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Abstract: Transition metal doping is an ideal strategy to construct multifunctional and efficient
nanozymes for biosensing. In this work, a metal-doped CoMnOx nanozyme was designed and
synthesized by hydrothermal reaction and high-temperature calcination. Based on its oxidase activity,
an “on-off-on” smartphone sensing platform was established to detect ziram and Cu2+. The obtained
flower-shaped CoMnOx could exhibit oxidase-, catalase-, and laccase-like activities. The oxidase
activity mechanism of CoMnOx was deeply explored. O2 molecules adsorbed on the surface of
CoMnOx were activated to produce a large amount of O2

·-, and then, O2
·- could extract acidic

hydrogen from TMB to produce blue oxTMB. Meanwhile, TMB was oxidized directly to the blue
product oxTMB via the high redox ability of Co species. According to the excellent oxidase-like
activity of CoMnOx, a versatile colorimetric detection platform for ziram and Cu2+ was successfully
constructed. The linear detection ranges for ziram and Cu2+ were 5~280 µM and 80~360 µM, and
the detection limits were 1.475 µM and 3.906 µM, respectively. In addition, a portable smartphone
platform for ziram and Cu2+ sensing was established for instant analysis, showing great application
promise in the detection of real samples including environmental soil and water.

Keywords: cobalt manganese oxide; oxidase-like activity; ziram; Cu2+; intelligent detection

1. Introduction

Zinc dimethyl dithiocarbamate (ziram) is a widely used organosulfur fungicide that
can inhibit and prevent diseases caused by a variety of fungi. However, due to the overuse
and abuse of ziram, it often leads to pesticide residues in food and water, causing serious
effects on human health. With the increase of living standards, pesticide residue in food
has become a hot issue in society, and research on pesticide residue detection has become
popular. Currently, common methods for the determination of pesticide residues include
high-performance liquid chromatography (HPLC) [1], spectrophotometry [2], capillary
electrophoresis [3], and voltammetry [4]. However, all of the above methods are not suitable
for in-field analysis, severely constraining the widespread use of the above techniques for
detecting pesticide residues on site and in a timely manner. Simple, rapid, and sensitive
modes for detecting pesticide residues need to be developed.

Nanozymes are nanomaterials that can catalyze enzyme substrates under mild or
extreme conditions and convert the substrates into products following enzyme kinetics.
Since the first study of Fe3O4 nanomaterials with horseradish peroxidase (HRP) catalytic
activity was reported in 2007 [5], great effort has been made to develop nanomaterials with
similar catalytic activity [6–9]. Nanozymes present a lower cost, higher stability, higher
adaptation to extreme conditions, and higher recovery efficiency than natural enzymes.
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In recent years, metals [10,11], metal composites [12–14], and carbon-based materials [15]
have all been discovered and designed as nanomaterials with enzyme-like catalytic effects.
Nanozymes have been extensively studied in biosensors, environmental protection, disease
diagnosis, and antimicrobial agents [16–18]. Among all the various nanozymes, redox
nanozymes are the most studied. According to different catalytic types, redox nanozymes
often present many kinds of simulated enzyme activities, such as peroxidase- (POD),
oxidase- (OXD), catalase- (CAT), and superoxide dismutase-like (SOD) activities [19–22].
Most research in the field currently focuses on peroxidase-like activity, whereas oxidase-
like activity receives much less attention [23–26]. In the process of catalysis by peroxidase
mimics, external H2O2 is required to act as an electron acceptor. For oxidase catalysis,
dissolved O2 can be used as a substrate, so the catalytic operation is more direct and simpler.
As a result, oxidase-like nanozymes act as a compelling option for creating sensors with a
straight-forward operation, excellent compatibility, and high reliability.

