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Abstract: Background: Diabetic neuropathy is one of the most common complications of diabetes
mellitus. The aim of this study is to evaluate the Moveo device, a novel device that uses a machine
learning (ML) algorithm to detect and track diabetic neuropathy. The Moveo device comprises 4
sensors positioned on the back of the hands and feet accompanied by a mobile application that gathers
data and ML algorithms that are hosted on a cloud platform. The sensors measure movement signals,
which are then transferred to the cloud through the mobile application. The cloud triggers a pipeline
for feature extraction and subsequently feeds the ML model with these extracted features. Methods:
The pilot study included 23 participants. Eleven patients with diabetes and suspected diabetic
neuropathy were included in the experimental group. In the control group, 8 patients had suspected
radiculopathy, and 4 participants were healthy. All participants underwent an electrodiagnostic
examination (EDx) and a Moveo examination, which consists of sensors placed on the feet and back of
the participant’s hands and use of the mobile application. The participant performs six tests that are
part of a standard neurological examination, and a ML algorithm calculates the probability of diabetic
neuropathy. A user experience questionnaire was used to compare participant experiences with
regard to both methods. Results: The total accuracy of the algorithm is 82.1%, with 78% sensitivity
and 87% specificity. A high linear correlation up to 0.722 was observed between Moveo and EDx
features, which underpins the model’s adequacy. The user experience questionnaire revealed that the
majority of patients preferred the less painful method. Conclusions: Moveo represents an accurate,
easy-to-use device suitable for home environments, showing promising results and potential for
future usage.

Keywords: wearable device; diabetic neuropathy; screening; tracking

1. Introduction

The prevalence of diabetes mellitus has seen a marked increase during the second
half of the 20th century, with a significant escalation at the beginning of the 21st century.
According to data from the USA, the prevalence has even doubled [1], regardless of
gender, age, or socioeconomic status [2]. In the last decade, a stabilization of prevalence
and incidence has been first observed in countries with a high standard of living. The
aforementioned trends are often viewed as a reflection of improved living standards,
characterized by longer life expectancies and reduced mortality rates [2–5].
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Chronic hyperglycemia, especially when the disease is not adequately managed, can
lead to a more frequent occurrence of chronic microvascular damage to sensitive organs and
tissues. This includes damage to the peripheral nerve fibers, clinically manifesting as dia-
betic peripheral neuropathy, a prevalent and debilitating condition [6,7]. Distal symmetric
polyneuropathy (DSP) represents the most common form of diabetic peripheral neuropathy;
however, various patterns of nerve injury can also occur [8]. Peripheral neuropathy is the
most common chronic complication of diabetes, developing in almost half of patients [9–11].
The condition consequentially leads to severe morbidities, such as neuropathic pain, skin
ulcers [11–13], and even amputation. Beyond the direct health impacts, the complexity
of diagnosing and treating diabetic neuropathy significantly escalates its economic costs,
burdening healthcare systems and society [8,10].

The prevalence of peripheral neuropathy among adults with diabetes is estimated to
range from 6% to 51% and is influenced by factors such as age, diabetes duration, glycemic
control, type of diabetes, and several other factors. Through the improvement of early
diagnostics and new therapeutic modalities, the life expectancy of patients suffering from
this disease is expected to increase significantly [3]. Consequently, an increase in both the
incidence and prevalence of peripheral neuropathy is expected in the near future.

Even though the diagnosis of diabetic polyneuropathy can be confidently established
with a detailed anamnesis and clinical examination [8,13], electrodiagnostic examination
(EDx), including nerve conduction studies (NCS) and needle electromyography, remain as
the preferred methods for the detailed assessment of peripheral nerve function and early
detection in diabetic patients [8,14]. Potential alternative diagnostic screening methods
include skin biopsy and corneal confocal microscopy; however, their validity is yet to
be confirmed for implementation in everyday clinical practice [8,11,13]. Currently, EDx
serves as the most accessible method for assessing the stage of diabetic neuropathy. When
correlated with clinical examination, NCS can confirm the presence of damage to large fiber
neurons, whether the involved nerves are sensory or motor, and the severity of the present
damage. Repeated NCS can also be used to assess the disease’s progression or response to
treatment [8,15].

Existing wearable devices primarily focus on measuring parameters for glycemic
control and the detection and management of diabetic angiopathy, leaving a gap in remote
and precise early diagnosis of diabetic neuropathy [16].

The aim of this study is to evaluate a telemedicine wearable device with a machine
learning (ML) algorithm that can be used as a screening and tracking tool for diabetic
neuropathy. Namely, the Moveo platform for Diabetic Neuropathy detection, a proprietary
system developed by Divs Neuroinformatics DOO, is assessed against the gold standard of
EDx screening.

