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Abstract: Hemoglobin (Hb) disorders are among the most common monogenic diseases affecting
nearly 7% of the world population. Among various Hb disorders, approximately 1.5% of the world
population carries β-thalassemia (β-Thal), affecting 40,000 newborns every year. Early screening and
a timely diagnosis are essential for β-thalassemia patients for the prevention and management of
later clinical complications. However, in Africa, Southern Europe, the Middle East, and Southeast
Asia, where β-thalassemia is most prevalent, the diagnosis and screening for β-thalassemia are
still challenging due to the cost and logistical burden of laboratory diagnostic tests. Here, we
present Gazelle, which is a paper-based microchip electrophoresis platform that enables the first
point-of-care diagnostic test for β-thalassemia. We evaluated the accuracy of Gazelle for the β-Thal
screening across 372 subjects in the age range of 4–63 years at Apple Diagnostics lab in Mumbai,
India. Additionally, 30 blood samples were prepared to mimic β-Thal intermediate and β-Thal major
samples. Gazelle-detected levels of Hb A, Hb F, and Hb A2 demonstrated high levels of correlation
with the results reported through laboratory gold standard high-performance liquid chromatography
(HPLC), yielding a Pearson correlation coefficient = 0.99. This ability to obtain rapid and accurate
results suggests that Gazelle may be suitable for the large-scale screening and diagnosis of β-Thal.

Keywords: hemoglobin variants; hemoglobin disorders; β-thalassemia; anemia; point-of-care screening;
microchip electrophoresis

1. Introduction

Hemoglobin (Hb) disorders are among the world’s most common monogenic dis-
eases [1]. β-thalassemia (β-Thal) is caused by single mutations resulting in small deletions
or insertions within either the β-globin gene or its immediate flanking sequence or by
gross deletions resulting in a reduced production of normal hemoglobin (Hb A). Globally,
approximately 1.5% of the world population carries β-Thal, which affects 40,000 newborns
every year [2,3]. It is estimated that over 90% of patients with β-Thal live in low-and
middle-resource settings, including those found in Africa, the Middle East, Southeast Asia,
and Southern Europe [4].

The early detection and screening for β-Thal are crucial for enabling timely inter-
ventions [5], preventing complications [5], facilitating informed family planning through
genetic counseling [6], supporting public health strategies in high-prevalence areas [7], im-
proving patients’ quality of life [8], and enhancing education and awareness [9]. Successful
screening and prevention programs have reduced the number of persons affected by β-Thal
in countries such as Cyprus, Greece, and Italy [10]. However, such programs have not been
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widely implemented in other areas due in large part to the cost and logistical burden of
laboratory diagnostic tests [10].

There are many β-Thal syndromes. The most common ones are as follows: β-Thal
major, β-Thal intermedia, and β-Thal trait [11–13]. β-Thal major and β-Thal intermedia are
characterized by an elevated fetal hemoglobin percentage (HbF%.) They are associated
with severe, moderate, or mild anemia requiring repeated transfusions resulting in a risk of
iron overload. β-Thal trait is characterized by a high HbA% along with increased levels of
hemoglobin A2 (HbA2% > 3.5%) and is associated with mild or no anemia and with variable
microcytosis [14]. The current centralized test used for screening and diagnosing β-Thal is
high-performance liquid chromatography (HPLC). This test relies on often unaffordable
(USD 15 k–35 k or GHS 90 k–210 k) specialized instruments, state-of-the-art laboratory
facilities, and highly trained personnel, which are lacking in the low-resource settings
where β-Thal is most prevalent [2]. As a result, there is a need for affordable, portable,
easy-to-use, and accurate point-of-care (POC) tests to facilitate decentralized β-Thal testing
in low-resource settings [15–18].

