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Abstract: Digital microfluidic systems based on electrowetting-on-dielectric technology, particularly
valuable in producing and manipulating microdroplets steadily and consistently, have experienced
notable advancements in recent years. In this paper, experimental characterizations reveal that
simply adding one transitional electrode between the reservoir and the splitting electrode improves
the volumetric consistency and reproducibility for droplet dispensing. The volumetric coefficient
variation of the consecutively dispensed droplets from a non-refilling reservoir decreases by 1% after
the addition of one transitional electrode, with no extra external apparatus. This work provides a
straightforward yet effective approach to the improvement of digital microfluidic systems and micro
total analysis systems.

Keywords: digital microfluidics; electrowetting-on-dielectric; droplet dispensing; volumetric consistency;
transitional electrodes

1. Introduction

The miniaturization of micro-electro-mechanical systems in the microelectronics in-
dustry has revealed its significance in the integration and automation of many processes
into one single device or system. This gives rise to tremendous performance improvements
in mechanical engineering and fluid mechanics with higher precision, throughput, and
functionality. Among these advancements, the origin of microfluidic technology can be
traced back to the silicon-based gas chromatograph developed by Stanford University
in the 1970s [1] and the inkjet printer developed by IBM Corporation [2,3]. The formal
conceptualization of microfluidics emerged in the early 1990s [4]. Over the past decades,
the connotation of microfluidics has gradually enriched and finally formed a research direc-
tion covering many cutting-edge fields involving biochemical analysis [5–7], point-of-care
detection [8], clinical analysis [9], molecular diagnosis [10], and single-cell analysis [11]. In
the field of microfluidic technology, researching the method of producing and controlling
the microdroplets is more than significant.

Digital microfluidics based on electro-wetting-on-dielectric (EWOD) presents a promis-
ing approach for manipulating reagent-contained droplets across a pre-designed routine, as
EWOD technology greatly improves the manipulation accuracy and selectivity of droplets.
Therefore, the volumetric consistency of the droplets produced within the EWOD system
largely determines the accuracy of the final detection results obtained in micro-total analysis
systems (µ-TAS). For example, in a lab-on-a-chip system that detects the concentration of
glucose in humans, the volume of microdroplets generated by the system cannot fluctuate
by more than ±2% [12]. Only EWOD devices that can accurately and reproducibly generate
simple droplets of the required volume can meet the precision requirements in practical
applications and perform the advantages of digital microfluidic systems. However, affected
by the Rayleigh–Plateau instability and the resulting oscillation on the liquid–air inter-
face, the continuous alteration of liquid morphology during droplet generation (pulling
out first, shrinking in the middle to form a thin neck then, and finally pinching off to
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generate droplets) renders the process highly susceptible to external disturbances [13–16].
Consequently, a minute alteration in initial conditions or the introduction of stochastic
disturbances can exert a significant impact on the volumetric variation of consecutively
dispensed droplets for traditional EWOD devices.

Early researchers chose to abandon the droplet generation function of the EWOD
device and use an off-chip micropump with higher precision to inject liquid into the digital
microfluidic device instead. Ren et al. [17] and Gong et al. [18] further set up a capacitive
sensing component in the liquid injection region. During the injection of liquids into
the EWOD device by the micropump or the on-chip dispensing process, the capacitance
detection component monitors the volume of liquid that has entered the device in real-
time, and feeds the result back to the control system to dynamically adjust the liquid
injection rate or the voltage applied to EWOD electrodes. With this setup, the volumetric
fluctuation of the microdroplets generated within the EWOD device could be reduced to
about ±2%. However, the introduction of new modules, like the external micropump,
liquid detection components, or feedback loops, greatly increases the system complexity,
reduces the integration level, and increases the production costs in the meanwhile, which is
contrary to the design purposes and technical advantages of the digital microfluidic system.
In addition, through computer simulation, Berthier et al. found that the volumetric accuracy
of dispensed droplets can be improved by optimizing parameters such as electrode size,
gap height between two plates, and driving voltage of the EWOD device [16]. However,
this method is not universal for different research conditions, since parameters like height
and voltage are prefixed and inalterable, it cannot provide general recommendations
for improvement applicable to various EWOD devices, which could be extremely work-
intensive for digital microfluidic systems involving the variation of various parameters.
An alternative function, called passive dispensing, was described by Wheeler et al. [19].
Hydrophilic sites were built on a hydrophobic surface to help the formation of sub-droplets,
but difficulties can be anticipated for multi-step processes since the droplet becomes stuck
after dispensing. Moreover, substrates with chemical patterns on the surface were also
studied for the modulation of droplet morphology [20–22]. The shape of splitting electrode
in the EWOD device was also meticulously designed (e.g., into dumbbell shape) to increase
the controllability and stability of dispensing process [23,24]. However, this method
requires an introduction of sub-electrodes with fine structures that put extra demand
for the manufacturing process.