2. Materials and Methods
2.1. Protocol Description

This study is characterized as a monocentric, cross-sectional, comparative investiga-
tion with two distinct groups: subjects diagnosed with diabetic neuropathy and subjects
without diabetic neuropathy. The study was conducted at the Institute of Rheumatology in
Belgrade, Serbia in 2022 and received approval from the Ethics Committee of the Institute
of Rheumatology (Approval No. 132/30).

The participants in the experimental group were ambulatory patients suffering from
diabetes with suspected diabetic neuropathy, while the control group included both healthy
volunteers and patients diagnosed with radiculopathy. Inclusion criteria were patients
above the age of 18, signed informed consent, no major anatomic abnormalities (amputa-
tion, absence of limb, part of limbs, etc.), and no major functional disabilities (paralysis,
immobilization, etc.). The exclusion criteria aimed to ensure participant safety and thus
disqualified patients with allergies to plastic, anatomical irregularities that complicate
proper placement, conditions that could lead to falls (vertigo, Meniere’s disease), and
strength abnormalities (myasthenia gravis, multiple sclerosis).
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Prior to study enrollment, all subjects were fully informed about the trial and its terms
and conditions. Each subject signed a written consent to participate in the study. Prior to
enrollment, the subject underwent an initial EDx.

2.2. Description of Reference and Investigational Methods

Reference Method: The EDx examination commenced with subjects positioned com-
fortably on a bed next to the healthcare professional and diagnostic equipment. The
electrodes were placed on the limbs, and the examination subsequently started. Mea-
surements of amplitude, latency, and conduction velocity were measured for each nerve
studied, including n. medianus, n. ulnaris, n. peroneus, n. tibialis, and n. suralis. During
the examination, both motor and sensory fibers were evaluated.

Investigational Method: After the initial exam, the subject took a 15–20 min break to
rest while sitting on a chair. A healthcare professional asked if the subject was ready for the
next examination; if not, the subject continued resting. If the subject was ready, the Moveo
exam could start.

The Moveo exam system consists of 4 sensors that are placed on the back side of the
subject’s hands and the upper part of the subject’s feet. These sensors communicate with
the Moveo mobile application (compatible with Android and iOS devices), which also
additionally facilitates the Moveo exam process. The app instructs the subject to perform
a series of 6 tests that are also part of a standard neurological examination. The Moveo
platform then makes an estimate regarding the presence and level of diabetic neuropathy
and reports it back via the app.

The following exercises were performed during the Moveo examination:
Walk on toes and heels: A person walks, first on his heels, then on his toes, for 10–15 s.

The exercise is completed when the subject finishes both types of walks.
Tandem walk: This test is more sensitive when the subject performs the exercise with

his eyes closed. H owever, it must be noted that there is a fall risk with this exercise;
therefore, this part of the Moveo examination was only performed with the patient’s eyes
open. During this exercise, the subject walks with one foot next to the other, aligning his
heel next to the toes of the opposite foot. The exercise lasts for 10–15 s. It is performed after
the person walks for a specified amount of time.

Romberg test: The subject holds his hands in a straight position (with his arms ex-
tended in front of his body). The test is first performed with eyes open, then with eyes
closed. The exercise lasts for 10–15 s.

Postural tremor: Tremor occurs when the subject actively maintains a position against
the force of gravity (tested on the hands by asking the subject to extend his arms while
sitting/standing and maintain that position with and without cognitive distraction for a
duration of 10 s). Minimal tremor is expected in healthy people; however, in subjects with
neuropathy, this tremor is more expressed.

Finger–nose test: The subject is in a standing position, reaching his nose using his left
finger and then his right finger. The test is first performed with eyes open, then with eyes closed.

Heel–knee test: Due to safety reasons, this test is conducted with the subject lying in
bed. Subjects are instructed to reach their knee with the heel of the opposite leg, stretching
the heel down the leg to the ankle The test is first performed with eyes open, then with
eyes closed.

Instructions for patients in the form of application screenshots accompanied with a
short explanation can be found in the Supplementary Material file Moveo exercises.

2.3. Raw Signal Processing and Features Extraction

Features are calculated are based on raw signals derived from three-axis acceleration
and gyroscope measurements. The acceleration signal is composed of three axes (x, y,
and z) with each axis carrying some amount of acceleration that the patient produces. A
similar approach is applied to the gyroscope signal, which measures angular velocity along
the x, y, and z axes. Therefore, the raw signals embody a six degrees of freedom system,
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incorporation both the accelerometer’s and gyroscope’s x, y, and z axes. An example of the
accelerometer signals can be seen in Figure 1.
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Figure 1. Acceleration signals (x, y, and z) are measured by the sensor, and the norm signal is
calculated in the cloud during the performance of neurological movement exercises.

