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Abstract: The discrimination and recognition of biological targets, such as proteins, cells, and bacteria,
are of utmost importance in various fields of biological research and production. These include areas
like biological medicine, clinical diagnosis, and microbiology analysis. In order to efficiently and
cost-effectively identify a specific target from a wide range of possibilities, researchers have developed
a technique called differential sensing. Unlike traditional “lock-and-key” sensors that rely on specific
interactions between receptors and analytes, differential sensing makes use of cross-reactive receptors.
These sensors offer less specificity but can cross-react with a wide range of analytes to produce a
large amount of data. Many pattern recognition strategies have been developed and have shown
promising results in identifying complex analytes. To create advanced sensor arrays for higher
analysis efficiency and larger recognizing range, various nanomaterials have been utilized as sensing
probes. These nanomaterials possess distinct molecular affinities, optical/electrical properties, and
biological compatibility, and are conveniently functionalized. In this review, our focus is on recently
reported optical sensor arrays that utilize nanomaterials to discriminate bioanalytes, including
proteins, cells, and bacteria.

Keywords: pattern recognition; nanomaterials; gold nanoparticle; graphene oxide; quantum dot

1. Introduction

In recent decades, natural/artificial specific receptors have been studied for the analy-
sis of particular analytes based on the lock-and-key principle in many critical fields, includ-
ing food safety [1–11], environmental monitoring [12–17], and medical diagnosis [18–31].
However, the production of highly specific receptors remains a challenge for a large range
of analysis targets, especially when facing complex biological samples containing proteins,
microorganisms, and cells.

Recently, pattern recognition has been intensively studied, also known as differential
sensing or “artificial noses/tongues” [32–37]. Different from traditional molecular recog-
nition based on one specific receptor, differential sensing was constructed on a receptor
library of low-specific recognizing elements, each of which would respond to a certain
target to different degrees [38–40]. By collecting the response signals, we can establish a
fingerprint toward characteristic patterns for the individual analytes or complex mixtures.
To perform differential sensing, a sensor array was constructed as the central component.
Through array analysis, data from various sensing units could be gathered concurrently
and subsequently scrutinized to facilitate target detection and recognition (Scheme 1). The
number of channels within the array is a crucial factor influencing the discrimination
capacity of the differential sensor. An illustrious example highlighting this principle is the
olfactory system of a dog, which possesses approximately 4 billion olfactory receptor cells,
an astonishing 45 times more than that of a human. The signals detected by these receptors
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have the potential to generate even larger quantities of interconnected data groups through
their intricate associations with one another.
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There are two main obstacles to the development of artificial sensors: Firstly, it is
difficult to construct a large-scale array to collect adequate signals compared with natural
systems. Secondly, the sensitivity is usually hindered by the relatively high blank noise
signal or low signal read-out, especially in biological samples. Thus, there have been
increasing research demands to develop novel biosensing strategies for higher sensitivity
and larger scale of sensor arrays [37]. In recent decades, nanomaterials have become a
shining star in the research of a growing number of biosensor strategies [41–50]. The
emergence of fast-growing nanomaterials [51], such as metal nanoparticles [48,52–56],
carbon nanomaterials [44,46,57,58], and quantum dots [59–61], has opened up exciting
possibilities for novel sensor platforms [62–64]. These nanomaterials possess unique
electronic, magnetic, and light properties, making them highly desirable for the field of
differential sensing. Table 1 displays the main characteristics of the common nanomaterials
studied for optical differential sensing.

Table 1. The main characteristics of the common nanomaterials studied for optical differential sensing.

Nanomaterials Biological Interaction Optical Signal

AuNPs Competitive adsorption,
Au-S modification

fluorescence quenching,
Colorimetric signal due

to aggregation

Graphene oxide (GO) Competitive adsorption,
Modification through -COOH fluorescence quenching

QDs Bind nonspecifically via
electrostatic interactions

Fluorescence emission with different
lengths and high quantum yield

In this review, we present an overview of the applications of functional nanomaterials
in optical sensor arrays, including colorimetric and fluorescence methods. These arrays
can be categorized into gold nanoparticle-based sensor arrays, graphene oxide (GO)-based
sensor arrays, quantum dot (QD)-based sensor arrays and other metal nanoparticle-based
sensor arrays. Table 2 presents the timeline for the historical development of optical dif-
ferential sensing based on nanomaterials for biological analysis. Compared to the former
literature, this review aims to provide a comprehensive understanding of the advance-
ments, challenges, and future prospects in this rapidly evolving field. We here mainly
focus on three main significant advantages and contributions of nanomaterials for the
development of sensor arrays: Firstly, by manipulating their physical and chemical prop-
erties as well as surface modifications, functional nanomaterials enhance signal output,
sensitivity, and selectivity. Secondly, the unique properties and interaction mechanisms
of functional nanomaterials enable sensor arrays to detect multiple target molecules and
achieve multiparameter analysis. Additionally, functional nanomaterials allow for efficient
analysis of complex samples by integrating multiple sensing mechanisms such as fluores-
cence resonance energy transfer and surface plasmon resonance. Thus, the integration of
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functional nanomaterials into sensor arrays holds great promise in advancing the field of
optical sensing, offering new avenues for exploring various detection technologies and
expanding the range of potential applications.