In this paper, experimental characterizations reveal the efficiency of a straightforward
modification in electrode design, aimed at enhancing the stability and reproducibility of
the droplet dispensing process with no peripherals other than electrical connections. By
simply adding one transitional electrode between the reservoir and the splitting electrode,
the volumetric coefficient variation of the consecutively dispensed droplets from a non-
refilling reservoir can be greatly decreased. This observation confirms a simple and reliable
approach to improving the volumetric consistency and accuracy of digital microfluidic
systems. Moreover, additional experiments indicate that different parameters of the transi-
tional electrode, like aspect ratio and gap height, have a great influence on the coefficient of
variation over the volume of consecutively dispensed droplets as well, which reveals the
potential industrial application value of precision instrument manufacturing.

2. Materials and Methods

This work uses a two-plate EWOD structure with square-shaped electrodes, as de-
picted in Figure 1a. The glass coated with a 120-nm-thick indium tin oxide (ITO) conductive
film was ultrasonically cleaned in acetone, isopropanol, and deionized water in sequence
for 10 min each. The cleaned ITO glass was then blown dry by clean nitrogen gas and
heated on a hot plate surface at 120 ◦C for 30 min. The ITO coating on bottom substrates
was then patterned with lithography and wet etching into designed two-dimensional
electrode arrays as shown in Figure 1b. In this experiment, 1.5 µm SU8-2002 (MicroChem,
Round Rock, TX, USA) and 60 nm Teflon AF-1600 (DuPont, 400S2-100-1, Wilmington, DE,
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USA) were spin-coated successively onto the lithographically patterned bottom substrate
to prepare the insulating dielectric layer and the hydrophobic layer in the EWOD structure,
respectively. Another piece of ITO glass was taken as the top plate after cleaning, drying,
and spin-coating the Teflon layer. Double-sided tapes were pasted on the edge of the top
plate to align the top and bottom plates, defining the height of the gap between the parallel
plates. After adding liquid above the electrode of the bottom plate with a micropipette,
the two plates and press the top plate were aligned lightly to ensure a firm bonding and a
uniform gap height. After bonding steps, the EWOD electrodes in the bottom plate were
connected to an external supply through a laboratory-made relay while the ITO layer in
the top plate was kept grounded.
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Figure 1. Schematics of the EWOD device used in this work. (a) Side view. (b) Top view of actuation
electrodes in the bottom plate.

In this work, unless otherwise stated, the driving voltage is a sinusoidal alternating cur-
rent signal with a frequency of 1 kHz and an amplitude of 60 Vrms. The electrode sequence
on the bottom plate is illustrated and numbered in Figure 1b. The size of electrode 0 and
electrode 00, as liquid reservoirs, is 8 mm × 8 mm while electrodes 1–4 are 2 mm × 2 mm.
The gap between adjacent electrodes is 50 µm. The dispensing process of deionized water
droplets was captured by a microscope (TE2000-U, Nikon, Japan) with the top-view area of
droplets recorded using ImageJ2 software (National Institutes of Health, Bethesda, MD,
USA). Considering that the rim width of the droplet’s top view is much smaller than its
radius due to a small gap height, the surface curve caused by the Young–Laplace effect is
negligible and the volume of the droplets can be approximately calculated as the product of
the area of the droplet and the gap height. To express the volumetric consistency of droplets
more intuitively and comparatively, the coefficient of variation (CV) over the volume of
consecutively dispensed droplets is used here to characterize the volumetric stability of
droplets generated by different devices. In this regard, the coefficient of variation was
calculated by dividing the standard deviation with the mean volume µ of consecutively
dispensed droplets, yielding