Manganese oxides (MnOx) have been widely used to detect various small biomolecules
based on their oxidase activity, including hydroquinone [27], organophosphorus [28], and
ascorbic acid [29]. Manganese oxides exist in more than 30 different natural crystal forms,
and these minerals are important constituents of sediments and soils, participating in
various natural chemical reactions [30]. However, manganese oxides have poor catalytic
performance, and they are difficult to separate after the reaction. To better mimic natural
enzymes, the catalytic activity of nanozymes can be designed by tuning size, morphology,
composition, surface functional groups, and exposed faces. Heteroatom doping is a good
strategy to enhance the activity of nanozymes. Transition metal-doped nanozymes can
exhibit higher catalytic activity than pristine materials [31]. These materials show supe-
rior catalytic activity to monometallic materials due to electronic structural effects and
synergistic effects.

In this study, CoMnOx with multiple enzyme-like catalytic properties was designed to
construct an “on-off-on” sensing platform for ziram and Cu2+. CoMnOx was prepared by
hydrothermal and calcination methods. The oxidase-, catalase-, and laccase-like activities
of the obtained CoMnOx were evaluated, and the reaction kinetics and mechanisms were
studied in detail. The substrate TMB could be oxidized to oxTMB by a large amount of
O2

·- generated from oxidase-like catalysis. Meanwhile, it was also oxidized directly to
the blue product oxTMB via the high redox ability of Co species. Based on the oxidase
activity of CoMnOx, a multifunctional colorimetric sensing platform for ziram and Cu2+

was established, which provided wide detection ranges and low detection limits. The
combination of the sensing method and a portable smartphone was further made to
achieve real-time detection, and the application potential in monitoring ziram and Cu2+ in
environmental soil and water was also assessed.

2. Materials and Methods
2.1. Preparation of CoMnOx

Co(NO3)2· 6H2O (0.4366 g) and KMnO4 (0.2371 g) were gradually put into 21 mL of
deionized water with strong stirring. After stirring for 10 min, the mixture was autoclaved
in a 30 mL autoclave. After autoclaving, the mixture was transferred into an oven and kept
for 6 h at 150 ◦C. After the heated treatment, the formed product was precipitated to obtain
solid powders. The collected solid powders were washed several times by deionized water
and ethanol, respectively. Lastly, the powders were treated in a vacuum oven for 12 h. After
drying, a certain amount of the solid powders was put into a tube furnace and annealed at
450 ◦C for 30 min under an argon atmosphere. After calcination, the proposed CoMnOx
was obtained.

2.2. Enzyme-Like Activities of CoMnOx

Firstly, the OXD-like activity of CoMnOx was investigated with a conventional method.
3,3’,5,5’-Tetramethylbenzidine (TMB) was used as a chromogenic substrate to evaluate
the OXD-like activity. During tests, 210 µL of TMB (5 mM) and 150 µL of CoMnOx
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(1 mg·mL−1) were mixed with 0.2 M of HAc-NaAc buffer (the total volume was 3 mL,
pH 4.5). Afterwards, the mixture was kept in a water bath at 40 ◦C for 20 min. After that, the
mixture solution was used to investigate the absorbance at 652 nm by an ultraviolet-visible
(UV-Vis) spectrophotometer.

To verify the CAT-like activity of CoMnOx, the mixture solution was prepared by
mixing Tris-HCl buffer (pH 8.0), 100 µL of CoMnOx (1 mg·mL−1), and 200 µL of H2O2
(20 mM). After the mixture was kept in a water bath at 25 ◦C for 10 min, the absorbance at
240 nm was obtained by UV-Vis as time went by.

To characterize the laccase-like activity of CoMnOx, the mixture solution was prepared
by mixing 50 mM of MES buffer (pH 7.0), 100 µL of 2,4-DCP (1.0 mg·mL−1), and 4-
AP. The volume of the mixture solution was 1.5 mL. Afterwards, a CoMnOx suspension
was introduced and the mixture was incubated for 90 min at 37 ◦C. Finally, the solution
absorbance was obtained by UV-Vis.

2.3. Steady-State Kinetic Study

After condition optimization experiments, the catalytic property and kinetic parame-
ters of CoMnOx with oxidase-like activity were investigated. Firstly, a series of mixtures
were prepared by mixing 0.2 M of HAc-NaAc buffer (pH 4.5) and 150 µL of CoMnOx
(1 mg·mL−1) with different concentrations of TMB. Then, a series of mixtures were kept in
a water bath at 40 ◦C for 20 min. The oxidase-like activity of these mixtures was obtained at
652 nm under optimized conditions by UV-Vis. Based on the Michaelis–Menten equation,
Km and Vmax were obtained.