An additional component of acceleration, attributed to gravity, is also measured using
the sensor. Thus, the sensors constantly measure the acceleration component that the user
produces plus the component of earth’s gravity (1 G). The first challenge was to extract a useful
component that the user produces and reject the gravity. The gyroscope signal (angular velocity)
is used to reject gravity by determining the orientation of the gravity vector using angular
velocity. Gyroscope measurements involve errors caused by the “gyroscope drift”; thus, we also
need to compensate for those errors when determining orientation.

In Figure 1, four distinct signals are shown. Signals annotated with “x”, “y”, and
“z” are gathered from the sensor, and the “norm” signal is calculated using the Euclidean
distance formula:

norm =
√

x2 + y2 + z2

Most of the features are calculated using the “norm” signal as an input to mitigate
issues related to different orientations. Prior to applying the transformation that generates
features for the ML model, several preprocessing methods are employed. The initial
preprocessing method focuses on filling gaps in the signal resulting from streaming issues.
To accomplish this, a second- order polynomial interpolation technique is utilized. After
the interpolation phase, many of the features rely on the signal with the gravity component
removed. To eliminate the gravity component, a technique based on high-pass filtering is
used, specifically employing the “Butterworth’s” high-pass filter with a cut-off frequency
of 0.1 Hz. Figure 2 illustrates the behavior of the “norm” signal of acceleration before and
after gravity removal.

After applying the preprocessing techniques, the signal is ready for final feature
extraction. In the following example, one variant of the features used for the development
of the ML model is presented.

One of the techniques employed to analyze exercise and motion signals in the spectral
domain is power spectral density (PSD). An example of the PSD transformation applied to
the signal given above is presented in Figure 3. It displays both the standard PSD and the
PSD in logarithmic format. To calculate the PSD using Welch’s method, a window length
of 256 is employed. This means that for each calculation of the modified periodogram,
256 signal points are used, with an overlapping factor of 0.5 being selected (Figure 3) [17].
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Figure 3. Power spectral density is calculated using Welch’s method applied to the acceleration norm
signal.

Given that the PSD has 256 points, it represents a large input vector for the ML model
that should be reduced to avoid overfitting issues. To mitigate this, the final features are
the sums of PSD points from a specified frequency range, thus reducing the number of
points. Some of the cutoff frequencies of interest were 5 Hz and 10 Hz. The equation for
the calculation of the final feature based on PSD is provided as follows:

PSD f x =
N

∑
n=idx( f x)

PSD[n]

where idx( f x) is an index of specified frequency in PSD array, and N is the length of
Periodogram window. In this case, it is 256. The following final features were included:

• PSD5Hz
• PSD10Hz
• PSD15Hz

The extracted features were then used for ML model training. Due to a relatively small
amount of data collected during the trial, more complex models (e.g., neural networks)
suffered from overfitting. Therefore, several ML models are analyzed to obtain a compari-
son of which one is the most suitable for this problem, which will be later described in the
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Results section. Model training and metrics calculations were performed using ML Python
library Scikit-learn.

Upon completion of both examinations, participants were asked to complete a ques-
tionnaire, which contained 10 questions regarding the two examinations (examined device
(Moveo) and comparator (EDx)). No specific scoring has been developed; rather, the
questionnaire solely assessed the level of satisfaction regarding each examination.

2.4. Statistical Methodology

Results are presented as count (%), means ± standard deviation, or median (25th–75th
percentile) depending on the data type and distribution. Groups are compared using
parametric (t-test) and nonparametric (Chi-square, Mann–Whitney U-test) tests. To assess
the correlation between variables, Pearson’s correlation was used. All p-values less than
0.05 were considered significant.

This investigation represents a first in human pilot study. Therefore, no prior informa-
tion related to the effect size was obtained or found; consequently, no sample size has been
calculated for this study. The results will be used for further investigations regarding this
technology.

The outcome is defined as a binary variable, defined as the presence or absence of
diabetic neuropathy.

The machine learning algorithm and all signals were analyzed using Python 3.10.12
and R 4.2.2 (R Core Team (2017). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
accessed on 27 November 2021). For data analysis, data visualization, and ML model
training, the following Python packages are used: Pandas (2.2.0), Matplotlib (3.8.12), Scikit-
learn (1.2.0), Seaborn (0.3.12), and NumPy (1.26.23).