CV =
1
µ

√√√√ 1
N

N

∑
i=1

(xi − µ)2 =

√√√√ 1
N

N

∑
i=1

(
xi − µ

µ

)2

where xi is the volume of the i-th droplet in total N droplets. Ten droplets were dispensed
consecutively from a non-replenishing reservoir in each measurement. To decrease the
accidental error, each data proposed in this work was averaged over ten individual measure-
ments. Consequently, in this work, a smaller CV indicates higher volumetric consistency
and stability of the corresponding droplet collection and dispensing process.
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3. Results

In the EWOD device, the droplet generation process includes three processes: liquid
pulling from the reservoir to spread along the driving electrodes, necking, and breaking to
form a separate droplet. For EWOD electrode arrays without the transitional electrode, the
dispensing process is featured in Figure 2a. Briefly, electrode 00 was used as the reservoir
electrode. One large water droplet, which is called the mother droplet, is initially located
above the reservoir electrode 00 and partially overlaps the driving electrode 4. When
driving electrode 4 and driving electrode 3 are connected to an actuation voltage, a portion
of the mother droplet is pulled over the actuated electrodes. This process is called liquid
pulling. Then, keep the driving electrode 3 powered on, connect the reservoir electrode
00 to the driving voltage, and ground the driving electrode 4. Then, the liquid above the
driving electrode 4 gradually shrinks from the middle to form a thin neck under the action
of surface tension and electrocapillary action. This is the necking process of the liquid.
Finally, the thin neck is pinched off due to the Rayleigh-Plateau instability, and the liquid
above the driving electrode 4 is merged back into the mother droplet in the reservoir under
the combined action of surface tension and electrocapillary force, respectively, forming a
droplet above the driving electrode 3. Hereinafter, the driving electrode corresponding to
the occurrence position of the liquid breaking process is referred to as the splitting electrode,
matching electrode 4 in Figure 2a.
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Figure 2. Schematics of the droplet dispensing processes (a) without and (b) with a transitional
electrode (TE). The blue contour demonstrates the shape of the liquid. The dark golden electrodes are
applied to the actuation voltage while the light ones are grounded.

After one droplet was formed, we used the microscope to collect its images and then
drove the droplet along the electrode sequence to the collection pool (electrode 0). For ten
droplets dispensed consecutively without re-filling the liquid, the volume variation was
measured and demonstrated in Figure 3 while the gap height between the parallel plates
was set 160 µm (i.e., two tape layers). The volume of ten droplets produced consecutively
is not constant or fluctuating disorderly, but increases monotonically within a certain range.
Although several elements like periodic changes in voltage, the contact angle of a droplet
on the surface and the morphology of the droplet may impact the process of volume
dispensing, further research shows that this monotonically increasing trend is related to the
gradual decrease in the volume ratio of the mother droplet in the reservoir to dispensed
droplets.

The force acting on unit per length of contact line was derived by F = C
2 V2

d with
C the capacitance per unit area of the dielectric layer and Vd the voltage falling across
the dielectric layer [13,14]. As the thickness of the hydrophobic layer on the top plate is
negligible compared to the dielectric layer on the bottom plate, Vd can be approximated
by the voltage applied to actuation electrodes. Assuming F remains constant around
the contact line on the same electrode, the overall electro-wetting force on the liquid can
be calculated by Ftotal =

