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Abstract: A taste sensor employs various lipid/polymer membranes with specific physicochemical
properties for taste classification and evaluation. However, phosphoric acid di(2-ethylhexyl) ester
(PAEE), employed as one of the lipids for the taste sensors, exhibits insufficient selectivity for
umami substances. The pH of sample solutions impacts the dissociation of lipids to influence the
membrane potential, and the response to astringent substances makes accurate measurement of
umami taste difficult. This study aims to develop a novel taste sensor for detecting umami substances
like monosodium L-glutamate (MSG) through surface modification, i.e., a methodology previously
applied to taste sensors for non-charged bitter substance measurement. Four kinds of modifiers were
tested as membrane-modifying materials. By comparing the results obtained from these modifiers,
the modifier structure suitable for measuring umami substances was identified. The findings revealed
that the presence of carboxyl groups at para-position of the benzene ring, as well as intramolecular
H-bonds between the carboxyl group and hydroxyl group, significantly affect the effectiveness of a
modifier in the umami substance measurement. The taste sensor treated with this type of modifier
showed excellent selectivity for umami substances.

Keywords: taste sensor; umami measurement; lipid/polymer membrane; surface modification

1. Introduction

Taste sensing systems, a category of chemical sensors, have received much attention
in recent years due to their objectivity and reproducibility, which offer important economic
benefits to food industries [1–5] and pharmaceutical industries [6–8]. These systems encom-
pass a range of sensing methodologies [9,10], such as electrochemical methods [11–21] (e.g.,
potentiometry or voltammetry), biomimetic biosensing [22,23], optical methods [24,25],
mass change sensing methods [26] or enzymatic methods [27–29].

A potentiometry taste sensor, developed by Toko and other co-workers [30], has been
commercially used in food industry [31–34], beverages [35–38], and medicine [39–44]. An
example of commercialized taste sensing system utilizing potentiometric measurement
is TS-5000Z (Intelligent Sensor Technology, Atsugi, Japan). This system features multi-
channel sensor electrodes composed of various types of lipid/polymer membranes to
measure the basic five tastes (saltiness, sourness, umami, bitterness, and sweetness) and
astringency [45–48]. For example, CT0 sensor is used to measure saltiness, CA0 sensor for
sourness, AAE sensor for umami, C00 sensor and BT0 sensor for bitterness, GL1 sensor for
sweetness, and AE1 sensor for astringency [46].

Taste sensors enabled the classification and quantification of the five basic tastes based
on a method that involves designing lipid/polymer membranes according to the physio-
chemical properties of taste substances, such as electric charge and hydrophobicity [45,46,48].
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For example, charged bitter substances with high hydrophobicity can be adsorbed onto the
membrane through electrostatic and hydrophobic interactions, thereby causing changes in
membrane potential. Sour substances or salty substances induce a change in membrane
potential through hydrophilic ions interacting with the membrane. In other words, the
amphiphilic lipid content is designed to be minimized in a bitterness sensor to increase
hydrophobicity, while a sourness sensor or a saltiness sensor has a membrane with a higher
proportion of amphiphilic lipid to increase hydrophilicity, promoting more electrostatic
interactions with ions. Nevertheless, this approach is unsuitable for measuring non-charged
substances because the system detects changes in electric potential due to change in the
membrane surface charge density caused by charged taste substances.

Yoshimatsu et al. [49] have reported a novel method to measure non-charged bit-
ter substances utilizing membrane surface modification on lipid/polymer membranes.
This measurement relies on allostery, i.e., a phenomenon occurring in many enzymes
and receptors including taste receptors, where binding to a ligand at one site affects
binding to a different or the same type of ligand at another distant site of the enzyme
or receptor molecule [50–52]. The sensor electrodes were immersed into the solution of
2,6-dihydroxybenzoic acid (2,6-DHBA), allowing ionized 2,6-DHBA to be adsorbed onto
the lipid/polymer membrane surface through hydrophobic interactions. These fabricated
electrodes were employed in the measurement of non-charged bitter substances like caf-
feine [49,53]. Within this modified membrane, 2,6-DHBA is ionized under a wide range
of pH, forming intramolecular H-bond. The ionized 2,6-DHBA can interact with caffeine
through its hydroxyl groups [54]. This interaction is achieved by breaking intramolecular H-
bonds, forming intermolecular H-bonds with caffeine by taking back dissociated H+ from
the solution. Consequently, this returned H+ leads to an increase in surface charge density,
resulting in an increase in membrane potential. The binding of 2,6-DHBA with caffeine has
been confirmed by 1H-NMR measurement [54]. This novel sensor also has been studied to
detect other non-charged bitter substances for medicine, such as theophylline [55].