Table 2. Development of optical differential sensing based on nanomaterials for biological analysis in
different timelines.

Year Development of Optical Differential Sensing Based on Nanomaterials for Biological Analysis

2007 Rotello’s group developed a sensor array consisting of six non-covalent gold nanoparticle-fluorescent polymer
conjugates for identification and quantitative differentiation of proteins [65]

2010 Rotello and co-workers developed enzyme-amplified array sensing (EAAS) with NPs to dramatically increase the
sensitivity for protein identification [38]

2012 Rotello and co-workers also achieved colorimetric differentiation of proteins with catalytically active NPs used for both
recognition and signal transduction/amplification [66]

2012 Rotello and co-workers also developed gold-nanoparticle green-fluorescent protein (NP−GFP)-based sensor arrays for
the identification of mammalian cell types and cancer states [67]

2012 Dravid, Chou, and De developed nanoscale graphene oxide (nGO) as artificial receptors for array-based protein
identification [68]

2012
Fan, Hu, and co-workers employed the combination of fluorescently labeled adaptive “ensemble aptamers”
(ENSaptamers) and nGOs for high-precision identification of a wide range of bioanalytes, including proteins, cells, and
bacteria [69]

2014 Ouyang and co-workers have synthesized novel blue-emitting ColAu NCs and Mac-Au NCs for discriminating
proteins [70]

2014 Qu and Ren utilized a sensing array composed of seven luminescent nanodots, combined with graphene oxide, for
protein recognition [71]

2015 He and Chang constructed an array-based protein discrimination system by using eight Au NDs as efficient protein
receptors and competent signal transducers [72]

2016 Zhang and Tang develop a multicolor quantum dot (QD)-based multichannel sensing platform for rapid identification
of multiple proteins [73]

2017 Shi and Wu employed a colorimetric sensor array consisting of four gold nanoparticles (AuNPs) with diverse surface
properties for the rapid identification of microorganisms [74]

2018 Pu, Ren and Qu developed a sensitive and effective method for pattern recognition of proteins using nanozyme
(g-C3N4) as a receptor [75]

2022 Li and Han utilized five fluorescent positively charged polymers (P1–P5) and negatively charged graphene oxide (GO)
for differentiating between different proteins [76]

2022 Huang, Han and Li utilized three modified polyethyleneimine and negatively charged graphene oxide for
differentiating different bacteria [77]

2023 Tian and Wu utilized silver nanoparticles for differentiating proteins in various osmolyte solutions [78]

2024 Yang employed DBCO-UCNPs for the differentiation of different pathogens in terms of phenotyping classification and
antibiotic resistance identification [34]

2. Pattern Recognition Methods for Differential Sensing

Optical signals produced by the differential sensing array were analyzed by using
pattern recognition methods such as linear discriminant analysis (LDA) [79], principal com-
ponent analysis (PCA) [80], and hierarchical clustering analysis (HCA) [81]. A schematic
representation of the above methods is shown in Scheme 2.

Linear discriminant analysis is a supervised pattern recognition method that can be
used for both dimensionality reduction and classification [82]. The means and covariance
matrices of the training data set are used to establish the discriminant functions. Once
the discriminant functions are built, a prediction data set is tested by the discriminant
functions to validate the classification accuracy. In order to ensure classification accuracy,
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the prediction data set should be different from the training data set; otherwise, LDA may
produce optimistic results.

Principal component analysis (PCA) is an unsupervised method for dimensionality
reduction of multivariate data. It can compress a multi-dimensional data set into a lower
dimensional space and rank the new dimensions according to their importance. Often, a
successful PCA may produce two or three principal components, which are convenient
for producing score plots for the data set [83]. It is important to note that PCA is more
suitable for the analysis of linear data; however, it is possible to fail the classification of
nonlinear data.