∫
Fds = C

2 V2
d Le f f with Le f f the projected length of the liquid

boundary on the electrode. In the process of droplet generation, the projected area of
the water droplets in the reservoir above the reservoir electrode 00 is larger than that
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above the driving electrode 3, and the electrocapillary force on the liquid is proportional
to the projected length of the three-phase line on the actuated electrodes. Therefore, with
the continuous generation of droplets, the volume of liquids in the reservoir decreases
continuously, and the projected boundary length of the liquid on the reservoir electrode also
gradually decreases correspondingly. This tendency leads to a concomitant reduction in the
force on the liquid being pulled out during the necking of the drop. On the contrary, since
the volume of the drawn liquid is basically unchanged (the projected area is consistent with
the sum of the areas of electrode 3 and electrode 4), the projected length of the three-phase
line in the corresponding direction is also basically unchanged (roughly equal to the width
of the driving electrode 3). So, the electric capillary force that pulls the liquid out is basically
constant. Therefore, with the increased order of the dispensed microdroplets, the volume
of the mother droplet in the reservoir gradually decreases, the volume of the pulled-out
liquid that is sucked back into the reservoir during the necking process gradually decreases,
and the volume of dispensed droplets gradually increases with the generation order.
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It can be seen from the above analysis that the most direct solution to the problem
of droplet volume fluctuation is to continuously replenish the liquid reservoir so that the
volume of the liquid in the reservoir remains unchanged. However, the device structure
needs to be modified for the continuous replenishment of the liquid reservoir, and the
operation is cumbersome. Therefore, it is necessary to improve the structure of the EWOD
device itself to improve the volume floating problem of microdroplets.

Still using the electrode design shown in Figure 1b, electrode 0 and electrode 00 are
used as a reservoir electrode and a collection electrode, respectively, and driving electrode
1 is called a transitional electrode (TE). First, a voltage is applied to the driving electrodes
1, 2, and 3 to pull out the liquid from the reservoir. Then, an actuation voltage is applied
to the reservoir electrode 0 with the driving electrode 2 connected to the ground, and
finally a droplet is formed above the driving electrode 3, as illustrated in Figure 2b. After
collecting the image of the droplet, it is driven to the collection pool electrode 00. In
this case, the volume fluctuation of 10 microdroplets generated continuously is plotted in
Figure 3, and compared with the volume fluctuation of microdroplets without the transition
electrode. Moreover, the consecutive dispensing of droplets with the transitional electrode
is illustrated by photos in Figure 4.
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Figure 4. Experimental photos for consecutively dispensed droplets from a non-filling reservoir with
a transitional electrode. The droplets are dispensed from left to right with the contour of liquids
painted in black. The photos in (a–i) demonstrate the captured images after the dispensing of the first
to the 10th droplets.

It can be clearly seen that although the overall trend of the volume of the generated
droplets rising with the generation order does not change when the transition electrode
is used, the floating range and the coefficient of variation of the droplet volume are both
reduced. This improvement occurs as the introduction of transition electrodes reduces the
topographical difference at the two ends of the liquid on the splitting electrode (i.e., the
driving electrode 2) when the necking process occurs. Through this structure, the impact of
the rebound force of the mother droplet and the oscillation effect of the droplet is reduced,
which makes it easier to achieve a controllable and consistent droplet contraction shape and
confirm the stability of the droplet splitting process. At the same time, the portion of the
liquid on the transition electrode reduces the pressure distribution gradient in the pull-out
liquid and causes the back-sucking effect of the reservoir to act first on the liquid above the
transition electrode. However, due to the short length of the transition electrode, the state
of the liquid in the reservoir can still exert an effect on the splitting electrode through the
transition electrode, resulting in an increase in the volume of dispensed droplets.