Monosodium L-glutamate (MSG) is commonly known as a flavoring enhancer of
umami in food processing [56–58]. The pH of an MSG solution varies with different
concentrations [59,60]. Iiyama et al. [61] found that the lipid/polymer membrane containing
phosphate group exhibits a response to alkaline substances such as NaOH and NaHCO3
to the negative direction, closely resembling the response to MSG. It implies that the
observed MSG response Is caused by the H+ dissociation from the phosphate group, i.e.,
the transfer of the phosphate group H+ of lipid molecule to the carboxy group of MSG.
The commercialized umami sensor AAE, employing phosphoric acid di(2-ethylhexyl) ester
(PAEE) as one of the lipids, similarly shows the negative-direction response to MSG. This
response is not caused by the molecular recognition of chemical structure of MSG by the
receptive membrane, but by the transfer of H+ of PAEE to the carboxy group of MSG.
On the other hand, Kobayashi and other co-workers employed an AAE sensor for taste
selectivity measurements and found that the sensor exhibits a notable response (greater
than 10 mV) to astringent substances [62]. This finding raises concerns regarding the taste
selectivity of umami sensor AAE, which is equipped with lipid PAEE, to differentiate
between umami and astringent substances, especially at a low concentration of umami
sample solution.

To address these challenges and enhance the taste sensor’s capability for detecting
umami substances, a novel lipid is required to replace lipid PAEE. Additionally, the sur-
face modification method used to measure non-charged bitter substances was considered
useful for measuring umami substances. In this study, we conducted surface modification
on lipid/polymer membranes for umami substances measurement, such as MSG and
monosodium L-aspartate (MSA). Several modifies with obvious structural similarities were
conducted, and concentration-dependence experiments were designed and carried out. By
comparing and analyzing their experimental data, the structural conditions of the modifiers
required to measure umami substances were summarized, and the modifier suitable for
measuring umami substances was discussed. Furthermore, the taste sensors treated with
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the optimal modifier were validated for their selectivity to umami through a series of
selectivity experiments spanning the five basic tastes and astringency.

2. Materials and Methods
2.1. Reagents

The lipid/polymer membrane comprises tetradodecylammonium bromide (TDAB) as
the lipid, dioctyl phenyl-phosphonate (DOPP) as the plasticizer, and polyvinyl chloride
(PVC) as the supporting material. Tetrahydrofuran (THF) was used as the organic solvent.
TDAB and THF were purchased from Sigma-Aldrich (St. Louis, MO, USA). DOPP was ac-
quired from Dojindo Molecular Technologies (Kumamoto, Japan), while PVC was obtained
from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan).

Four types of modifiers were utilized, including terephthalic acid (TPA), 2-hydroxytere
phthalic acid (2-HTA), 2,6-dihydroxyterephthalic acid (2,6-DHTA), and 2,6-DHBA. 2-HTA
and TPA were procured from Tokyo Chemical Industry (Tokyo, Japan). 2,6-DHTA was
sourced from BLDpharm (Shanghai, China), and 2,6-DHBA was acquired from FUJIFILM
Wako Pure Chemical Corporation (Osaka, Japan).

MSG, potassium chloride (KCl), tartaric acid, quinine hydrochloride, tannic acid, and
sucrose were purchased from Kanto Chemical Co. (Tokyo, Japan). MSA was purchased
from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). Figure 1 shows the
structural formula of TDAB, PAEE, TPA, 2-HTA, 2,6-DHTA, 2,6-DHBA, MSG, and MSA.
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MSA.