1/V = (Km/Vmax)(1/[S]) + 1/Vmax

where Km is the Michaelis constant, [S] is the substrate concentration, and Vmax is the
maximum reaction velocity.

2.4. Oxidase-Like Reaction Mechanism

Different radical scavengers were employed to investigate reactive oxygen species
(ROS) formed during the oxidase-like reaction. The mixture solution was obtained by
mixing 100 µL of different concentrations of scavengers, 210 µL of TMB, 150 µL of CoMnOx,
and HAc-NaAc buffer. Hydroxyl radical (·OH), singlet oxygen (1O2), and superoxide
anion (O2

-) were measured by the radical scavengers of isopropyl alcohol (IPA), NaN3,
and 1,4-benzoquinone (PBQ), respectively. Oxygen vacancies were tested by adding EDTA.
After incubating, the oxidase-like activity of the mixture was tested at 652 nm.

2.5. Colorimetric Detection of Ziram and Cu2+

For the colorimetric detection of ziram, 210 µL of TMB and 150 µL of CoMnOx were
mixed with HAc-NaAc buffer. Then, the effects of various concentrations of ziram on the
oxidase-like activity of the mixture were investigated. After incubating, the intensity of
absorbance at 652 nm was tested by UV-Vis.

For the colorimetric detection of Cu2+, 480 µL of ziram (4 mM) and various Cu2+

concentrations were mixed with the HAc-NaAc buffer system containing 210 µL of TMB
and 150 µL of CoMnOx. After incubating at 40 ◦C, the effects of various concentrations of
Cu2+ on the absorbance were investigated, and the intensity of absorbance at 652 nm was
tested by UV-Vis.

2.6. Visual Smartphone Detection Platform

Based on the colorimetric detection of ziram and Cu2+, a portable smartphone platform
was established for instant analysis. Firstly, a large number of photos were collected, and
then the red-green-blue (RGB) and hue-saturation-lightness (HSL) of the photos were
extracted and trained by deep learning. As for the intelligent detection of ziram and Cu2+,
the photos of colorimetric results were uploaded to a smartphone, and the values of RGB



Biosensors 2024, 14, 178 4 of 16

and HSL could be recognized automatically by an artificial intelligence program. The
values or their combinations of RGB/HSL and the concentrations of targets were used to
establish standard curves by the smartphone. At the same time, the results of the linear
equation and correlation coefficient were formed automatically.

2.7. Real Sample Analysis

To investigate the practicability of the developed sensing platform based on the
oxidase-like activity of CoMnOx, a standard addition method was employed. The super-
natants of river water and soil were obtained after centrifugation treatment. Before testing,
the obtained liquids were diluted 100 times. Certain concentrations of Cu2+ and ziram
were added into the liquids. The color photos were taken and uploaded to the smartphone
platform. The values of RGB and HSL could be recognized automatically by the artifi-
cial intelligence program, and the corresponding concentrations of Cu2+ and ziram were
output automatically.

3. Results
3.1. Synthesis and Characterization of CoMnOx Nanoflowers

The synthesis diagram of CoMnOx is presented in Figure 1A. The samples of CoMnOx
were prepared by hydrothermal synthesis and high-temperature calcination. Figure 1B–E
show that the obtained CoMnOx has a flower-like shape with rich petal wrinkles. The pos-
sible mechanism for CoMnOx forming such a flower-like structure is MnOx crystal nucleus
growth during the Ostwald ripening process [32]. The distribution of elements is displayed
in Figure 1F. The results reveal that Co, Mn, and O elements disperse homogeneously. The
X-ray diffraction (XRD) pattern of CoMnOx presents diffraction peaks of (111), (220), and
(422) (Figure S1), which are attributed to MnOx (PDF# 21-0547). As shown in Figure S1, no
corresponding Co peak is observed. It is presumed that Co is uniformly doped into MnOx,
and the crystal form of MnOx is not changed [33]. The corresponding FT-IR spectrum is
illustrated in Figure S2, and the peak at 530 cm−1 belongs to the stretching vibration of
Co–O [34]. The peak at 3412 cm−1 is assigned to the O–H stretching vibration of H2O [35].