Based on the computer simulation by Berthier et al. [16], the volumetric consistency of
dispensed droplets can be improved by decreasing the gap height between two plates. The
smaller gap height results in a weaker influence of various external disturbances on the
liquid necking and pinch-off process. Therefore, in this work, three gap heights of 80 µm,
160 µm, and 240 µm were used, corresponding to one, two, and three layers of adhesive
tapes between the two plates, respectively. Using the design with transition electrodes and
the dispensing process, the volume variation of consecutively dispensed droplets is shown
in Figure 5a. It can be clearly seen that the volume of successively generated droplets
becomes more stable as the gap height decreases. When the gap height is reduced from
240 µm to 80 µm, the fluctuation of droplet volume decreases from about ±9% to about
±3%, and the coefficient of variation decreases from 5.04% to 1.93%. In fact, reducing the
gap width can also reduce the minimum magnitude of the actuation voltage required for
droplet generation, which makes the droplet generation process more stable.
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Figure 5. Volumetric variation of consecutively dispensed droplets compared with the average volume
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Moreover, by optimizing the size (aspect ratio) of the splitting electrode, the instability
of the liquid necking processes is reduced and the pinch-off position of the liquid can be
more determined. To this end, the droplet generation method with transition electrodes as
shown in Figure 2b was adopted, and the width of the parallel bipolar plate gap was set to
80 µm. The dimensions of the other electrodes remain unchanged, and the width of the
splitting electrode 2 (on which the liquid necking process occurs) is 2 mm with its length
increased from 2 mm, 4 mm, to 6 mm. Volumetric floats are plotted in Figure 5b.

Under the same device parameters and test conditions, the longer the splitting elec-
trode, the greater the uncertainty in the resulting droplet volume. Simply tripling the aspect
ratio of the splitting electrode results in a dramatic increase in the coefficient of variation
from 1.93% at an aspect ratio of 1 to 7.44% at an aspect ratio of 3. The droplet volume
shown in the figure still has an upward trend with the increase in the generation order, but
after a few droplets are generated, irregular fluctuations begin to appear. In addition to
the gradual reduction in force on the pulled liquid from the gradually decreasing liquid
in the reservoir discussed above, the increase in the length of the electrode also increases
the uncertainty of the actual splitting position of the liquid. Figure 6 shows the necking
and pinching-off processes of the liquid when the splitting electrode obtains an aspect
ratio of 3. Since the microstructure and chemical properties of the substrate surface are
not completely uniform and the external disturbance to the liquid during the fracture
process is not completely symmetrical, the liquid above the splitting electrode does not
shrink inward in a symmetrical arc right at the center of the splitting electrode. Conversely,
the liquid’s shrinkage pattern and pinch-off position are relatively random. The longer
the splitting electrode is, the more uncertain the pinch-off position is, resulting in a larger
volume variation of consecutively dispensed droplets. Therefore, the coefficient of variation
increases with electrode length, and the accuracy of droplet generation decreases.

As said above, expect the method of decreasing the coefficient of variation. Several
other system parameters may impact the process of droplet dispensing. For example, the
shape of the splitting electrode may have a great influence on the stability and accuracy of
the droplet-splitting process. Round dumbbell-shaped electrodes may advance the stability
and accuracy of droplet dispensing since the location of droplet splitting is then under
control, though the introduction of extra electrodes with delicate structures complicates
the fabrication and operation of devices [23,24]. Moreover, different wettability leads to
different volume dispensing processes as well; changing the hydrophilicity of electrode
material may benefit decreasing the coefficient of variation. Different hydrophilicity of
the electrode surface leads to different contact angles of the droplet on the surface; the
hydrophilicity of droplets on the surface determines the effect of the rebound force from
the mother droplet; and the contact angle may impact the process of droplet moving and
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splitting, finally leading to a discrepancy in the droplet volume. Therefore, advancing
the material of the electrode can be regarded as another way to decrease the coefficient
of variation and improve the volumetric consistency and accuracy of digital microfluidic
systems. It is worth mentioning that further study of the original two-plate EWOD structure
with square-shaped electrodes saves time and cost in redesigning the electrode shape and
eliminates uncertainty about the effect of the new structure on dispensed droplets.
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4. Conclusions

From the above experiments, it can be found that the volume variation of the droplets
consecutively dispensed from a non-filling reservoir can be efficiently alleviated by simply
introducing one transition electrode between the reservoir and the liquid splitting position.
The effects of the gap height between the two plates and the length of electrodes are
also experimentally characterized, which can also optimize the volumetric consistency
of droplets without increasing the complexity of the system. This approach introduces
no extra external apparatus besides one transitional electrode in the electrode sequence,
indicating a simple and reliable approach to improving the volumetric consistency and
accuracy of digital microfluidic systems and droplet-based µ-TAS.
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