3. Results

The study included 23 participants, including 11 with diabetes and suspected neu-
ropathy (47.8%). Overall, participants were 55.3 ± 12.5 years old, and 8 (34.8%) were males.
Eight (72.7%) of the diabetic patients had diabetic neuropathy confirmed via EDx exami-
nation. In the diabetic neuropathy group, the mean age was 63.8 ± 8.5 years, which was
significantly higher compared to the non-neuropathy group at 50.7 ± 12.0 years (p = 0.012).
The diabetic neuropathy group had 3 (37.5%) male participants, which is very similar to
the non-neuropathy group with 5 males (33.3%) (p = 1.000).

All Moveo features were analyzed; however, only the most important features that can
be used to differentiate neuropathy patients versus non-neuropathy patients are presented in
Table 1. Additionally, other features that were expected to be of importance are also presented,
even though these features revealed no statistical significance or clinical differences.

In the heel–toe walk test, two features were significant, while in the tandem walk
test, no significant features were obtained. The level of significance of feature 5 is near the
conventional level that was considered when the modeling was performed. The heel and
knee test also revealed two significant features. In the arms tests, the Romberg test revealed
only one significant feature. Regarding postural tremor, only one feature was determined
to be at the level of statistical significance (p < 0.05); however, one more feature was close
to the conventional level of significance that was considered during the modeling. In the
finger–nose test, two significant features were obtained.

To present the individual characteristics of the features, the correlation matrix with the
most important Moveo features and EMNG parameters are presented in Table 2. The most
important features are those that have the highest Pearson’s correlation coefficient with the
output binary variable (no DN/DN). Then, those features are analyzed to determine the
correlation with EMNG parameters. As shown, the coefficients vary from insignificant to
above 0.6. Every Moveo feature had at least one correlation with an EMNG feature with a
correlation coefficient above 0.4, while half of the features revealed correlations with values
above 0.5. Several features revealed correlation coefficients above 0.6.

https://www.R-project.org/
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Table 1. Moveo features in diabetic neuropathy and non-neuropathy participants.

DM Neuropathy p Value
No (n = 15) Yes (n = 8)

Legs

Heel–toe walk
Feature 1 0.011 ± 0.005 0.005 ± 0.003 0.013
Feature 2 1.481 ± 0.369 1.402 ± 0.334 0.620
Feature 3 1.459 ± 0.300 1.418 ± 0.363 0.778
Feature 4 0.107 ± 0.048 0.056 ± 0.031 0.014

Tandem walk
Feature 5 1.481 ± 0.206 1.327 ± 0.135 0.072
Feature 6 1.307 ± 0.094 1.230 ± 0.138 0.126

Heel–knee
Feature 7 0.036 ± 0.029 0.012 ± 0.009 0.008
Feature 8 0.068 ± 0.104 0.021 ± 0.014 0.107
Feature 9 0.052 ± 0.072 0.034 ± 0.059 0.557
Feature 10 0.695 ± 0.304 0.442 ± 0.173 0.042

Arms

Romberg test
Feature 11 × 103 0.164 ± 0.131 0.339 ± 0.265 0.044
Feature 12 × 105 0.109 ± 0.156 0.298 ± 0.282 0.050

Feature 13 0.628 ± 0.140 0.542 ± 0.169 0.206
Feature 14 0.604 ± 0.173 0.505 ± 0.190 0.218

Postural tremor
Feature 15 0.017 ± 0.011 0.011 ± 0.012 0.236
Feature 16 0.020 ± 0.013 0.013 ± 0.008 0.184
Feature 17 1.044 ± 0.487 0.707 ± 0.244 0.082
Feature 18 1.281 ± 0.788 0.839 ± 0.370 0.151
Feature 19 0.638 ± 0.154 0.569 ± 0.159 0.326
Feature 20 0.597 ± 0.172 0.564 ± 0.164 0.664

Finger–nose test
Feature 21 1.006 ± 0.025 0.960 ± 0.062 0.018
Feature 22 0.003 ± 0.012 −0.021 ± 0.033 0.017
Feature 23 0.598 ± 0.195 0.548 ± 0.156 0.537
Feature 24 0.606 ± 0.202 0.616 ± 0.218 0.911

Due to patent protection, only feature numbering is presented instead of feature name and characteristics.

Using the most important features, several ML models for binary classification were
developed. To avoid overfitting, the one-by-one feature elimination approach was applied
based on p-value as well as the correlation among features in order to not pick two features
with high correlation between each other because those features bring the same information.
Also, to prevent overfitting, dataset synthesis based on the Kernel Density method [18] was
applied. A Gaussian kernel was employed for this purpose that enabled the generation of
200 negative and 200 positive samples from the initial 23 samples. Consequently, the final
dataset that was used for training had 423 samples.

For the sake of results comparison, three ML models were used in the analysis: support
vector machine (SVM), logistic regression, and decision tree (DT). During the training for
each model, the Grid Search algorithm was applied with the corresponding parameters
grid, to build an ML model with optimal parameters.