X-ray photoelectron spectroscopy (XPS) is used to analyze the elemental content and
chemical state of CoMnOx. The XPS survey spectrum (Figure S3A) shows the elements
of Co, Mn, and O observed on CoMnOx surface. As shown in Figure S3B, the peaks of
641.91 eV and 653.54 eV should be ascribed to Mn 2p3/2 and Mn 2p1/2 of Mn3+, and the
peaks of 643.10 eV and 654.38 eV are attributed to Mn 2p3/2 and Mn 2p1/2 of Mn2+ [13,15].
Figure S3C shows that the peaks of 796.94 eV and 782.79 eV are associated with Co 2p1/2 and
2p3/2 of Co2+, and the peaks at 795.37 eV and 780.37 eV for Co 2p1/2 and 2p3/2 are associated
with Co3+ [34,35]. The content of Co3+/(Co2++Co3+) is as high as 71.09%, indicating that
Co3+ is the main species of Co in the obtained CoMnOx. Thus, the redox ability of CoMnOx
is attributed to the different valence states of Mn and Co elements. The surface O species
are displayed in Figure S3D. Three kinds of O species, namely surface lattice oxygen
(Ol), oxygen vacancy (Ov), and chemisorbed oxygen (Oads), are presented. Ol, Ov, and
Oads are located at 529.85 eV, 531.29 eV, and 532.35 eV, respectively [36]. The Ol species
accounts for 72.97% of the total surface oxygen, and Ov and Oads account for 17.15% and
9.88%, respectively.
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Figure 1. Synthesis and characterization of CoMnOx nanoflowers. (A) Synthesis diagram;
(B,C) scanning electron microscopy (SEM) of CoMnOx nanoflowers; (D,E) transmission electron
microscopy (TEM) of CoMnOx nanoflowers; (F) elemental mapping pattern of CoMnOx nanoflowers.

3.2. Enzyme-Like Catalytic Activities and Mechanisms
3.2.1. Enzyme-Like Catalytic Activities

The oxidase-like activity of CoMnOx was evaluated (shown in Figure 2A). It shows
that no absorption peaks at 652 nm are found with only TMB or CoMnOx in the reac-
tion system. However, a characteristic absorption peak is observed in the presence of
CoMnOx + TMB, indicating that TMB can be oxidized into oxTMB due to the oxidase-like
activity of CoMnOx. In addition, the condition optimization experiments are displayed
in Figure S4. As for the effect of pH on the oxidase-like activity of CoMnOx, the intensity
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of absorbance increases with pH from 2.5 to 4.5, and then it decreases after a pH above
4.5. Thus, the optimal pH is 4.5 (Figure S4A). The effect of temperature on the oxidase-like
activity is the same as that of pH, and the highest intensity of absorbance is obtained at
40 ◦C (Figure S4B). As for the effect of CoMnOx concentration, the intensity of absorbance
increases from 0.01 mg·mL−1 to 0.05 mg·mL−1 and then remains unchanged. Thus, the
optimized concentration of CoMnOx is 0.05 mg·mL−1 (Figure S4C). For the effect of TMB
concentration, the intensity of absorbance increases until a TMB concentration of up to
0.35 mM (Figure S4D). Therefore, the highest oxidase-like activity of CoMnOx is presented
at pH 4.5 and 40 ◦C. Meanwhile, the optimized concentrations of CoMnOx and TMB are
0.05 mg·mL−1 and 0.35 mM, respectively.
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3.2.2. Kinetic Studies 

Figure 2. (A) UV-Vis absorbance spectra of different treatments for oxidase-like activity
(a: CoMnOx + TMB, b: TMB, c: CoMnOx) after incubation at 40 ◦C and pH 4.5; (B) UV-Vis of
different treatments for catalase-like activity (a: CoMnOx + H2O2, b: H2O2) after incubation at
40 ◦C and pH 4.5; (C) UV-Vis of the mixture of CoMnOx suspension, 50 mM MES buffer (pH 7.0),
100 µL 2,4-DCP (1.0 mg·mL−1), and 4-AP for laccase-like activity after incubation for 90 min at 37 ◦C;
(D) study on the steady-state kinetics of CoMnOx after incubation at 40 ◦C for 20 min (Lineweaver–
Burk reciprocal plot, n = 3).

