technique to
develop the calibration curve of GA used as standard and to test the selected wine samples and for the
other antioxidant compounds. The frequency (f) and pulse amplitude at 25 Hz and 50 mV, respectively.
The OHT-069 modified SPE was used as sensor.

2.4. Sensor Modification by Using CeNPs

The surface modification procedure was realized by two steps: first, a colloidal NPs suspension of
2% (w/v) nanoceria was prepared by dispersing particles in distilled water, then 5 uL of the solution
were dropped onto the working electrode surface of the SPE and let it dry for two days at room
temperature until use. Electrodes were stored at room temperature.

2.5. ABTS-Based Method

The ABTS antioxidant assay was slightly modified and carried out as described in literature [82].
Briefly, 7 mM ABTS solution prepared in 2.5 mM K;S,0g was incubated in the dark for about 15 h at
room temperature to generate ABTS radicals. Then, the solution was diluted 400 times with distilled
water. The white wines and the red ones were diluted 10 and 100 times respectively with distilled
water. Next 100 pL of each sample were mixed with 2.5 mL of ABTS radical solution and 0.4 mL H,O
and the absorbance has read after 3 min at 731 nm. The phenolic antioxidant gallic acid (GA) was used
as standard, and triplicates were analysed for each sample.
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3. Results and Discussion
3.1. Electrochemical Characterization

3.1.1. Comparison of Electrochemical Performances before and after CeNPs Sensor Modification

Firstly, the improvement of the electrochemical performances by the simple modification of the
electrode surface using CeNPs has been demonstrated by calculating the electroactive area (Ac) of
three different SPE sensors.

The A for the electrodes were obtained by cyclic voltammetry (CV) using a solution of 1.1 mM
K;3[Fe(CN)g] in PBS buffer solution as probe at different scan rates. For a reversible process, the
Randles-Sev¢ik equation has been used:

Ip = 2.686 10° n 32 A, Dy!/2 Cy v1/2

where I, is peak current in ampere (A), n is number of electrons transferred of K3[Fe(CN)s] by CV in the
redox event (usually 1), A, is electroactive area (cm?), Dy is diffusion coefficient (7.6 x 107¢ cm? s~ 1),
Cy is the concentration (mol cm~3), and v is the scan rate (Vs~1) [83]. By using the slope of the plot
of I, vs v1/2, the electroactive areas were calculated and the results are shown in Table 1. In bare
OHT-000, OHT-102, and OHT-069 SPEs, the electrode surface was found to be: 2.42, 6.26, and 8.50 mm?
respectively. For the same modified SPEs the surface was nearly 7, 3, and 2.5 times greater. The
presence of the MWCNTs in both OHT-102 and OHT-069 bare sensors resulted in a higher A value
in comparison to OHT-000 bare sensor, due to the well-known peculiarities of nanomaterials (e.g.,
large surface-to-volume ratios, their physicochemical properties, composition, and shape and their
robustness, etc.) [39,40]. Moreover, the modification procedure of the different working electrode
surface by the presence of cerium nanoparticles increased quite notable the peak current signal and
consequently the surface activity. This was attributed to their capability to facilitate the electron
transfer [60] and to improve the biocatalytic signals [84].

Table 1. Comparison of the electroactive area (A.) before and after CeNPs modification.

Sensor Ae ? (mm?) Ae P (mm?) pa pb
OHT-000 2.42 +0.02 16.82 + 0.04 0.19 1.34
OHT-102 6.26 + 0.02 18.74 + 0.02 0.50 1.49
OHT-069 8.50 £+ 0.03 21.93 +0.01 0.68 1.74

2 Bare sensor; ® modified sensor by using 5 uL. CeNPs solution on the electrode surface.

In addition, the comparison was also observed in function of PBS buffer solution (Figure 1)
and one of the selected antioxidants, the caffeic acid (Figure 2). The modified electrode had no
electrochemical activity in phosphate buffer solution (Figure 1A,B, black lines) and showed a similar
CV profile to the bare electrodes, respectively (Figure 1A,B, red lines). Conversely, for the OHT-102
a couple of peaks was observed (Figure 1C, black line), probably due to Fe304 nanoparticles redox
behaviour, which are directly reduced at the electrode surface according to the following reaction:

(1) FezOy4 (s) +2 e~ +6H" (aq) — 2Fe?* (aq) + 3H,0 + FeO (s)
Then, Fe?* ions produced could combine with phosphate ions in the buffer solution:
(2) Fe?* (aq) + HPO4?~ (aq) — FePOy(s) + e~ + H* (aq)