Similar to PCA, hierarchical clustering analysis (HCA) is an unsupervised pattern
recognition method. There are three basic steps for HCA: Firstly, the multivariate distances
between all samples are calculated. Afterward, clustering is performed by establishing a
hierarchy of points, in which similar distant points are joined. Finally, a two-dimensional
dendrogram is shown that allows the visual examination of clustering relationships of all
samples [84]. Because HCA employs all the sensor array data to represent the patterns, a
poor result may be produced when the data set is noisy. HCA is most suitable for qualitative
analysis of relationships in data.
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3. Gold Nanoparticle-Based Sensor Arrays

Gold nanoparticles (AuNPs) have been widely studied in the development of biosen-
sors due to their unique optical and chemical properties, good biocompatibility, and easy
surface functionalization [86–88]. Together with organic or biological molecules, AuNPs
can produce differential response signals for target molecules [65,67,74,89–113].

3.1. Fluorescence Sensing Based on AuNPs

AuNPs are widely applied in biosensors as powerful fluorescence quenchers [114–120].
The competitive bindings between the analytes and the indicators to AuNPs lead to distinct
fluorescence response fingerprints for many analytes, which could be identified by pattern
recognition methods with a high degree of accuracy [121]. These AuNPs work as powerful
fluorescence quenchers for fluorescence indicators, as well as the recognition elements for
target analytes. The interactions between nanoparticle–indicators and nanoparticle-analytes
could be tuned by modifying different groups on the surface of AuNPs.
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A sensor array was developed for the differentiation of normal and cancerous cell lines,
based on conjugates between three structurally related cationic AuNPs and the fluorescent
polymer [90,122]. The nanoparticles quench the fluorescence of the polymer. In the presence
of mammalian cells, there is competitive binding between nanoparticle-polymer complexes
and cell types. The polymer was displaced with mammalian cells from the nanoparticle
surface, generating a fluorescence response. Four different types of human cancer cells
were discriminated by using LDA. The results showed a 100% accuracy of detection. The
sensor array can also effectively differentiate isogenic cell types. Later, the same group
designed a sensor array composed of AuNP-GFP complexes for discrimination between
normal and metastatic cells and tissues [67]. Rather than using whole cells as the target
analytes, the lysates isolated from tissues have the advantage of increased homogeneity of
the test samples, which leads to reduced error in identification, increased reproducibility,
and higher sensitivity. This sensing platform needed a small amount of sample (as little as
200 ng of cell- or tissue-lysed proteins).

The Rotello group synthesized two types of AuNPs, one with a cationic hydropho-
bic functional group and the other with a hydrophilic functional group [70] (Figure 1).
Three fluorescent proteins with negative surface charge can bind to these particles through
electrostatic interactions, resulting in fluorescence quenching. When exposed to bacteria
biofilms, AuNP-fluorescent protein conjugates are disrupted to produce different colored
fluorescence patterns. The multichannel sensor was able to completely differentiate six bac-
terial biofilms, including nonpathogenic and pathogenic bacteria. The performance of the
sensor was further tested by the identification of biofilms in a mixed bacteria/mammalian
cell in vitro wound model.
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Figure 1. (Left) Schematic illustration of the multichannel sensor using AuNP-fluorescent protein
conjugates that are disrupted in the presence of biofilms. (Right) The sensor composition. (A) Sensor
elements and molecular structures of the functional ligands of NP1 and NP2. (B) Fluorescence
titration with an equal molar mixture of NP1 and NP2. Reprinted from [70] with open access.

3.2. Colorimetric Sensing Based on AuNPs

The aggregation of AuNPs results in a visible color change from red to blue, which
provides a versatile platform for colorimetric sensing of target analytes [96,123–125]. Zhang
and co-workers created a colorimetric sensor array with aptamer-protected AuNPs as
recognition elements [126]. The aptamer-protected AuNPs were able to resist aggregation
in the presence of a high-concentration salt. Upon the addition of different target proteins,
differential response patterns were obtained. This sensitive array sensing system can
discriminate seven proteins with the naked eye at the 50 nM level. Similar approaches were
also used for the analysis of many bioanalytes [127–129]. These sensor arrays exhibited an
excellent ability to recognize proteins, bacteria, and mammalian cells.

Chen et al. constructed a DNA-AuNPs colorimetric sensor array for rapid and sensitive
identification of proteins [128]. The sensor array composed of only two sensing elements
could discriminate 12 proteins at the 50 nM level with the naked eye. Moreover, the proteins
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in human serum and protein mixtures were well-differentiated with 100% accuracy. Huang
and co-workers also exploited DNA-AuNPs nanoconjugates to differentiate cell types [129].
The cross-reactive receptors (DNA-AuNPs) are employed to bind the different cells that
produce differential color changes of AuNPs. The nanoplasmonic effect of AuNPs was
enhanced via seeded growth, which resulted in the effective distinction of various cell lines
with dark-field microscopy or even the naked eye. The results were analyzed by LDA,
which showed 100% accuracy.