The catalase-like activity of CoMnOx was determined by the degradation of H2O2. The
results show that the intensity of absorbance is not changed with the increase in time when
only H2O2 exists. This indicates that the H2O2 is not degraded. However, the intensity of
absorbance decreases as time increases for the CoMnOx + H2O2 system, and bubbles are
produced simultaneously, proving that CoMnOx has catalase-like activity (Figure 2B).
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As for the laccase-like activity of CoMnOx, 2,4-DCP was used as a substrate, and
the color of the CoMnOx + 2,4-DCP + 4-AP system changes from colorless to red. The
intensity of absorbance presents an increase first and then a decreasing trend from 400 nm
to 600 nm, and a strong UV-Vis absorption peak at 510 nm is observed in Figure 2C. This
indicates that CoMnOx has specific laccase-like activity, which may be applied in the field
of biosensing [37].

3.2.2. Kinetic Studies

The oxidase-like catalytic efficiency was investigated by steady-state kinetics under
optimal conditions [21]. Typical Michaelis–Menten curves were studied under different con-
centrations of TMB [38]. The typical Lineweaver–Burk equation is Y = 0.05529 + 0.01199X.
Based on the Lineweaver–Burk equation, the Km of CoMnOx is 0.0022 mM and the Vmax
value is 0.1809 µM·s−1 (Figure 2D). Compared to other literature (Table S1), the Km value
of CoMnOx is lower than that of other nanozymes, indicating that CoMnOx has stronger
affinity toward TMB.

3.2.3. Catalytic Mechanisms

N2 purging experiments and reactive oxygen species (ROS) scavenging experiments
were carried out to investigate the catalytic oxidation mechanism. The role of dissolved
oxygen in the catalytic oxidation reaction of CoMnOx was studied under different atmo-
spheric conditions (O2, N2, and air). The absorbance increased under the O2 atmosphere
(Figure 3A). However, the catalytic activity was inhibited under the N2 atmosphere. This
indicates that O2 plays a key role in the oxidase process of CoMnOx.

The oxidase-like catalytic processes of CoMnOx were further determined by changing
different scavengers [39]. Different radical scavengers were employed to investigate reactive
oxygen species (ROS) formed during the oxidase-like reaction. Ethylenediaminetetraacetic
acid (EDTA), isopropanol (IPA), p-benzoquinone (PBQ), and sodium azide (NaN3) were
used as scavengers of oxygen vacancy (OV), hydroxyl radical (·OH), superoxide anion
(O2

−), and singlet oxygen (1O2), respectively. The absorbances decreased when increasing
the concentration of the scavengers (EDTA, IPA, PBQ, and NaN3), indicating that the
catalytic oxidation of CoMnOx is related to OV and the other three kinds of ROS (Figure 3B).
Compared with the results of other radical scavengers, the absorbance was most severely
decreased after PBQ addition. The intensity of absorbance almost dropped to zero when
the PBQ was up to 10 mM. The results show that O2

− plays the most important role.
Figure 3C–E and Table S2 show that the Co2+/Co3+ ratio increases from 0.407 to 0.726

during the reaction and, thus, the content of Co2+ increases significantly in the CoMnOx +
TMB system. This is because CoMnOx can catalyze TMB to oxTMB, making an electron
transfer from TMB to Co3+. The surface Mn2+/Mn3+ ratio of CoMnOx slightly increases
during catalytic oxidation. According to Table S3, the proportion of oxygen vacancies
increases from 17.15% to 26.57% during the catalytic reaction, while the proportion of
surface lattice oxygen decreases from 72.97% to 64.17%. The increase of oxygen vacancy
during the reaction might optimize the adsorption energy of the reaction substrate on the
surface of CoMnOx. The decrease of surface lattice oxygen indicates that lattice oxygen can
take part in the oxidase reaction. O2 molecules adsorbed on the surface of CoMnOx are
activated to produce a large amount of O2