2.2. Fabrication of Lipid/Polymer Membrane and Surface Modification

In this study, we prepared five types of sensor electrodes with lipid/polymer mem-
branes including TDAB as a lipid. The process for fabricating lipid/polymer membranes
is similar to a previous report [55]: Initially, a cleaned and dried 20 mL screw tube bottle
was prepared for mixing lipid, DOPP, PVC, and THF. 0.01 mmol TDAB was dissolved in
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10 mL THF. Subsequently, 1.5 mL DOPP and 800 mg PVC were added sequentially. The
resulting mixture was stirred thoroughly and then spread onto a clean Petri dish (90 mm φ).
The TDAB lipid/polymer membrane was formed through the evaporation of THF. The
obtained lipid/polymer membrane was cut and placed onto a sensor electrode.

Three groups of sensor electrodes were immersed into 0.03 wt% of 2,6-DHBA, 2,6-
DHTA, and 2-HTA aqueous solution each for surface modification for 72 h by the same
method before [55]. We soaked a group of sensor electrodes into the reference solution
containing 3.33 M KCl and 0.3 mM tartaric acid for 72 h as a reference group in the
measurement.

Since TPA is insoluble in both water and organic solutions [63,64], it was directly
incorporated into the membrane for preparing another group of sensor electrodes. To
determine the optimal concentration of TPA in the membrane for MSG detection, we
prepared four membranes, each containing different amounts of TPA, specifically 0.16, 1,
10, and 100 mg. TPA was initially placed into a cleaned 20 mL screw tube bottle, followed
by the sequential addition of 10 mL THF, 0.01 mmol TDAB, 1.5 mL DOPP, and 800 mg PVC.
The mix membrane solution was stirred well and gently spread onto the cleaned Petri dish
(90 mm φ) to form the lipid/polymer membrane. After placing the membranes onto the
sensor electrodes, they were immersed into a reference solution for 72 h.

2.3. Procedure of Taste Sensor Measurement

A TS-5000Z taste sensing system (Intelligent Sensor Technology, Atsugi, Japan) was
utilized for all the taste sensor measurements. This system can accommodate two detection
units, each including a reference electrode and up to four sensor electrodes. Figure 2
illustrates the structure of the detection unit. Both the sensor electrode and the reference
electrode are equipped with an Ag wire coated with an AgCl layer and are filled with an
inner solution containing KCl at a concentration of 3.33 M and saturated AgCl.
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Figure 3 illustrates the procedure for taste sensor measurements. Initially, the sensor
electrodes and the reference electrode are immersed in a reference solution for 30 s to obtain
the reference potential (Vr). Subsequently, they are immersed in the sample solution for
30 s to obtain the sample potential (Vs). The relative potential in the sample solution is
calculated by taking the difference between Vs and Vr. Finally, the sensor electrodes and
the reference electrode are cleaned with a water-based solution consisting of 10 mM KOH,
100 mM KCl, and 30 vol% EtOH in preparation for the next measurement cycle. To ensure
the reliability of the experimental data, we set the taste sensor to go through this detection
step five times, and selected the data from the last three times out of the five for analysis.
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2.4. Response Principle of the Taste Sensor

In a broad sense, the taste sensor are ion-selective electrodes fabricated with lipid/
polymer membranes based on ion exchangers [46]. To elucidate the response mechanism
of the taste sensor, the potential profile of a lipid/polymer membrane containing nega-
tively charged lipid, plasticizer, and PVC is illustrated in Figure 4. The negatively charged
lipid/polymer membrane acts as a barrier between two KCl solutions. When the concentra-
tions of the solutions on either side of the membrane are different, the membrane potential
difference appears between the outer and inner solutions.

Inner solution
3.33 M KCl

Negatively charged 
membrane

Outer solution
Reference solution + taste substances

Vm
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Vs
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− +

+
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Figure 4. The potential profile of a negatively charged lipid/polymer membrane.

The membrane potential comprises the surface potential generated at the aqueous
interface of the membrane and the diffusion potential within the membrane [46]. Under
constant temperature conditions, the inner solution potential remains constant. The outer
solution, on the other hand, contains taste substances. The volume of the membrane
and the amount of lipid molecules determine the molecular surface area occupied by
each lipid molecule. This quantity, along with the concentration of the taste substance
solution, determines the membrane surface charge density, subsequently influencing the
outer solution potential.