Wu and Shi [28] developed a colorimetric sensor array for rapid microorganism identi-
fication. The array utilized four distinct AuNPs as sensing elements, resulting in noticeable
color shifts upon interaction with microorganisms. Through LDA, 15 microorganisms were
successfully differentiated based on their unique response patterns. The sensor array also
demonstrated the ability to discern mixtures of microorganisms. This straightforward
and expedient method provides results within 5 s, making it suitable for applications in
pathogen diagnosis and environmental monitoring.

A colorimetric sensor array was developed using D-amino acid (D-AA)-modified
AuNPs as probes (Au/D-AA) for bacteria fingerprinting [130]. The aggregation of AuNPs
is triggered by the metabolic activity of bacteria towards D-AA, allowing differentiation of
eight types of bacteria and quantitative analysis of a single bacterium. The sensor array also
enables rapid colorimetric antibiotic susceptibility testing (AST) by monitoring bacterial
metabolic activity toward different antibiotic treatments, which has implications for clinical
applications and antibiotic stewardship (Figure 2).
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Figure 2. Principle of the Developed Assay Based on the Bacteria Metabolism-Triggered Consumption
of dD-AA (a), Strategies for Multiple Bacteria Identifications through LDA (b) and AST through the
Colorimetric Change of Probes after the Incubation with Bacteria and Antibiotic (c). Reprinted with
permission from [130]. Copyright 2022 American Chemical Society.

Liu and co-workers presented an extensible multidimensional sensor using the con-
jugates of nonspecific dye-labeled DNA sequences and AuNPs as receptors [127]. The
changes in the fluorescent and colorimetric signals were generated by the addition of the
target proteins due to the competitive binding. The array has a strong ability to distinguish
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11 protein analytes with a detection limit as low as 50 nM. Also, 10 proteins at 1.0 µM were
well-identified when the proteins were spiked into the human urine sample.

3.3. Differential Sensing Based on Gold Nanoclusters (AuNCs)

More recently, AuNCs have attracted much interest in biosensing applications [131–134].
Compared with semiconductor quantum dots or other metal NDs, AuNCs possess several
distinct features, such as photophysical/chemical properties, good stability, and excellent
biocompatibility [135–142]. Several studies utilized AuNCs for the construction of differential
sensing strategies [72,143–145]. Ouyang and co-workers designed a visual sensor array based
on blue-emitting Col-AuNCs and Mac-AuNCs for the discrimination of proteins [70]. The
colorimetric and fluorometric signal changes were recorded after the addition of the target
proteins. Either or both proteins and protein mixtures after polyacrylamide electrophoresis
were well-discriminated by LDA.

Luo’s group also developed a protein sensing platform using six dual ligand func-
tionalized AuNCs as sensing receptors [144], by functionalizing them with different amino
acids. When they compared the relative fluorescence changes with the LDA method, ten
proteins were successfully discriminated. Wu and co-workers [146] developed a fluores-
cence sensor array based on metal ion-AuNCs for the identification of proteins and bacteria.
The sensor array successfully differentiated nine proteins with different concentrations and
identified five different types of bacteria, demonstrating its potential for rapid and sensitive
biomolecule sensing.

A pH-controlled histidine-templated AuNC (AuNCs@His) [147] was developed for a
fluorescent sensor array that responds to reactive oxygen species (ROS) for distinguishing
cancer cell types and their proliferation states. The sensor array exhibited excellent perfor-
mance in accurately differentiating cancer cell types and their proliferation states, indicating
great potential for precise cancer diagnosis (Figure 3). Li and Zhu [148] developed a mul-
tichannel sensor array for efficient identification of bacteria based on three antimicrobial
agents (vancomycin, lysozyme, and bacitracin) functional AuNCs. This sensing platform
successfully differentiated seven pathogenic bacteria, different concentrations of the same
bacteria, and even bacterial mixtures, offering a rapid and reliable method for diagnosing
urinary tract infections.
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In summary, gold nanoparticles are good candidates for the development of sensor
arrays for biological analysis, and the main characteristics of the different sensor arrays are
shown in Table 3.

Table 3. Summarization of Gold Nanoparticle-Based Sensor Array Construction Strategies with
Different Artificial Receptors (ARs).

Nanomaterials Strategies Numbers
of ARs Signals Data Analysis

Methods Analytes LOD Ref.