−. Then, O2
− can extract acidic hydrogen from

TMB to produce the blue product oxTMB. Meanwhile, TMB is adsorbed and oxidized to
the blue product oxTMB via Co3+, and Co3+ is reduced to Co2+ via electron transfer. Finally,
the CoMnOx nanozyme is regenerated (Figure 3F). Therefore, reasonable mechanisms for
the oxidase-like activity are speculated and presented as follows:

Mn2+ + O2 → Mn3+ + O2

Co3+ + TMB → Co2+ + oxTMB

O2
− + TMB → oxTMB
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Co2+ + Mn3+ → Co3+ + Mn2+
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CoMnOx showing oxidase-like activity.

3.3. Colorimetric Sensing

Colorimetric methods for the analysis of ziram and Cu2+ were further established using
the oxidase activity of CoMnOx. Compared with the absorbance of the TMB + CoMnOx
system, the absorbance at 652 nm decreases slowly with the increasing concentration of
ziram in the range of 5~280 µM (Figure 4A). Figure 4B reveals that the linear relationship
is Y = 0.0054 + 8.7715X (R2 = 0.9902). According to the LOD equation (3δ/S, where δ is
the standard deviation of the blank solution and S is the slope of the calibration curve),
the LOD of ziram is 1.475 µM. These results reveal that the sensing platform for ziram
has a wider linear range compared to the previous reports listed in Table S4. Figure 4C
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shows that the absorbance of CoMnOx + TMB + ziram + Cu2+ gradually increases with
the increase of Cu2+ content. The UV absorbance of the reaction system can be restored by
adding Cu2+, which indicates that the interaction of ziram and Cu2+ may exist. Figure 4D
shows that the linear range is 80~360 µM and the linear relationship is Y = 0.8510 + 5.3318X
(R2 = 0.9876). In comparison with the other studies shown in Table S5, the detection range
of Cu2+ is relatively wide.
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of 480 µL ziram (4 mM), 210 µL TMB, 150 µL CoMnOx, and HAc-NaAc buffer at 652 nm (n = 3);
(D) corresponding calibration curve of Cu2+.

3.4. Detection Mechanisms

In order to explain the detection mechanism clearly, the detection processes of ziram
and Cu2+ are revealed by virtual reality (VR) technology. A three-dimensional spatial
model of the detailed reaction process is established using a computer system (Figure 5A).
The user can wear VR glasses to observe and experience the specific detection process
(Figure 5B). Figure 5C displays the detail detection mechanism. Firstly, O2 is adsorbed on
the active sites of CoMnOx (I). Secondly, O2 is catalyzed by CoMnOx to produce O2

− due to
the electron transfer of Co and Mn elements (II). Thirdly, TMB is oxidized by O2

− to form
oxTMB. Meanwhile, the color is changed from colorless to blue (III). Fourthly, the interaction
between ziram and oxTMB is formed, and the color is returned to colorless after adding
ziram (IV and V). According to the structure of ziram (Figure S5), the negative charge center
N atom of ziram can produce an interaction with the oxTMB cationic radicals. At the same
time, the two strong electron-donating methyl groups of ziram and the electronegative
center of N atom, can transfer the electron to oxTMB and make the blue color lighter.
Moreover, the produced O2

− cannot oxidize the reduced oxTMB due to the interaction
between ziram and oxTMB. Fifthly, the coordination effect of Cu2+ and ziram can get rid of
the interaction of ziram and oxTMB, making the color return to the blue. Moreover, the
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detection mechanisms of ziram and Cu2+ based on CoMnOx are also revealed in Figure 5D
and the supporting video.
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− after adding ziram; VII: interaction of Cu2+ and ziram; VIII: recovery

of oxidase-like activity; (D) detection mechanisms of ziram and Cu2+ based on CoMnOx.