For negatively charged lipid/polymer membranes, due to electrostatic interactions,
cations are attracted near the membrane surface, while anions move away from the mem-
brane surface. Consequently, a diffusion double layer is formed between negative charges
on the membrane surface and cations in solution. The diffusion potential within the
membrane is a potential difference caused by the dissimilarity in the mobility of cations
and anions.
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Therefore, the membrane potential Vm can be expressed as

Vm = Vs
out + Vd − Vs

in, (1)

where Vs
out and Vs

in is the outer solution potential and the inner solution potential,
respectively, and Vd is the diffusion potential.

These lipid/polymer membranes have ionic and/or hydrophobic (or hydrophilic)
properties, as mentioned in the Introduction. The membrane can classify and quantify five
basic taste qualities, which have ionic and/or hydrophobic (or hydrophilic) properties in a
broad sense. There is scarcely a molecular recognition in this response mechanism, because
the surface potential in itself is nonspecific in the strict sense.

In this study, we developed a novel type of lipid/polymer membrane by using modi-
fiers which specifically interact with umami substances such as MSG and MSA. We chose
four kinds of modifiers, i.e., 2,6-DHBA, 2,6-DHTA, TPA, and 2-HTA, for this purpose.

2.5. Measurement of Taste Samples by Fabricated Taste Sensors

All umami samples and taste quality samples were prepared using the reference
solution (0.3 mM of tartaric acid and 30 mM of KCl aqueous solution) as the base. All
five fabricated sensors, i.e., sensors modified with 2,6-DHBA, 2,6-DHTA, TPA, 2-HTA, and
sensors without surface modification, were used for measuring umami samples. Sensors
modified with 2-HTA and 2,6-DHTA were used for measuring various taste quality samples.
Table 1 displays the composition of these taste quality samples.

Table 1. Composition of five basic tastes and astringency sample.

Sample Composition Concentration

Sourness Tartaric acid 3 mM
Bitterness (+) Quinine hydrochloride 0.1 mM
Bitterness (−) Iso-α acid 0.01 vol%

Saltiness Potassium chloride (KCl) 300 mM
Astringency Tannic acid 0.05 wt%
Sweetness Sucrose 1 M

Umami
Monosodium L-glutamate (MSG)

100 mMMonosodium L-aspartate (MSA)

3. Result and Discussion
3.1. Detection of Umami Substances Using Taste Sensors Treated with 2,6-DHBA and 2,6-DHTA

First, we employed 2,6-DHBA and 2,6-DHTA as modifies to detect umami. These
two materials were utilized to detect non-charged bitterness substances in previous stud-
ies [49,53–55]. In contrast to the structure of 2,6-DHBA, which features only one carboxyl
group on the benzene ring, 2,6-DHTA contains two carboxyl groups on the para-position
of the benzene ring. Figure 5 presents the response to MSG and MSA solutions with three
sensors: the sensor without surface modification, the sensor modified with 2,6-DHBA,
and the one with 2,6-DHTA. Mean values and standard deviations were calculated from
12 (4 electrodes × 3 rotations) sets of electrical response values. Comparing the data in
Figure 5, it is evident that the taste sensor treated with 2,6-DHTA exhibited a significant
response to MSG and MSA, while other sensors were unable to detect them. As the
concentration of the umami sample solution increased, the response obtained by the 2,6-
DHTA-treated sensor also increased. As shown in Figure 5 (orange bar), the sensor without
surface modification showed negligible responses (less than 10 mV) to umami substances.
These results indicate that the surface modification method using 0.03 wt% 2,6-DHTA as a
modifier is a practical approach for the sensor to detect MSG. Furthermore, it is notable that
the response values of the taste sensor treated with 2,6-DHTA to these umami substances
were consistently positive, and the values increased according to the MSG concentration.
MSG ionized in aqueous solution is electrically negative; hence, the positive response of
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this sensor cannot be considered to be a simple interaction between the membrane and
ionized MSG.
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The 2,6-DHBA-treated sensor has proven effective in detecting non-charged bitter
substances [49,53–55], while it was insensitive to MSG and MSA, as shown in Figure 5.
Given the ineffectiveness of the 2,6-DHBA-treated sensor in detecting MSG and MSA, and
the remarkable sensitivity of the 2,6-DHTA-treated sensor, it suggests that the structure of
2,6-DHTA, which features two carboxyl groups on the para-position of the benzene ring, is
suitable for detecting umami substances.