AuNPs
Competitive binding between
nanoparticle-polymer
complexes and cells

3 Fluorescence LDA Cells n.a. [90]

AuNPs Competitive binding between
NP-GFP complexes and cells 6 Fluorescence LDA Cells 5000 cells [91]

AuNPs

Proteins displace β-Gal from the
β-Gal/AuNP complex to restore
its catalytic activity towards the
fluorogenic substrate

6 Fluorescence LDA Proteins 1 nM [38]

AuNPs
Competitive binding between
GFP and analytes to the
particle surface

8 Fluorescence LDA Cells, tissues 200 ng/
1000 cells [67]

AuNPs

Different aggregation behaviors
and color changes when the
aptamer-protected AuNPs
mixed with proteins

3 Absorbance LDA Proteins n.a. [126]

AuNPs
Competitive interactions
between bacterial species and
the cationic AuNPs,

1 Fluorescence LDA Bacteria n.a. [149]

Col-Au NCs and
Mac-Au NCs

Different interactions between
proteins and the Au
NCs surface

2 Fluorescence LDA Proteins n.a. [150]

AuNPs
Differential interactions between
DNA-AuNPs and cells result in
distinct Au growth reactions

6 Absorbance LDA Cells n.a. [129]

AuNPs
Competitive binding between
DNA and proteins from the
surface of AuNPs

3 Fluorescence,
Absorbance LDA, HCA Proteins 50 nM [127]

AuNDs Differential interactions of
proteins with AuNDs 8 Fluorescence LDA, HCA Proteins n.a. [72]

AuNPs

Competitive binding between
the fluorescent proteins
and the cell lysate analytes
to BenzNPs

1 Fluorescence LDA, HCA Cells 1000 cells [92]

AuNPs

Differential interactions of
microorganisms and AuNPs
caused aggregation
of four sensing elements at
different degrees

4 Absorbance LDA Microorganisms n.a. [28]

AuNCs

Differential interactions
between free
proteins and capping proteins
on Au NCs

5 Phosphorescence LDA, HCA Proteins n.a. [143]

AuNPs

Different proteins triggered the
DNA-protected AuNPs to
exhibit different aggregation
behaviors caused various
solution color change

2 Absorbance LDA, HCA Proteins 50 nM [128]

AuNCs

Differential binding between
proteins and AuNCs resulting
in the fluorescence change
of AuNCs

6 Fluorescence LDA Proteins,
serum 10 nM [144]
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Table 3. Cont.

Nanomaterials Strategies Numbers
of ARs Signals Data Analysis

Methods Analytes LOD Ref.

AuNCs
Differential interactions
between the protein and the
metal ion-AuNCs

6 Fluorescence LDA Proteins,
bacteria n.a. [146]

AuNPs

Aggregation of AuNPs induced
by the differential metabolic
capabilities of bacteria towards
D-amino acids (D-AAs)

3 Absorbance LDA, HCA Bacteria n.a. [130]

AuNCs Different oxidation of
AuNCs@His by ROS 3 Fluorescence PCA, HCA Cells n.a. [147]

AuNCs
Fluorescence intensity of
AuNCs was quenched to
varying degrees by the bacteria

3 Fluorescence LDA, HCA Bacteria 105

CFU/mL
[148]

4. Graphene Oxide (GO)-Based Sensor Arrays

GO is a chemically exfoliated graphene derivative, which can be utilized as a fluorescence
quencher for various fluorescent probes, such as fluorescent polymer [76,151,152], fluorescent
protein [68], metal nanodots [153], and fluorescently labeled DNA [69,154–158]. More impor-
tantly, GO showed differential affinity toward different molecules or materials [159,160]. Thus,
GO has been widely applied as an ideal artificial receptor for the construction of nose/tongue
sensors [71,75,150,161–166], as shown in Table 4.

Table 4. Summarization of Graphene Oxide (GO)-Based Sensor Arrays Construction Strategies with
Different Artificial Receptors (ARs).

Nanomaterials Strategies Numbers
of ARs Signals Data Analysis

Methods Analytes LOD Ref.