Several POC diagnostic systems for several hemoglobin variants such as Hb S have
been described [15–21] based on testing methods such as the sickle cell solubility test and
antibody-based lateral flow assays such as Sickle SCANTM and HemoType SCTM [22–24].
However, there is currently no POC test available for β-Thal detection. In a 2019 report,
the World Health Organization (WHO) listed hemoglobin testing as one of the most
essential for in vitro diagnostic (IVD) tests for primary care use in low- and middle-income
countries [25,26]. Furthermore, hemoglobin electrophoresis has recently been added to the
WHO’s essential list of IVDs for diagnosing sickle cell disease (SCD) and sickle cell trait [27].
Leveraging the WHO-recognized Hb electrophoresis test, we developed a paper-based,
affordable (~$2/test and <$1000 for GazelleTM reader), and miniaturized Hb electrophoresis
platform: GazelleTM (Figure 1) [28–30]. GazelleTM leverages an injection-molded, single-
use, plastic microcartridge that can be mass-produced. This microcartridge embodies a
pair of biomedical-grade stainless steel electrodes, a pair of blotting pads for maintaining
current continuity, and cellulose acetate paper as a separation medium for electrophoresis
(Figure 1B,C).

The fundamental principle behind GazelleTM is hemoglobin electrophoresis in which
different hemoglobin variants can be separated based on mobility differences under an
electric field (Figure 1D). Gazelle has been tested in clinical studies in four different coun-
tries with more than 700 subjects and demonstrated a capability of identifying major Hb
variants, including HbA, HbE, HbS, and HbF, in adults as well as in newborns with SCD,
sickle cell trait, hemoglobin C disorder, and hemoglobin E disorder [28,30–32].

Here, we implemented a customized image analysis algorithm for the accurate quan-
tification of HbA2 for the first time in addition to HbA, HbF, and Hb C/E. Additionally, we
described a test for evaluating the diagnostic performance of this platform in identifying
β-Thal major, β-Thal intermedia, and β-Thal trait across 372 subjects in the age range of
4–63 years at Apple Diagnostics lab in Ghatkopar, Mumbai, India. Additionally, 32 blood
samples were prepared to mimic β-thalassemia intermediate and β-thalassemia major
samples. Gazelle-detected levels of Hb A, Hb F, and Hb A2 demonstrated high correla-
tions with the results reported through laboratory gold standard high-performance liquid
chromatography (HPLC) yielding a Pearson correlation coefficient of 0.99. These results
suggest that Gazelle-Multispectral is potentially suitable for large-scale β-Thal testing.
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marked with a control blue dye (blue color) for visualization, is applied to the cellulose acetate paper 
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Figure 1. Gazelle paper-based microchip electrophoresis. (A) Gazelle paper-based microchip elec-
trophoresis using a disposable cartridge (red boxed area, (B)) at the point of need. (C) The microcar-
tridge is composed of a cartridge top, cellulose acetate paper, two blotting pads, a pair of stainless
steel electrodes, and a cartridge bottom. (D) A detailed schematic illustrating the separation process of
hemoglobin variants using the Gazelle system. Initially, lysed whole blood (red color), marked with a
control blue dye (blue color) for visualization, is applied to the cellulose acetate paper housed within
the microcartridge. Following this, an electric field is applied, thereby facilitating the separation of
different hemoglobin variants based on their distinct electrophoretic mobilities.
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2. Methods
2.1. Study Design and Oversight

We conducted a prospective diagnostic accuracy study on the use of Gazelle in de-
tecting Hb variants including HbA, Hb, and HbA2 at Apple Diagnostics lab in Ghatkopar,
Mumbai, India, adhering to an IRB-approved study protocol (IEC@IISS (International Insti-
tute of Sleep Sciences IRB number); Reg No.: ECR/177/Indt/MH-2014/RR-19). The results
obtained from Gazelle were compared with the results reported through the reference
(“Gold-standard [33]”) tests using HPLC in India. All samples were tested within 7 days of
collection. All authors have reviewed and analyzed the data and attest to their accuracy
and completeness as well as the fidelity of adherence to the study protocol.

2.2. Study Populations and Procedures

This test was conducted at Apple Diagnostics in Mumbai, India. Blood samples
were collected from subjects at screening camps and education and awareness programs
conducted by Plasma Labs in Jalgaon district, Maharashtra, India. All these subjects had
consented to participate in the study. Subjects were excluded only if they had undergone
a blood transfusion in the preceding 3 months or if they were unable to give informed
consent. The study was approved by the IRB of the International Institute of Sleep Sciences
(IISS), and informed consent was obtained from each participant’s parent or guardian if
required. All the blood samples were collected on-site in EDTA blood collection tubes and
stored at 4 C until they were tested through Gazelle. Blood samples were tested within
one week of collection. The leftover blood was stored at 4C for HPLC testing using a
D-10 HPLC system (Bio-Rad Laboratories, Hercules, CA, USA). The laboratory technician
who conducted the tests through Gazelle had basic laboratory skills, such as pipetting and
vortexing, and was able to independently perform the tests with less than 2 h of training.