For each Moveo exercise, a unique ML model was trained, and the final results were
calculated using the following formula:

outputaggregated =
1
6

6

∑
i=0

ExerciseModeli(Xi)

where ExerciseModeli represents the ML model for i-th Moveo exercise and can be one of
the three analyzed ML models, and Xi is an input vector that contains selected features for
the corresponding exercise.
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Table 2. Correlation matrix between most important features and EMNG parameters.

DMN Feat. 1 Feat. 4 Feat. 5 Feat. 6 Feat. 7 Feat. 10 Feat. 11 Feat. 12 Feat. 16 Feat. 17 Feat. 21 Feat. 22

Motor

Arm

Amp LM ra −0.109 0.255 0.268 0.147 0.160 0.379 0.185 0.264 0.255
Lat LM pr 0.591 −0.235 −0.181 −0.120 0.652 0.387 −0.214 −0.372 −0.329 −0.141
CV LM pr −0.872 0.650 0.596 0.593 0.443 −0.200 −0.199 0.329 0.182 0.426 0.437 0.526 0.413
Lat LU ra 0.213 −0.202 −0.259 −0.280 −0.187 0.171 0.245 −0.168 0.131

AMP LU ra −0.139 0.240 0.312 −0.205 0.457 0.261 0.217 0.341 0.288 −0.111
Lat LU pr 0.336 0.261 0.143 0.263 0.161 0.149 0.182 0.256 0.408

Amp LU pr −0.128 0.243 0.277 −0.136 0.375 0.359 0.332 0.332 0.302
CV LU pr −0.363 −0.444 −0.496 −0.171 −0.174 −0.167 −0.221

Leg
Lat RT sa 0.584 −0.162 −0.155 −0.335 −0.344 0.417 0.458 −0.119 −0.189

Amp RT sa −0.489 0.291 0.429 0.309 0.160 −0.650 −0.337 0.335 0.167 0.165 0.144 0.247 0.448
Lat LT sa 0.456 −0.104 −0.395 −0.227 0.116 0.484 0.505 0.281 0.296

Amp LT sa −0.233 0.101 0.184 −0.506 0.143 0.161 0.128 0.116
Lat RP se 0.260 −0.145 0.508 0.254 0.199 −0.201 −0.140

Amp RP se −0.430 0.515 0.283 0.211 0.250 −0.692 −0.479 −0.193 0.373 0.339 0.496 0.193
Lat RP ps 0.303 0.120 0.149 −0.127 0.350 0.236 0.285 0.202

Amp RP ps −0.434 0.466 0.194 0.245 0.345 −0.663 −0.503 −0.132 0.396 0.359 0.477 0.166
CV RP ps −0.465 0.190 0.214 0.333 0.212 −0.577 −0.436 0.173 0.250
Lat LP se 0.281 0.115 0.145 0.152 0.323 0.219 0.127

Amp LP se −0.292 0.505 0.287 0.327 0.357 −0.643 −0.227 0.362 0.330 0.716 0.448
Lat LP ps 0.371 0.622 0.300 0.200

Amp LP ps −0.348 0.536 0.351 0.292 0.341 −0.640 −0.282 0.402 0.380 0.704 0.493
CV LP ps −0.490 0.149 0.112 −0.657 −0.283 0.203 0.154 0.255
Sensory

Arm
Lat LM rp 0.499 −0.339 −0.435 −0.233 −0.171 0.722 0.282 −0.144 −0.583 −0.544 −0.352 −0.131

Amp LM rp −0.351 0.445 0.432 0.331 0.281 −0.589 −0.260 −0.139 0.402 0.388 0.451 0.546
CV LM rp −0.559 0.345 0.454 0.201 0.176 −0.658 −0.345 0.124 0.179 0.429 0.405 0.421 0.273
Lat LU rp 0.314 −0.216 −0.145 0.351 −0.125 −0.115

Amp LU rp −0.413 0.418 0.474 0.411 −0.498 −0.157 −0.105 0.294 0.283 0.391 0.402
CV LU rp −0.374 0.140 0.228 −0.402 −0.139 0.293 0.261 0.298 0.247

Leg
Lat RS ps 0.506 −0.230 −0.222 −0.174 0.380 0.458 0.208 −0.411 −0.412

Amp RS ps −0.539 0.391 0.332 0.515 0.194 −0.344 −0.353 0.209 0.278 0.285 0.341 0.528
CV RS ps −0.674 0.320 0.353 0.226 −0.446 −0.596 0.197 0.126 0.312 0.311 0.264 0.148
Lat LS ps 0.693 −0.300 −0.475 −0.133 0.113 0.335 0.253 −0.248 −0.116 −0.188 −0.168 −0.168