3.2. Effect of Intramolecular H-Bonds within Modifier for Umami Substances Detection

To investigate the effect of intramolecular H-bonds within modifiers on the sensitivity
of the taste sensor to MSG, we utilized two other modifiers, TPA and 2-HTA, in addition to
2,6-DHTA. As shown in Figure 1, 2-HTA contains one hydroxyl group, 2,6-DHTA contains
two hydroxyl groups, while TPA does not contain any hydroxyl group. The hydroxyl group
on the benzine ring are capable of forming an intramolecular H-bond with the adjacent
carboxyl group [65–67].

Figure 6 shows the response to MSG and MSA solutions measured using sensors
modified with TPA, 2-HTA, and 2,6-DHTA each. According to Figure 6, the 100 mg TPA-
contained sensor showed negligible responses (<10 mV) to MSG and MSA. The similar
result was obtained for sensors containing other different quantities of TPA, indicating
that the TPA-contained sensor is unable to detect umami substances. The response of the
2,6-DHTA-treated sensor to 100 mM MSG (i.e., 95 mV) was nearly double the response
obtained by the 2-HTA-treated sensor (i.e., 53 mV). The tendency of higher sensitivity in the
2,6-DHTA-treated sensor compared to the 2-HTA-treated sensor remained consistent, even
when the sample was MSA or at the low concentrations. These results indicate that the
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number of intramolecular H-bonds between the carboxyl group and hydroxyl group in the
molecular structure is crucial for enhancing the sensor sensitivity. This result is consistent
with the earlier findings for caffeine sensors, indicating that the number of intramolecular
H-bonds in the modifier molecules influences sensitivity to the sample [49].
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Figure 6. Response to (a) MSG and (b) MSA in sample solutions measured using three sensors with
different modifiers. Yellow: the sensor membrane was fabricated mixed with 100 mg of TPA. Green:
the sensor was soaked in 0.03 wt% 2-HTA solution for surface modification. Blue: the sensor was
soaked in 0.03 wt% 2,6-DHTA solution. The error bar indicates the SD of data, n = 4 (electrode) × 3
(rotation) = 12 values.

3.3. Measurement of Various Taste Samples Using Sensors Treated with 2,6-DHTA and 2-HTA

We measured various taste samples to validate the effectiveness of 2,6-DHTA and
2-HTA-modified sensors as umami sensors. Selectivity, i.e., the ability of the sensor to
respond strongly to umami and not to other tastes is important for practical applications.
Figure 7a,b show the response to five basic tastes and astringency sample solutions using
sensors modified with 2-HTA and 2,6-DHTA, respectively. Both the sensors treated with
2-HTA and 2,6-DHTA exhibited selectivity to MSG and MSA.
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with (a) 2-HTA and (b) 2,6-DHTA, respectively. The error bar indicates the SD of data, n = 8 (electrode)
× 3 (rotation) = 24 values.

Taste sensors treated with 2-HTA exhibited a 20 mV response to the sourness sample.
The dissociation of carboxyl groups not adjacent to the hydroxyl group of 2-HTA may have
decreased in the acid pH domain, leading to an increase in membrane potential. Actually,
the fact that the sensors respond to umami and sourness is not very important, because
MSG is the sodium salt of glutamic acid, and then umami is not felt in the acid pH domain
but felt around neutral pH [68].
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Moreover, the taste sensor treated with 2,6-DHTA showed significant responses to
MSG and MSA, while it demonstrated negligible response (less than 10 mV) to saltiness,
sourness, bitterness (+), and astringency. Response values for bitterness (−) and sweetness
are not necessarily negligible, but they have no impact on identifying umami substances
since they exhibited opposite responses to umami substances.