2.3. Gazelle Test Procedure

The GazelleTM system design, including the microcartridge structure, paper-based
electrophoresis principle, instrument design, and optical path structure, can be found in
our previous publications [30,32]. The technicians performed the tests according to the
Gazelle-Multispectral instructions for use as published previously [30]. Similarly, all buffer
compositions have been published previously [30]. At the conclusion of the 8 min test,
Gazelle automatically reports the percentages of each hemoglobin type present in the blood
samples as well as an interpretative statement.

2.4. Confirmatory Laboratory Procedures

Samples that were stored at 4 ◦C degrees were retrieved. A total of 5 microliters of
the sample were pipetted and diluted using 1500 microliters of distilled water. Diluted
hemolysates were arranged on racks and loaded into a Bio-Rad D-10 HPLC system. The
barcoded sample IDs were then edited to the match sample IDs. Each sample was run for
approximately 6 min.

2.5. Gazelle-Multispectral Image Acquisition and Data Analysis

A customized image acquisition system and data analysis algorithm are integrated
into the Gazelle system. The image acquisition system illuminates the microcartridge using
a 410 nm wavelength ultra-violet (UV) LED. The imaging camera is positioned on the
opposite side of the microcartridge from the UV light source and records electrophoresis
progression at a rate of 0.25 frames per second. The GazelleTM image acquisition system
allows us to acquire real-time images to track the separation and migration of hemoglobin
bands on the cellulose acetate paper within the microcartridge (Figure 1B–D).

The GazelleTM data analysis algorithm automatically identifies β-Thal major, β-Thal
intermedia, and β-Thal trait based on the Hb band migration pattern as described previ-
ously [30,34]. To put it briefly, the images acquired under 410 nm illumination are used to
construct a space-time plot demonstrating the entire band electromigration process during
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each electrophoresis test (Figure 2B, x-axis: distance along the x-axis of the cellulose acetate
paper; y-axis: time (from 0 to 480 s from top to bottom). Each point on the x-axis contains
an averaged pixel intensity along the y-axis of the cellulose paper. β-thal detection requires
the accurate quantification of HbA2. Our previously developed algorithms allowed for the
detection and quantification of HbS, HbA, and HbF but not of HbA2; therefore, they are not
suited for β-thal detection. Here, we developed a new algorithm for HbA2 quantification.
This new algorithm includes two steps. In step one, the algorithm implements a matched
filter in which it searches for the maximum signal-to-noise ratio of the imaged Hb band
within a dynamic area in the space-time diagram (Figure 2B). The dynamic region is defined
by two criteria used to track the sample loading position and HbA migration. Criterion
one defines the time period (y-axis on the space-time diagram) within which the matched
filter searches. This criterion is defined by how it starts upon 3–5 frames (0.25 fps, 12–20 s)
after the HbA band and how it ends upon the 85th frame (340 s). Criterion two defines the
position of the band along the length of the cellulose acetate paper (x-axis on the space-time
diagram). This criterion is defined between column 73 (2.86 mm) and column 220 (8.63 mm)
after the sample loading location. If the HbA2 signal is not identified in step one, then the
algorithm stops. When HbA2 signals are identified in step one, the algorithm moves to
step one. In step two, the algorithm calculates the amplitude of the HbA2 peak and the
area underneath it using the electropherogram. The peak amplitude and area, along with
the amplitudes of the non-A2 Hb variant peaks, are input into a regression algorithm that
has been previously trained using HbA2 levels reported through HPLC. The algorithm
then provides a quantitative estimation of HbA2. If the estimated HbA2 is above 3.5%,
the algorithm will report a positive detection result for β-thal. At the end of each test, the
Gazelle algorithm automatically reports the identified and quantified Hb variant results as
well as the patient phenotype (Figure 2C).