Amp LS ps −0.694 0.285 0.432 0.243 −0.455 −0.497 0.252 0.289 0.237 0.236 0.193 0.436
CV LS ps −0.731 0.400 0.500 0.218 −0.400 −0.468 0.297 0.210 0.217 0.212 0.265 0.215

Feat.—feature; Motor—motor nerves; Sensory—sensory nerves; DMN—diabetic neuropathy; Arm/Leg—examined limb; Lat—latency; Amp—amplitude; CV—conduction velocity.
LM—left medianus; LU—left ulnaris; RT—right tibialis; LT—left tibialis; RP—right peroneus; LP—right peroneus; RS—right suralis; LS—left suralis. ra, pr, sa, se, ps, rp, ps—location of
second electrode for EMNG measurement. light gray—correlation coefficient between 0.4 and 0.6; dark grey—correlation coefficient above 0.6; correlation coefficients below 0.100 are
presented as empty fields.
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Table 3 and Figure 4 show the comparison of ML model metrics. The SVM model
showed the best result in comparison with logistic regression and DT because of its flex-
ibility in terms of the kernel. In this case, the SVM model for the “heel–knee” exercise
can use a linear kernel if classes are more linear separable for “heel–knee” features, while
the SVM model for “Romberg’s test” exercises can use a radial basis or polynomial kernel
if classes are non-linear separable for “Romberg’s test” features. The dataset is split to
train and test at a ratio of 70:30. Results that are shown are generated from the test dataset.
Performances in Table 3 and Figure 4 are obtained by averaging output from the ML model.
The aggregated output is described in the above equation and compared with the true
output. The aggregated model based on SVM achieved a sensitivity of 0.78 and a specificity
of 0.87.

Table 3. Metrics comparison across different ML models.

Precision Recall f1-Score Supprt

SVM-no DN 0.759259 0.872340 0.811881 47.0

SVM-DN 0.884615 0.779661 0.828829 59.0

Logistic Regression-no DN 0.592593 0.761905 0.666667 42.0

Logistic Regression-DN 0.807692 0.656250 0.724138 64.0

Decision Tree-no DN 0.629630 0.809524 0.708333 42.0

Decision Tree-DN 0.846154 0.687500 0.758621 64.0
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The distribution of patients regarding the answers of the user experience questionnaire
are presented in Table 4.

The user experience questionnaire revealed significant differences between the EMNG
and Moveo examinations. The differences are obvious and extreme with regard to unpleas-
ant examination, pain, fear, and duration. The Moveo examination was deemed superior
in all aspects compared to EMNG. The last question was “if the patient can choose which
examination, he/she would choose?”. The majority of patients [21 patients (91.3%)] would
choose Moveo, while 2 patients (8.7%) would choose any technology.
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Table 4. User experience questionnaire by examination.

Examination
p Value a

EMNG Moveo

Unpleasant
No 1 (4.3%) 21 (91.3%)

<0.001
Mild 7 (30.4%) 1 (4.3%)

Moderate 11 (47.8%) 1 (4.3%)
Severe 4 (17.4%) 0

Pain
No 0 22 (95.7%)

<0.001
Mild 8 (34.8%) 1 (4.3%)

Moderate 11 (47.8%) 0
Severe 4 (17.4%) 0

Fear
No 10 (43.5%) 22 (95.7%)

<0.001
Mild 5 (21.7%) 1 (4.3%)

Moderate 5 (21.7%) 0
Severe 3 (13.0%) 0

Duration
As it should be 5 (21.7%) 22 (95.7%)

<0.001Little longer 12 (52.2%) 1 (4.3%)
Much longer 6 (26.1%) 0

a Pearson Chi-square test.

4. Discussion

With the increase in the incidence of diabetes, an increase in the incidence of diabetic
polyneuropathy has also been observed. Thus, it is especially important that people
suffering from diabetes, a multi-organ disease, are monitored by a multidisciplinary team
of physician specialists. In order to adequately monitor and treat diabetic neuropathy, the
patient should be referred to a neurologist at least once a year after being evaluated by
their endocrinologist [9]. During the subsequent examination, the neurologist may require
further diagnostics, such as EDx. In the context of the increasing prevalence of diabetes,
the need for a sufficient number of specialists, EDx devices, and examination appointments
are essential. There has been a significant upward trend regarding the usage of modern
technologies in medicine, thus opening the doors for potential telemedicine solutions.