nGO

Proteins displace
fluorophores from the nGO
surface through
binding competition

5 Fluorescence LDA Proteins 10 nM [68]

nGO
Competitive binding
between ssDNA-nGO
complexes and analytes

7 Fluorescence LDA Proteins, cells
and bacteria 5 µM [69]

GQDs, QDs,
CDs-COOH,
PEI-CDs,
BSA-AuNCs,
Lys-AuNCs, AgNCs
and GO

Competitive binding
between luminescent
nanodots and analytes to
GO surfaces

7 Fluorescence LDA Proteins,
bacteria n.a. [71]

GQDs-COOH,
GQDs-NH2,
PEI-CDs, QDs,
BSA-AuNCs,
Lys-AuNCs and GO

Competitive binding
between luminescent
nanodots and cells to
GO surfaces

6 Fluorescence LDA Cells 200 cells [153]

GO
Competitive
interaction among GO,
AIEgen and biomolecules

7 Fluorescence PCA Microbes n.a. [167]

GO

Competitive
interaction among GO,
fluorescent polymers
and proteins

5 Fluorescence LDA Proteins n.a. [76]

GO
Competitive binding
between bacteria and GO
with fluorescent PEIs

1 Fluorescence LDA Bacteria OD600 = 0.125 [77]
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The differential sensor for protein detection was developed based on GO [68]. Initially,
fluorescent reporters (eGFP, pyronin Y, rhodamine 6G, acridine orange, rhodamine B) were
quenched when combined to GO, and then different proteins could displace the fluorophores
and restored different levels of fluorescence signal according to the affinity between GO
and the proteins. In their work, a novel kind of nanoscale GO (nGOs) with a near-uniform
dimension of 20 nm was applied, showing much better recognition capability than con-
ventional GO, because nGOs have a higher supramolecular response and replacement rate.
Their results showed that the nGO arrays can discriminate eight different proteins at 100 nM
and 10 nM, and the success rate was as high as 95% when analyzing 48 unknowns.

Fan and co-workers combined the adaptive “ensemble aptamers” (ENSaptamers)
and nGOs to develop a sensor array for high-precision identification of proteins, bacteria,
and cells [69]. Auguste and co-workers provided a sensing array for the identification
of healthy, cancerous, and metastatic human breast cells using six luminescent nanodot-
graphene oxide complexes as novel fluorescent nanoprobes [153]. The sensing system was
disrupted in the presence of breast cells, producing a distinct fluorescence response pattern.
The multichannel sensor was capable of effectively identifying healthy, cancerous, and
metastatic human breast cells with as few as 200 cells. Tomita and co-workers constructed
a cross-reactive DNA-based array for one-step identification of antibody degradation path-
ways. The signature-based sensing platform was able to identify a broad range of degraded
antibodies, such as common features of native, denatured, and visibly aggregated anti-
bodies, complicated degradation pathways of therapeutic omalizumab upon time-course
heat-treatment, and the individual compositions of differently degraded omalizumab mix-
tures. Tang and Qin [167] developed a microbial lysate-responsive fluorescent sensor array
using luminogens featuring aggregation-induced emission characteristics (AIEgens) and
graphene oxide (GO). This combination effectively reduces background signals and en-
hances discrimination ability through competitive interactions among AIEgens, microbial
lysates, and GO. The sensor array successfully identified six microbes, including fungi,
Gram-positive bacteria, and Gram-negative bacteria.

Han and co-workers [77] developed a novel multichannel array using modified
polyethyleneimine and graphene oxide. This complex system enabled the successful
identification of 10 bacteria within minutes through electrostatic and hydrophobic inter-
actions. The sensor array also demonstrated the ability to measure bacterial concentra-
tions and identify mixed bacteria accurately. In biological samples such as urine, the
array achieved high accuracy. Han and co-workers [76] also designed five positively
charged poly(para-aryleneethynylene) (P1–P5) molecules to form electrostatic complexes
(C1–C5) with negatively charged graphene oxide (GO), effectively distinguishing between
12 proteins while employing machine learning algorithms. Moreover, these sensor arrays
accurately identified levels of Aβ40 and Aβ42 aggregates, including monomers, oligomers,
and fibrils, offering an attractive strategy for early Alzheimer’s disease diagnosis (Figure 4).
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5. Quantum Dot (QD)-Based Sensor Arrays

Based on their distinguished characteristics of good photostability, high quantum
yield, and long fluorescence lifetime, QDs have been extensively used in fluorescent
bioanalysis [161,168–171]. Rotello and co-workers developed a QD-based sensor for sens-
ing mammalian cell types and states [100]. The sensing system is composed of two quantum
dots and one gold nanoparticle. The quantum dots serve as transducers, which can be
quenched by the gold nanoparticle. Different cell types and states were successfully differ-
entiated by the sensor array (Figure 5).Biosensors 2024, 14, 170 13 of 25 
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Wang and Chen developed a fluorescent sensor array using imidazolium ionic liquids
(ILs) and ionic liquid-QD conjugates as semi-selective receptors for the discrimination
of proteins [172]. The IL sensing system was able to differentiate eight proteins at a
concentration of 500 nM with an accuracy of 91.7%. With the improvements of the sensitivity
and discrimination accuracy, the IL@QDs/QDs sensing system could distinguish eight
proteins with 100% accuracy at a very low concentration of 10 nM. Additionally, protein
mixtures and proteins spiked in human urine were well-discriminated by the IL@QDs/QDs
sensing system.