Here after, the solid FePO;, at the surface of electrode could be responsible for observed redox
behaviour [85,86]. For all the three modified sensors the background current becomes larger, due to the
CeNPs can increase the surface activity remarkably. The CeNPs-induced oxidation of CA was studied
in the potential range between —0.4 and 0 V, as example in Figure 2 is reported the electrochemical
performance of the OHT-069 SPE sensor. The CVs of bare and modified SPE carried out in PBS buffer
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solution showed a similar voltammogram, but in the case of the CeNPs modified sensor the area was
broader and it showed no peaks in PBS indicating lack of electrochemical activity of these cerium
particles in the potential range tested (Figure 2, red line). Observing the electrochemical behaviour of
the bare OHT-069 SPE (Figure 2, green line) and the modified one (Figure 2, blue line) in the presence
of 0.8 uM CA solution a similar profile is recorded. Anodic and catodic peaks were observed in
both cases. In the CV of the CeNPs/SPE the peaks are wider and shifted to higher potential values
compared to those observed for the bare/SPE. In identical experimental conditions, sensors in presence
of nanoparticles showed a more evident response in the same potential range comparing to bare carbon
electrode. This difference demonstrates the role of CeNPs to catalytically form reducible quinones onto
the electrode surface and, moreover, to be better able to quantitatively detect antioxidants.

1(nA)
1(nA)

06 04 02 0 02 04 06 08 04 02 0 02 0.4 06 0.8

E(V) EV)

30

20

1(nA)

-20

-30 T T T T T 1
04 -0.2 0 0.2 0.4 0.6 0.8

E (V)

Figure 1. CVs of OHT-000 (A), OHT-069 (B), and OHT-102 (C) bare sensors (red line) and after
modification by CeNPs (black line) in PBS buffer solution, v = 100 mV s~L
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Figure 2. CVs of OHT-069 bare SPE (black line) and modified SPE by CeNPs (red line) in PBS buffer
solution and the same sensors OHT-069 bare SPE (green line) and modified SPE by CeNPs (blue line)
in the presence of 0.8 uM di CA at v =10 mV s L

The reduction current was proportional with the amount of CA added on the electrode, as
illustrated in Figure 3. By increasing CA concentration from 5.5 to 550 uM, the oxidation/reduction
peak potential is constant at 0.130 and 0.050 V, respectively. These results suggest that diffusional
barriers are not present for the oxidized/reduced CA to/from nanoceria surface. Figure 4 shows
the effect of scan rate on the intensity of the oxidation/reduction current. In the inset of Figure 4 is
reported the reduction current vs. the square root of scan rate. The current increased proportionally
with the square root of scan rate with a correlation coefficient of 0.99 (N = 3) with a slight shift towards
negative potentials, suggesting a quasi-reversible process, which is diffusion-controlled.

20

154

0.55 mM
10

1 (uA)

5.5 uM

E (V)

Figure 3. CVs of modified OHT-069 SPE in presence of different CA concentrations: 5.5, 45, 120, 270,
and 550 uM, at v=10mV s~ L.
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Figure 4. CVs of CA 550 uM using the modified OHT-069 SPE recorded in PBS buffer solution at scan
rates of: 5, 25, 50, 100, 200, 300, and 500 mV s~ !, respectively. Inset: plot of reduction current vs. the

square root of scan rate.

3.1.2. Analytical Characteristic: Sensitivity, LOD, Linear Range, and Response Time of Phenolic and
Non-Phenolic Antioxidants

The CeNPs modified sensors have been tested for the detection of some common antioxidant
compounds contained in wines: gallic acid (GA), caffeic acid (CA), quercetin (Q), t-resveratrol (t-R),
and ascorbic acid (AA).

Figure 5 displays the calibration curves of the three different sensors for the selected antioxidant
compounds. After the addition of the antioxidant compound a response proportional with the

concentration was observed.
The sensitivity of the different sensors towards the same antioxidant was studied and the results

reported in Figure 5A-E. The order OHT-069 > OHT-102 > OHT-000 was observed.
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Figure 5. Calibration curves for antioxidant compounds employing SWV technique: gallic acid, GA
(A), caffeic acid, CA (B), quercetin, Q (C), t-resveratrol, t-R (D), and ascorbic acid, AA (E) at different
concentrations. The modified SPE-sensors are: OHT-069 (red circle), OHT-102 (blue circle), and
OHT-000 (red circle), respectively.

The analytical parameters of the antioxidants have been reported by applying the CeNPs modified
OHT-069 sensor (Table 2).
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Table 2. Analytical characterization of antioxidant compounds by using CeNPs modified OHT-069

sensor by SWV method.

Antioxidant Compound Linear Range (mM) Slope (LA mM~1) R LOD (mM)

GA LLR 0.025-0.05 6.55 0.990 0.007

HLR 0.5-5.0 0.57 0.987 0.151

CA LLR 0.033-0.1 0.793 0.999 0.010

HLR 0.25-5.0 0.180 0.998 0.083

Q LLR 0.025-0.1 3.978 0.978 0.009

HLR 1.0-5.0 0.120 0.994 0.303

R LLR 0.025-0.05 4.791 0.982 0.008

B HLR 0.1-1.0 0.262 0.999 0.033

AA LLR 0.025-1 1.667 0.999 0.007

HLR 1.0-5.0 0.180 0.996 0.334

LLR: Low Linear Range; HLR: High Linear Range.