3.5. Smartphone Platform for Target Analysis

The object detection model is established based on the object recognition and posi-
tioning algorithm of deep learning. The colors of the cuvette photos are automatically
extracted and classified by the model, and the corresponding Red-Green-Blue (RGB) or Hue-
Saturation-Value (HSV) values are calculated. Users only need to input the corresponding
concentrations of detected objects and the number of samples, and the target linear curves
of RGB or HSV values and the concentrations of detected objects are fitted automatically.
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As shown in Figure 6, the blue color becomes lighter and brighter when ziram is added
into the system. The photos of the colorimetric results are uploaded to the smartphone,
and the values of RGB and HSV can be recognized automatically by the artificial intelli-
gence program. Compared with other fitting results, the H value and ziram concentration
are used for linear fitting due to the highest correlation coefficient. Finally, the linear
equation of Y = 203.7802 − 0.1237X (R2 = 0.9923) is generated automatically (Figure 6A),
which can be used for on-site and timely ziram detection. Similarly, the smartphone can
also detect the concentration of Cu2+. Compared with other fitting results, the G value
and Cu2+ concentration present the highest correlation coefficient. The linear equation of
Y = 152.6481 − 0.6496X (R2 = 0.9915) is obtained for Cu2+ detection (Figure 6B).
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3.6. Real Sample Analysis

Environmental samples of ziram and Cu2+ are simulated by the standard addition
method to prove the practicability of the platform. Compared with the standard values of
ziram, the recovery ranges from 96.60% to 102.18%, and the relative standard deviations
(RSD) range from 1.04% to 3.67% (n = 3) (Table S6). As for Cu2+ detection (Table S7), the
recovery is between 98.73% and 100.42%, and the RSD ranges from 0.52% to 4.69% (n = 3).
These results confirm the applicability of the intelligent platform in real sample detection.

3.7. Selectivity and Stability Assay

Interfering pesticide substances of 2,4-dichlorophenoxyacetic acid, glufosinate ammo-
nium, ethrel, carbendazim, acetamiprid, and atrazine are measured based on the detection
platform (Figure S6A). In addition, the concentrations of these species are 100 times higher
than that of ziram. The absorbance of each interfering substance is unchanged compared
to the blank, except ziram. These results indicate that CoMnOx has excellent specificity
for ziram detection. To evaluate Cu2+ sensing selectivity, Na+, Mn2+, Mg2+, Zn2+, Ca2+,
K+, Al3+, Pb2+, and Cd2+ (their concentrations are 100 times higher than that of Cu2+) are
used as interfering substances (Figure S6B). In comparison with other metal ions, only the
combination of Cu2+ and ziram can restore the absorption. These results show that the
sensor has a high selectivity for Cu2+ detection.

The stability and reproducibility of the oxidase activity of CoMnOx were also tested. As
shown in Figure S5C, CoMnOx can maintain high activity even after 60 days, indicating that
CoMnOx has good stability. In addition, 10 batches of CoMnOx nanoflowers are synthesized
repeatedly and their enzyme activities are measured (Figure S6D). The results show that
the relative standard deviation (RSD) of different batches of CoMnOx nanoflowers is only
3.19%, which indicates that CoMnOx has good reproducibility (Figure S6D).

4. Discussion

The CoMnOx nanozyme is designed and synthesized by hydrothermal reaction and
high-temperature calcination methods. The obtained flower-shaped CoMnOx presents
three kinds of nanozyme activities, namely oxidase-, catalase-, and laccase-like activities.
Among them, the oxidase-like activity is studied in detail. In addition, the highest oxidase-
like activity of CoMnOx is presented at a pH of 4.5 and temperature of 40 ◦C. Moreover,
the oxidase-like catalytic efficiency was investigated by steady-state kinetics under optimal
conditions. The Vmax value is 0.1809 µM·s−1 and the Km of CoMnOx is 0.0022 mM, which
is much lower than that of other nanozymes due to their stronger affinity toward TMB.
The high oxidase-like activity is attributed to the changed valence state of Co and Mn
elements. During the reaction, the Co2+/Co3+ ratio increases from 0.407 to 0.726 and the
surface Mn2+/Mn3+ ratio of CoMnOx is also slightly increased. Moreover, the proportion
of oxygen vacancies increases from 17.15% to 26.57% during the catalytic reaction, while
the proportion of surface lattice oxygen decreases from 72.97% to 64.17%. In detail, O2
molecules adsorbed on the surface of CoMnOx are activated to produce a large amount of
ROS (·OH, O2