Moveo is a novel device that aims to reduce EDx wait lists as well the workload of
healthcare staff. Self-examination is already common practice in some medical fields, such
as endocrinology and cardiology, but Moveo has the potential to open up this practice to an
additional field, namely, neurology. Moveo is a device that comprises an aluminum case and
silicon band with a sensor inside the case that records movement during the six exercises (see
https://www.divstechnology.com/, accessed on 15 December 2021, for more information). The
signal is transferred to the mobile device (phone, tablet) using low- energy Bluetooth technology
and processed using the pre-defined machine learning algorithm.

Telemedicine-only examinations were introduced as a novelty, where the patient,
according to the given instructions, performs the examination on the basis of his answers
to certain questions, which are then sent back to the physician [19]. Moveo exercises are
explained using cartoon-style recorded instructions so that the user has explicit instructions
on how to perform the exercise and how to enter the data, if needed.

The primary goal of monitoring diabetic patients is the adequate regulation of glycemia
and its maintenance within the target values based on a hygienic diet regimen and therapy.
Glycemic control is directly correlated with the occurrence of chronic microvascular com-
plications of diabetes [16]. The Moveo device tracks the consequences of a non-regulated
trend rather than the glucoregulation trend; however, it is obvious that the patient’s score
correlates with the glucoregulation status and behavioral patterns that influences the results

https://www.divstechnology.com/
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of the diabetic neuropathy score. In newly diagnosed patients, it can be used as a screening
tool for the first signs of diabetic neuropathy. In more advanced stages and in patients who
already present with neuropathy, it could be used as a tool for neuropathy trend evaluation
and as an alarm if the disease has progressed more than expected.

Currently, screening for diabetic neuropathy is based on symptoms and signs and
therefore is limited to a clinical examination carried out by a neurologist at least once a
year. The neurological examination itself is long and detailed, consisting of inspecting the
sensory modalities of the patient’s skin, usually temperature, light touch, and vibration, as
well as trophic and muscle strength, with a reflex check [9,15,20]. Moveo offers a completely
different approach since it dynamically examines the movement disorders as a result of
diabetic neuropathy. Compared to a static examination like EDx, Moveo tests the variation
in movement as a consequence of a nerve conduction disorder. With regard to the above-
mentioned concept stated in our manuscript, several other authors have proposed different
approaches to detecting and tracking diabetic neuropathy [21]. Some of them hypothesized
that with diabetes (and peripheral neuropathy) progression and other confounding factors
(such as cognitive impairment), patients are more prone to changes in the gait pattern and
balance alterations, resulting in an increased risk of falling [22–29], with another approach
consisting of a camera capturing the motion [30–32]. A few articles bring up the idea of
utilizing ML on collected NCS data in terms of neuropathy prediction [33]. Other studies
investigated the usage of thermal imaging [34,35], ultrasound [36], vibration [37], plantar
pressure [38–41], temperature [42], and corneal nerve evaluation [43]. However, none of
these studies provide a comparison of a wearable sensor-based approach with a “gold
standard” NCS method for neuropathy confirmation to evaluate the true accuracy of the
proposed models. Moreover, in our study, we used exercises that were a potential surrogate
for a neurological examination.

In diabetics, peripheral nerve damage occurs most often in the lower extremities,
symmetrically, affecting first the thin sensory fibers (A delta, B and C fibers) that are more
susceptible to metabolic abnormalities. As the disease progresses, the large motor fibers are
also affected [22]. After clinical examination, if the physician suspects diabetic peripheral
neuropathy, NCS and needle electromyography (EMG) are used because these methods
show a high degree of sensitivity in detecting damage to large peripheral nerve fibers. Both
methods are usually included under the name of electroneuromyography (EMNG) or more
precisely EDx [15,20]. Sensory and motor nerve conduction examination is performed
using electric stimulation and recording over distal lower limb segments and then upper
limb segments [15]. Moveo has tests for both legs and arms. A part of a typical neurological
examination is performed with sensors on the arms and legs. The movement is being
recorded, and processed signals are translated to values used for score calculation. It is
expected that the leg examination is more accurate for neuropathy diagnosis. However,
if the results are positive for the arms, it is more likely that there is an advanced stage of
neuropathy present due to proximal nerve disorders, which occur later.

In the first test assignment (walking on the toes and heels), the analysis revealed that the
features that test the dynamics of movement were noted as the most important features. Sensors
placed on the foot in the heel– toe walk and features that were derived from those sensors
showed that walking depended on foot strength, which can be reduced in diabetic neuropathy.

In the other five exercises, features that compare movement when the subject has
his/her eyes open and eyes closed are considered to be the most important for DMN
discrimination. Since deep postural sensibility can be damaged in diabetic neuropathy,
when the subject closes his/her eyes, accurate movement in dynamic exercises will be
impaired. Similarly, their capacity to maintain a stable position in static exercises will also
be impaired, underscoring the importance of these features.