Yan and co-workers designed a multidimensional sensing device based on Mn-ZnS
QDs for the discrimination of proteins [173]. The triple-channel optical properties (fluo-
rescence, phosphorescence, light scattering) of Mn-ZnS QDs were utilized to achieve the
output signals. After interaction with target proteins, the changes in the triple-channel
optical properties of Mn–ZnS QDs were observed. The multidimensional sensing devices
were able to generate distinct patterns for different proteins. Eight proteins added to
human urine samples were successfully discriminated against with the aid of principal
component analysis.

Combination of different nanomaterials, Wu and Zhang developed a nanoparticle
quantum dot-based fluorescence sensor array for sensing proteins and cancer cells [174].
The sensor array consists of six types of nanoparticles (NPs, including CuO, ZnO, Eu2O3,
AuNPs, AgNPs, Au-Ag core-shell) and CdSe quantum dots (Figure 6). These NPs can
quench the fluorescence of CdSe quantum dots. The NP-QD interaction was disrupted by
the addition of proteins, leading to fluorescence turn-on or further quenching. Eight proteins
were readily differentiated by using LDA analysis. Moreover, protein quantification was
achieved with the limits of detection below 2 µM in the range of 2–50 µM. Qu and Ren [71]
designed seven fluorescent luminescent nanoprobes, including graphene quantum dots
(GQDs), CdTe quantum dots (QDs), carboxyl-carbon dots (CDs-COOH), polyethyleneimine
functionalized carbon dots (PEI-CDs), BSA-templated gold nanoclusters (BSA-AuNCs),
lysozyme-templated gold nanoclusters (LysAuNCs), and DNA-templated silver nanoclus-
ters (AgNCs), and they used graphene oxide (GO) as an excellent quencher with different
affinity to proteins and the nanoprobes. The discrimination ability of this array was tested by
analyzing eight proteins at low concentrations. Finally, 100% accuracy was achieved for the
identification of 48 unknown protein samples. The summary of quantum dot (QD)-based
sensor arrays is shown in Table 5.
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Table 5. Summarization of Quantum dot (QD)-based Sensor Arrays Construction Strategies with
Different Artificial Receptors (ARs).

Nanomaterials Strategies Numbers
of ARs Signals Data Analysis

Methods Analytes LOD Ref.

Mn–ZnS
QDs

Different interactions of
Mn–ZnS QDs with proteins 1

Fluorescence
phosphorescence
light scattering

PCA Proteins 0.5 µM [173]

QDs

Differential competitive and
selective non-covalent
interactions between
nanoparticles and cell surface

2 Fluorescence LDA Cells 10,000 cells [100]

CdTe QDs
Differential interactions
between analytes and
IL@CdTe QDs

5 Fluorescence LDA Proteins,
bacteria 10 nM [175]

CuO NPs, ZnO
NPs, Eu2O3 NPs,
AuNPs, AgNPs,
Au-Ag core-shell
and CdSe QDs

Protein presence disrupts
nanoparticle-QD interactions,
resulting in fluorescence turn
on or further quenching

6 Fluorescence LDA Proteins,
cells 5 µM [174]

6. Other Metal Nanoparticle-Based Sensor Arrays

Other metal nanoparticles, such as Fe3O4 NPs, AgNPs, MoS2, and CuS NPs, were
also prepared to develop sensor arrays for the discrimination of proteins, bacteria, and
cells [78,176–183]. Scientists fabricated dopamine and trimethylammonium functional-
ized Fe3O4 NPs, which were able to catalyze the oxidation of colorless ABTS to become a
green product in the presence of H2O2 [66]. When analyte proteins were added into the
mixture, the accessibility of reaction substrates to the NP surface was adjusted, leading
to a change in the catalytic efficiency. The Fe3O4 NP-based sensor array can identify ten
proteins at a concentration of 50 nM. Cui and co-workers developed a dynamically tunable,
low-background, and highly reproducible CL system based on luminol-functionalized
silver nanoparticles (luminol-AgNPs) for protein sensing [184]. Qu and Ren also utilized
AgNPs to construct sensor arrays for the recognition of proteins [185]. Although Ag-
NPs have some unique properties, their instability and toxicity limit their application in
bioanalysis. Ren and Pu developed a sensor array for the identification of proteins and
antibiotic-resistant bacteria utilizing CuS NPs and fluorescent dyes [186]. The sensing
platform showed excellent discrimination ability between antibiotic-resistant and antibiotic-
susceptible bacteria extracts.