−, and 1 O2), especially O2
−. According to the changes of oxygen species,

some lattice oxygen can take part in the oxidase reaction to produce O2
−, and lattice oxygen

is changed to oxygen vacancies. O2
− can extract acidic hydrogen from TMB to produce

the blue product oxTMB. Meanwhile, TMB is adsorbed and oxidized to the blue product
oxTMB via Co3+, and Co3+ is reduced to Co2+ via electron transfer. CoMnOx, as an oxidase-
like catalyst, can remain unchanged after the reaction. In other words, the nanozyme is
regenerated after the reaction.

Based on its excellent oxidase activity, an “on-off-on” colorimetric sensor for the
detection of ziram and Cu2+ has been developed. The absorbance at 652 nm decreases
slowly after adding ziram. The reason might be that the active sites of CoMnOx are covered
by ziram. However, the absorbance of the CoMnOx + TMB + ziram is restored gradually
after the addition of Cu2+, indicating that the active sites of CoMnOx are uncovered due
to the interaction of ziram and Cu2+. The linear detection ranges for ziram and Cu2+ are
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5~280 µM and 80~360 µM, and the detection limits are 1.475 µM and 3.906 µM, respectively.
The detection of ziram shows wider detection ranges and lower detection limits than
that in other studies (Table S4), and the detection of Cu2+ also shows a relatively wide
detection range compared with other studies (Table S5). Moreover, an intelligent detection
platform has further been established by combining the colorimetric signals with a portable
smartphone. The developed ziram and Cu2+ portable smartphone platform can be used in
environment analysis instantaneously.

5. Conclusions

In summary, flower-like CoMnOx has been successfully synthesized by hydrothermal
synthesis and high temperature calcination. The obtained CoMnOx presents OXD-, CAT-,
and laccase-like activities. The reaction kinetics and mechanisms have been studied deeply.
The reaction kinetic results show that CoMnOx has a strong affinity toward TMB with a
low Km (0.0022 mM). The reaction mechanisms show that TMB can be oxidized to oxTMB
by a large amount of generated O2

−. Meanwhile, TMB is also oxidized directly to the blue
product oxTMB via the high redox ability of Co species. Based on its excellent oxidase
activity, an “on-off-on” colorimetric sensor for the detection of ziram and Cu2+ has been
developed. The linear detection ranges for ziram and Cu2+ are 5~280 µM and 80~360 µM,
and the detection limits are 1.475 µM and 3.906 µM, respectively. The detection of ziram and
Cu2+ shows wider detection ranges and lower limits than that in other studies. Moreover, a
ziram and Cu2+ portable smartphone platform has been constructed successfully and used
in on-site and timely environment analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios14040178/s1, Figure S1: XRD image of CoMnOx; Figure S2:
FTIR spectrum of CoMnOx; Figure S3: (A–D) XPS full, (B) Mn 2p, (C) Co 2p, and (D) O 1s spectra
of CoMnOx; Figure S4: Optimization of reaction conditions based on CoMnOx oxidase-like activity:
(A) pH; (B) temperature; (C) material concentration; (D) TMB concentration (n = 3); Figure S5:
Potential interference of other substances for the detection of (A) ziram and (B) Cu2+; (C and D)
stability and reproducibility of the nanozyme for target sensing; Table S1: Comparison of steady-state
kinetic parameters for the oxidase-like activity of CoMnOx and other nanozymes; Table S2: XPS
analysis results of Mn 2p and Co 2p; Table S3: XPS analysis results of O 1s; Table S4: Comparison
of different methods for the detection of ziram; Table S5: Comparison of different methods for the
detection of Cu2+; Table S6: Assay results of ziram in soil and water samples; Table S7: Assay results
of Cu2+ in soil and water samples. [40–66].
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