Targeted measures are the amplitude of the evoked response (APA) and parameters
that reflect sensory and motor nerve conduction velocity (NCV), which include distal
latency (DL), F-wave latency, and conduction velocity (CV). Abnormalities in these pa-
rameters are specific markers for peripheral nerve disease [9,15]. Moveo results correlate
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significantly with the EDx findings, and there are a significant number of highly correlated
parameters that could be interpreted as surrogates for EDx. Future studies with larger
samples will aim to further analyze this in order to assess the compatibility of Moveo and
EDx. However, based on the results of the pilot study, this technology could be considered
very promising and possibly used in the near future. Using a ML algorithm with chosen
features, excellent classification power is observed. Future studies will aim to prove non-
inferiority of Moveo compared to gold standard diagnostic tools for diabetic neuropathy
diagnostics. Moveo’s reproducibility result is still questionable due to insufficient testing
of the device. In the future, the aim is to obtain an algorithm that will provide stable results
without outliers and noise. The increased sample size and number of patients with DN
will allow for better estimation of diagnostic accuracy measurements (Sn, Sp, PPV, NPV,
and total accuracy).

From an economic point of view, it must be considered that the effects and, in some
cases, the benefits of such examinations are financially worthwhile. Based on savings on
transportation, space, and time, the difference in cost can be even 10 times cheaper [44].
Using the Moveo device, the patient can perform the exercises and record the report to
the device. The average costs of an EDx vary from country to country. The average price
in the USA is between $200 and $1200 depending on state, practice, etc. Comparing the
prices of specialist examination (general examination of neurologist or physiatrist), the
EMNG examination price is 2–4 times higher. Contrarily, Moveo is a very cost-effective
tool. The user can do it at home by themselves, and the results can be used to alarm the
physician of any non-favorable trends. The device costs are less than the average cost of
one EDx. The adoption of frequent self-examination practices among diabetic patients
coupled with increased awareness of the potential consequences of an unhealthy lifestyle
present significant benefits for healthcare providers as well. Over time, this can lead to a
reduction in the demand for physician services, thereby alleviating the overall workload
on healthcare providers, ultimately streamlining healthcare delivery.

As a part of the evaluation of telemedicine, the perspectives of both patients and
healthcare workers should be considered. Patients expressed greater satisfaction with
telemedicine compared to conventional healthcare given that the entire process takes place
in the comfort of their homes, which increases patient adherence [45–47]. Health workers
have shown a great desire and willingness to adapt their skills to telemedicine to provide
healthcare [45], with the statement that such working conditions are more optimal [47].

Although the application of ML in disease diagnosis is already an ever-expanding field
of research, its development and application in diabetic peripheral neuropathy diagnosis is
still very uncommon. This is notable given the critical need for precise, early diagnosis and
classification of diabetic peripheral neuropathy severity to facilitate timely and appropriate
treatment interventions. Existing literature reveals the implementation of different con-
ventional ML-based classifiers that are able to classify diabetic neuropathy severity levels
using scores that are based on a patient-filled questionnaire, clinical parameters, and NCS
data obtained through physical examination and NCS assessment [33,48,49]. With regard
to ML applications in electrodiagnostic assessments of diabetic peripheral neuropathy and
further staging, research was conducted aimed at optimization of the ML algorithm for
observation of the biomechanical changes in muscle electromyography (EMG) and ground
reaction forces (GRF) through signal preprocessing with strategic feature extraction from
the EMG and GRF signals, offering a potential solution for the diagnosis and stratification
of patients with neuropathy [50].

5. Conclusions

Moveo represents an accurate and promising technology for the screening, diagnosis,
and follow-up of diabetic neuropathy. It represents a satisfactory replacement method for
EDx, which patients generally dislike and consider uncomfortable and painful. Several
limitations are worth mentioning. First, EDx is a gold standard for the diagnosis of diabetic
neuropathy but only when larger fibers are affected. In the early stages of the disease,
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small fibers can be affected, and the patient could be labelled as healthy (false negative).
However, when small fibers are affected (such as A gamma and delta, B, and C fibers),
patients could also exhibit different sensations such as pain and discrete motor function
alterations that can influence movement and be detected by sensors. Further studies with a
larger sample size are needed to evaluate the true accuracy of the technology with regard
to large-fiber diabetic neuropathy; however, for small-fiber diabetic neuropathy, different
tests should be used as a gold standard for comparison.

6. Patents

DIVS Neuroinformatics D.O.O. has a patent submission on Moveo as a system for
determining levels of peripheral nerve impairment that has been submitted to Intellectual
Property Office of Serbia under number P-2022/0985.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios14040166/s1, Moveo exercises.pdf with exercise descriptions and
application screenshots.
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