Zhang and coworkers constructed quaternized magnetic nanoparticle (q-MNP)-fluorescent
polymer systems for the detection and identification of bacteria [187]. The complexes of the
q-MNP-fluorescent polymer were disrupted by the bacterial cell membranes, leading to a unique
fluorescence response. Eight bacteria were quantitatively discriminated with LDA with an
accuracy of 87.5% for 107 cfu/mL within 20 min. The sensor array was also used to identify
32 unknown bacteria samples with an accuracy of 96.8%. The summarization of the other metal
nanoparticle-based sensor arrays is shown in Table 6.

Table 6. Summarization of the Sensor Arrays Construction Strategies with Different Artificial
Receptors (ARs).

Nanomaterials Strategies Numbers
of ARs Signals Data Analysis

Methods Analytes LOD Ref.

Fe3O4 NPs

Differential interactions of
proteins with Fe3O4 NPs
affected the
accessibility of ABTS to the
NP surface

2 Fluorescence LDA Proteins 50 nM [66]
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Table 6. Cont.

Nanomaterials Strategies Numbers
of ARs Signals Data Analysis

Methods Analytes LOD Ref.

AgNPs

Different adsorption
capacity of proteins onto
luminol-AgNPs affected
the accessibility of H2O2 to
the NPs surface

1 Chemiluminescence PCA Proteins n.a. [184]

Quaternized
magnetic
nanoparticles
(q-MNP)

Competitive binding
between fluorescent
polymer and bacteria to GO
surfaces q-MNP

3 Fluorescence LDA Bacteria n.a. [187]

CuS NPs

Competitive
binding between analytes
and fluorescent dyes
towards CuS NPs

4 Fluorescence PCA Proteins,
bacteria n.a. [186]

AgNPs

The diversity in structure
and properties of various
proteins results in different
effects on the synthesis of
AgNPs under light
irradiation, leading to
AgNPs with distinct LSPR
absorption spectra

3 Absorbance PCA Proteins n.a. [185]

DBCO-UCNPs

Different bacteria exhibit
differences in metabolic
capability, sensitivity to
antibiotics, and surface
properties and thus lead
to discriminative responses

6 Fluorescence PCA, HCA, LDA Bacteria 105 CFU/mL [34]

7. Conclusions

The integration of nanomaterials in optical differential sensors has provided a powerful
platform for biosystems analysis [188]. In contrast to traditional lock-and-key biosensing,
these sensors function as chemical noses with the ability to recognize a wide range of
targets, including proteins, mammalian cells, and microorganisms [189].

The use of nanomaterials has expanded the design possibilities of analysis arrays
in several significant ways. Firstly, more different molecular assembly modes and larger
assembly quantities are now achievable using covalent bonding modifications or surface
adsorption, etc. Secondly, nanomaterials themselves possess more diverse signal outputs,
such as the abundant fluorescence signals of quantum dots at various wavelengths or
the color changes of nanogold particles. Thirdly, nanomaterials provide a wider range of
interaction mechanisms between nanointerfaces and biomolecules, reflecting surface charge
and molecular structure, etc. Lastly, the application of hierarchical nanomaterials further
enhances the capabilities of analysis arrays. By combining hierarchical nanomaterials, addi-
tional advantages for biosensing applications can be achieved. These materials improve
signal intensity and enhance various energy transfer processes. The integration of hierarchi-
cal nanomaterials alongside other nanomaterials expands the design possibilities of analysis
arrays, enabling even more diverse and efficient biosensing platforms [190]. Overall, the ap-
plication of nanomaterials has dramatically improved the sensitivity and recognition range
of pattern recognition detection, leading to more diverse array designs [191]. However,
challenges remain in this field.

Future research directions and urgent issues include: (1) Further theoretical studies
are needed to understand the signal mechanisms of most sensing arrays. (2) To radically
improve the accuracy of pattern recognition, the stability and controllability of the nano-
materials are critical. (3) Further enhance the discrimination ability and sensitivity of
pattern recognition sensors. (4) Efforts should be made to reduce the production cost of
nanoprobes to decrease expenses associated with their use. (5) The application of interfacial
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self-assembly on micro/nanochip technology should be helpful for the high-throughput
data collection for next-generation chemical noses. (6) The introduction of novel and supe-
rior nanomaterials would greatly improve the performance of the sensor array. For example,
single-chirality carbon nanotubes are recently drawing a large amount of research interest
for their near-infrared fluorescence signals and specific recognition and binding abilities for
biomolecules. Addressing these challenges and capitalizing on emerging advancements
will undoubtedly contribute to the continuous progress of this field.
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