In addition to HbA2, the data analysis algorithm also automatically quantifies the
relative percentages of HbA and HbF alongside other types of hemoglobin as previously
reported. Gazelle’s reported results on Hb variant identification and quantification were
compared with the ones reported through HPLC using Pearson correlation and Bland–
Altman analysis. Gazelle-Multispectral sensitivity and specificity in the identification of
β-Thal major, β-Thal intermedia, and β-Thal trait were calculated for the study population
compared with the HPLC-reported results (Figure 3).
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Figure 2. Gazelle tests for screening beta-thalassemia. (A) GazelleTM allows for real-time image
acquisition for tracking hemoglobin migration and separation. Left: example of a Gazelle test of a
blood sample with a low Hb A2 level. Right: example of a Gazelle test of a blood sample with a high
Hb A2 level. (B) Applying an internally integrated data analysis algorithm, the generated space-time
plots based on the captured images are used for the identification and quantification of Hb variants
in real time. (C) At the end of each test, the Gazelle algorithm automatically reports the identified
and quantified Hb variant results as well as the patient phenotype.
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Figure 3. Process flow diagram of the GazelleTM data analysis algorithm for beta-thalassemia
detection and quantification.

3. Results
3.1. Test Population and Result Reporting

In this study, we conducted clinical testing across 372 subjects in the age range of
4–63 years at Apple Diagnostics lab in Ghatkopar, Mumbai, India, adhering to the local
IRB-approved study protocol. Additionally, 32 blood samples were artificially prepared to
mimic β-Thal major and β-Thal intermedia samples.

The Gazelle algorithm verifies the quality of test results according to the internally
embedded data quality control (QC) method. According to the QC method, Gazelle-
Multispectral organizes test results under one of the three categories of (1) “valid” test;
(2) “uninterpretable” test; and (3) “inconclusive” test. The “valid”, “uninterpretable”,
and “inconclusive” tests were defined according to the published recommendations in a
previous publication [35] and the STARD guidelines [36]. If a test is performed as expected
according to objective standards, the data analysis algorithm recognizes the test as a “valid”
test and reports the test result. If a test includes poor migration of the blue control marker,
an electrical connectivity issue, or faulty cartridges, the data analysis algorithm recognizes
the test as an “uninterpretable” test. If a test is performed adequately according to an
objective set of standards but has a quantification confidence value that is lower than
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the preset threshold value, then the data analysis algorithm recognizes the test as an
“inconclusive” test. Reasons for “inconclusive” tests include the appearance of a Hb variant
band or bands at or close to the borderline region between two adjacent detection windows.
In this study, 394 out of 404 (97.5%) tests were recognized as “valid”, while 10 out of 404
(2.5%) tests were recognized as “inconclusive”.

3.2. Gazelle Result Interpretation Criteria

The Gazelle result interpretation criteria were established according to the clinical
recommendations from key opinion leaders and using a large training dataset collected
from field studies. The Gazelle β-Thal algorithm defines β-Thal major, β-Thal intermedia,
and β-Thal trait according to the detected HbA, HbF, and HbA2 levels. The algorithm reads
and interprets the data in the following sequences: (1) First, the algorithm checks if HbF
≥ 60% and HbA < 40% with no other hemoglobins over 10%. If true, the algorithm calls
the sample β-Thal major or β-Thal intermedia. (2) When HbF < 60% and HbA ≥ 40% with
no other hemoglobins over 10%, the algorithm measures the HbA2 level and then calls the
sample β-Thal trait if HbA2 > 3.5%.