2,6-DHTA is practical surface modification substance for taste sensors in umami
substances measurement, showing good selectivity for MSG and MSA. Although 2,6-
DHTA has been studied for caffeine detection [55], it is worth noting that 2,6-DHBA exhibits
minimal response to MSG, whereas 2,6-DHTA shows a significant response. Therefore,
the simultaneous use of these two modifiers can effectively differentiate between umami
substances and caffeine.

3.4. Mechanism Speculation of Positive Response Value of Taste Sensor Treated with 2,6-DHTA
to MSG

As found in Figure 7, the developed sensor modified with 2,6-DHTA responds specif-
ically to umami substances, MSG and MSA. The conditions for modifiers required to
measure MSG and MSA are summarized as follows: (1) Two carboxyl groups on the
para-site of the benzene ring are essential; (2) the presence of hydroxyl groups that form
intramolecular H-bonds with the adjacent carboxyl groups are also essential. Moreover,
an increase in the number of intramolecular H-bonds corresponds to an increase in the
sensor’s sensitivity to the substances.

Additionally, the distance between the carbon atoms of the two carboxyl groups in
2,6-DHTA is 6.160 Å, while in MSG it is 5.335 Å (calculated from Marvin 23.7.0, Che-mAxon,
Budapest, Hungary). These observations suggest a possibility of intermolecular interactions
between 2,6-DHTA and MSG.

Therefore, we propose a detection mechanism to explain the response to MSG (Figure 8).
2,6-DHTA formed intramolecular H-bonds between its carboxyl groups and hydroxyl
groups by dissociating H+ into the reference solution. When the 2,6-DHTA-treated sensors
were immersed in the MSG sample solution, intermolecular H-bonds were formed in
the two places between the carboxyl groups of 2,6-DHTA and the carboxyl groups of
MSG, altering the dissociation of 2,6-DHTA on the lipid/polymer membrane. The two
intramolecular H-bonds of 2,6-DHTA were disrupted. The formation and disruption of
H-bonds resulted in positive change in the membrane potential associated with taking back
H+ to the carboxyl groups of 2,6-DHTA. This process is described as the transition ‘intra- to
intermolecular H-bonds’.
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As shown in Figure 1, MSA has one less carbon atom than MSG, resulting in its
length shorter than MSG. Consequently, we speculate that the shorter length of MSA leads
to relatively less stability in its binding with 2,6-DHTA. As illustrated in Figure 7, the
response of MSA is slightly lower than that of MSG. This suggests that MSG’s size is
relatively well-matched with 2,6-DHTA. Further research is required to investigate the taste
sensor treated with 2,6-DHTA to distinguish between MSG and amino acid substances of a
similar size to MSG, e.g., glutamine, which has no umami taste. Moreover, we will employ
chemical analysis techniques, e.g., nuclear magnetic resonance (NMR) methods to verify
this mechanism conclusively.

4. Conclusions

In conclusion, this study demonstrated that the taste sensor modified with terephthalic
acid analogs detects umami substances, including MSG and MSA. The taste sensor treated
with 2,6-DHTA had high sensitivity for the umami substances MSG and MSA, while the
response to other taste substances was negligible; hence, the taste sensor treated with
2,6-DHTA is expected to be applied to practical umami sensors. It is also important to note
that the sensor response was positive even though umami substances ionized negatively
in aqueous solution. Furthermore, through investigation using some terephthalic acid
analogs as modifiers, we identified both the two carboxyl groups on the para-position of
the benzene ring and the hydroxyl group next to the carboxyl group for intramolecular
H-bond formation are the essential structural characteristics for detecting MSG and MSA.
The number of intramolecular H-bonds positively correlates with changes in membrane
potential, emphasizing the importance of this feature. More research is needed to confirm
the mechanism behind the positive response of 2,6-DHTA-treated taste sensors to MSG,
such as employing NMR measurements to analyze the molecular interactions between
2,6-DHTA and MSG. Future work should explore sensitivity for other umami substances,
such as IMP and GMP, to broaden the scope of applications for taste sensors with surface-
modified membranes. This study showcases the potential of taste sensors and surface
modification techniques in the realm of taste substance measurement and encourages
further investigations in this field.
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