3.2. Spectrophotometric Characterization

The ABTS-based assay described here involves the direct production of the blue/green ABTS**
chromophore. This has absorption maxima at 731 nm. The addition of antioxidant compounds
quenches the colour and produce a decolouration of the solution which is proportional to their amount
(Scheme 1). This reaction is rapid and the end point, which is stable, is taken as a measure of the
antioxidative efficiency.

ABTS (uncolored) + Reagent — ABTS**(blue/green) (Amax =731 nm)
ABTS**(blue/green) + AOH — ABTS (uncolored) + AO

Scheme 1. Formation of radical ABTS and its reaction with antioxidants (AOH).

The phenolic antioxidant Gallic Acid (GA) was used as standard and the values of real samples
expressed as mg L~! of GA.

In Table 3 we have reported a comparison with some enzyme-based biosensors and
nanomaterial-based sensors for the determination of some common antioxidants, present in the
literature [50,57,87-92]. The linear range of our developed sensor is similar and, in some cases, better
than ones proposed by other authors. In terms of storage, our sensor is superior respect to the enzyme
biosensors because no needs of storage conditions, on the contrary enzyme-based biosensors need
of particular conditions (e.g., buffer and low temperature) and one of their drawbacks is protein
instability [50,88,90]. Furthermore, in comparison to the nanomaterial CeNP-modified electrode for
GA and AA compounds our linear range is broader [57]. Additionally, our LOD value is lower for
CA and Q antioxidants [57]. In terms of response time, we have recorded a response time of 30 s.
Lastly, these advantages make our sensor as a useful tool for a quick screening to detect antioxidants
in beverages sample.
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Table 3. Comparison of some analytical characteristics for antioxidants detection of some enzyme-based
biosensors and nanomaterial-based sensors.

Sensor Antioxidant LR (uM) LOD (uM) Storag.e/Response Ref.
Compound Time
Lac/pESm/Pt electrode CA 10-80 - - [87]
Lac/PAP/SWCNTs/SPE GA 0.53-96 - 10d at4°C/- [88]
Lac/oxygen electrode CA 0.10-1.00 0.06 - [89]
Lac/Fc/SPE 2.0-30.0 1.6 -
GA 30.0-300 57 o
Tyr/BSA/GA /Fc/SPE CA 10.6-266 105 30dat4°C/- [90]
ITO/Lac/Tyr/CS/MWCNTs GA 1.6-8.1 15 8dat4°Cdry [50]
electrode CA 0.4-7.4 0.3 atmosphere/-
POx/Fc/MWCNTs/ MO CA 0.3-383 0.1 ~ 1]
electrode tR 0.2-228 0.1
GA 0.6-12 0.04
GC/MWCNTs/PEI/electrode CA 0.6-12 0.08 - [92]
Q 0.3-6 0.03
GA 2-20 1.5
CA 50-100 15.3
CeNPs/C/SPE Q 20-200 86 RT/40s [57]
AA 0.5-20 0.4
GA 25-50 7
CA 33-100 10
CeNPs/MWCNTs-COOH/SPE Q 25-100 8 RT/30s Our work
t-R 25-50 8
AA 25-100 7

Lac: Laccase; pESm: polyether sulphone membrane; PAP: polyazetidine prepolymer; Fc: ferrocene; Tyr: tyrosinase;
CS: chitosan; BSA: bovine serum albumine; GA: glutaraldehyde; PEI: polyethylenimine; POx; peroxidase;
MO: mineral oil; C: carbon.

3.3. Real Sample Analysis

Real samples (common antioxidants and white/red commercial wines) were tested for their
antioxidant activity. The real samples were analysed both by the OHT-069-modified sensor and the
ABTS-based assay.

By the first method, the antioxidant activity of the wine sample was reported as mg L1 of GA,
obtained by interpolation of the current signal of the sample into the calibration curve of the GA. The
wine white sample were diluted 10 times before analysis and the red ones 100.

For comparison purpose, the same samples were also analysed by the spectrophotometric method
involving the use of the ABTS to calculate the total antioxidant capacity (TAC).

As reported in Table 4, the data obtained with the two methods are in good agreement despite the
electrochemical and the spectrophotometric methods are based on a completely different mechanism.
The results relative to white and red wines are in very close agreement with the data obtained with
the spectrophotometric test. Finally, we can conclude that the nanoceria modified sensor could be
employed as first tool for the determination of TAC in wine samples. It can be considered as a valid
alternative to commercially available spectrophotometric kits thanks to several advantages such as
ease of use, rapidity, cost-effectiveness, and portability.
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Table 4. TAC of several white and red wines assessed in parallel by the nanoceria-based electrochemical
assay and by the classic TEAC assay.

Wine Sample CeNPs-SPE 2 ABTS-Based Method ?
white 1 204 £ 10 208 £17
white 2 183 £ 11 187 +£9
white 3 212 +18 209 £15
red 1 2067 £ 207 2078 + 187
red 2 2340 £ 210 2538 + 228
red 3 3938 £ 236 4172 £ 292

@ Expressed as mg L1 of GA.
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