3.3. Gazelle-Multispectral Hb Variant Quantification Demonstrated a High Correlation
with HPLC

Pearson correlation analysis and Bland–Altman analysis were performed on the
394 tests recognized as “valid”. The correlation plots include the Gazelle-determined
Hb variant levels (y-axis) versus the Hb variant levels reported through the HPLC (x-axis),
including HbA (black), HbF (orange), and HbA2 (red, Figure 4A). The Bland–Altman
analysis includes the difference between the Gazelle-quantified levels of HbA, HbF, and
HbA2 and the ones determined through HPLC (y-axis) over the entire range of Hb levels
detected (x-axis, Figure 4B). The result from the Pearson correlation analysis was a Pearson
correlation coefficient (PCC) of 0.99 for all three Hb variants. Bland–Altman analysis results
indicate that Gazelle determines blood Hb variant levels with a mean bias of +1.2%, with
upper and lower limits of agreement at 4.8% and −2.4%, respectively. Taken together, these
results demonstrated a good agreement between the Hb variant levels determined using
Gazelle and the ones reported through HPLC (Figure 4).
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Figure 4. Gazelle accurately identifies and quantifies HbA, HbF, and HbA2. (A) Pearson correlation
showed that Gazelle identified and quantified HbA (black), HbF (orange), and HbA2 (red), which
demonstrated a strong correlation with the results reported through laboratory gold standard HPLC
testing [33] at a Person coefficient correlation (PCC) of 0.99, p < 0.05). (B) Bland–Altman analysis
demonstrated that Gazelle tests had an overall mean bias of 1.2% (doted gray line), with upper and
lower limits of agreement (LoA) at 4.8% and −2.4%, respectively).
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3.4. Sensitivity and Specificity of Gazelle β-Thalassemia Testing

In this clinical study, Gazelle test results included disease (β-Thal major and β-Thal
intermedia), trait (β-Thal trait), and normal (categorized using data interpretation criteria
described above). Comparing the results reported from the laboratory standard test HPLC,
Gazelle identified subjects with the disease, β-Thal major and β-Thal intermedia, from
normal subjects and subjects with the β-Thal trait with 100% sensitivity and specificity
(Table 1), 6 normal subjects were identified as β-Thal trait. Sensitivity and specificity for
identifying subjects with β-Thal trait from normal subjects (Trait vs. Normal) were 100%
and 98.3%, respectively.

Table 1. Gazelle-Multispectral screening sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) in comparison with reference standard method a.

Disease vs. Normal Normal Disease vs. Trait Trait vs. Normal
True positive, TP 32 32 18
True negative, TN 344 18 338
False Positive, FP 0 0 6 b

False negative, FN 0 0 0
Sensitivity, TP/(TP + FN) 100.0% 100.0% 100%
Specificity, TN/(TN + FP) 100.0% 100.0% 98.3%

a 394 “valid” tests. Seven tests were recognized as “inconclusive” due to a failed quality control test; two tests
were recognized as “inconclusive” due to an unknown result reported through HPLC; and one test was recognized
as “inconclusive” due to an unknown result reported through Gazelle. “Inconclusive” tests did not generate a
result that could be included in the sensitivity and specificity analysis [35,36]. b 6 normal subjects with HbA were
recognized as having β-Thal trait.

4. Conclusions

β-Thal major and β-Thal intermedia are characterized by an elevated fetal hemoglobin
percentage (HbF%), and β-Thal trait is characterized by a high HbA% with increased levels
of HbA2% [14]. Proper and timely management of β-Thal relies on early and accurate
detection. The quantification of HbA and key Hb variants, including HbF and HbA2, are es-
sential for the accurate detection of β-Thal. The previous Gazelle system has demonstrated
its utility in detecting anemia [34] and hemoglobinopathies including SCD, sickle cell trait,
Hemoglobin C disorder, and Hemoglobin E Disorder [28–30]. Here, we report the updated
version of Gazelle that enables, for the first time, POC detection of β-Thal.

In this clinical study conducted among 404 subjects in Ghatkopar, Mumbai, In-
dia, Gazelle demonstrated 100% sensitivity and specificity for identifying β-Thal ma-
jor/intermedia vs. healthy subjects as well as subjects with β-Thal major/intermedia vs.
β-Thal trait. Additionally, Gazelle demonstrated 100% sensitivity and 98.3% specificity for
identifying β-Thal trait vs. healthy subjects. A recommended practice in Hb testing is that
all positive test results are confirmed through a secondary method prior to final diagnostic
decision making and treatment initiation [37]. Therefore, all disease-positive tests would
likely result in a secondary confirmatory test that should eliminate potential false positives
if there are any.

In summary, Gazelle provides an affordable and rapid POC solution for detecting
β-Thal for the first time. The Gazelle reader provides (1) animated on-screen instructions
with step-by-step guidance for test operation procedures to minimize user errors and (2)
a data analysis algorithm that automatically reports Hb variant levels and the predicted
disease status. Overall, the results reported in this study suggest that Gazelle is potentially
suitable for large-scale β-Thal testing in low-resource regions where the prevalence of
β-Thal is high.
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