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Abstract: Non-invasive deep brain stimulation using transcranial magnetic stimulation is a promising
technique for treating several neurological disorders, such as Alzheimer’s and Parkinson’s diseases.
However, the currently used coils do not demonstrate the required stimulation performance in deep
regions of the brain, such as the hippocampus, due to the rapid decay of the field inside the head. This
study proposes an array that uses the cone coil method for deep stimulation. This study investigates
the impact of magnetic core and shielding on field strength, focality, decay rate, and safety. The
coil’s size and shape effects on the electric field distribution in deep brain areas are also examined.
The finite element method is used to calculate the induced electric field in a realistic human head
model. The simulation results indicate that the magnetic core and shielding increase the electric
field intensity and enhance focality but do not improve the field decay rate. However, the decay
rate can be reduced by increasing the coil size at the expense of focality. By adopting an optimum
cone structure, the proposed five-coil array reduces the electric field attenuation rate to reach the
stimulation threshold in deep regions while keeping all other regions within safety limits. In vitro
and in vivo experimental results using a head phantom and a dead pig’s head validate the simulated
results and confirm that the proposed design is a reliable and efficient candidate for non-invasive
deep brain magnetic stimulation.

Keywords: transcranial magnetic stimulation; deep brain stimulation; neurological disease; coil array;
vivo pig; Alzheimer

1. Introduction

Many progressive neurological diseases like Alzheimer’s disease initially affect the
hippocampal region of the brain. Unlike old hypotheses that held that the adult brain
is a rigid structure, recent research has demonstrated that the brain can change even
through adulthood [1–4]. The ability of the brain to reorganize itself in response to inputs
and experience by generating new neural connections is referred to as neuroplasticity. It
can be seen in a variety of brain reactions, including cortical remapping in response to
injury and brain healing after stroke. Furthermore, there is evidence that neurogenesis
(the formation of new brain cells) occurs in old age, although this evidence is largely
restricted to the hippocampus [1]. The hypothesis of neuroplasticity offers promise for
reversing Alzheimer’s disease by stimulating the damaged parts of the brain, particularly
the hippocampus, in preclinical phases.

Transcranial magnetic stimulation (TMS) is a non-invasive technique used to stimulate
the brain by generating a magnetic field through a coil. This field produces an electric field
across the neurons in the brain which then creates eddy currents. When the electric field
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exceeds a certain threshold, it triggers the action potential—the basic signal produced by
neurons. The signal is then propagated through neural pathways, leading to stimulation [5].

One of the main challenges with TMS systems is the rapid decay of the electric field
induced by the TMS coil. As a result, to stimulate a deep region, the concentration of a
much higher electric field in the cortical regions is required, which can cause discomfort or
pain for the patient. In some cases, this can even exceed the suggested safety guidelines for
that cortical region [6,7], leading to further complications such as seizures.

The decay rate of the electric field depends on the coil’s geometry. Therefore, many
researchers have investigated better coil geometries for deep brain stimulation since the
technology was introduced [8–13]. Since the first TMS system was demonstrated [5],
the design of the coil used to stimulate the brain has received considerable attention for
refining two main characteristics of the TMS-induced electric field: focality and the depth of
penetration. Changing the shape and structure of the coil alters the features of the magnetic
field it generates, which alters the distribution of the electric field created in the brain. It
was discovered that by adjusting the coil design, the stimulation focality and the depth of
penetration can be controlled. There are now numerous coil designs that differ in terms of
stimulation depth and focality. However, the trade-off between focality and depth appears
to persist.

Various optimization schemes were proposed to increase the field focality of circular
coils, such as adjusting the size, number of turns, or concavity of the coil [14,15]. Other
efforts have been made to increase the electric field induced in the brain by modifying
coil configurations, such as the figure-of-eight coil [16], which consists of two adjacent
loops with alternating current directions. Many other coils then began to emerge, like the
butterfly coil and the 3D differential coil [17]. Additionally, conductive shielding plates
were added to improve the TMS-induced electric field accumulation degree [18,19].

From the perspective of increasing the depth of penetration, a significant number of
researchers also proposed new coil designs. For instance, the double-cone coil consists of
two adjacent circular coils attached at a specific angle [20]. Also, using a ferromagnetic
core with high permeability, like the proposed enhanced Hesed coil, increases the skin
depth [21]. Moreover, several attempts were made to stimulate deep brain regions, like
with the large halo coil and the high 3D resolution coil [11,22]. Coil arrays have also been
studied to improve the flexibility of the stimulation and control the distribution of the
induced electric field [23,24].

Other efforts include modifying the coil by adding a ferromagnetic structure such as a
core or shield. Several studies have demonstrated that adding a high-permeability core can
enhance the decay rate of the TMS coil [25–28]. Another structure that has been researched
to increase the safety and focality of the TMS system is ferromagnetic shielding. Adding
a shield around a TMS coil can improve safety for the operator [29,30] and enhance the
focality of TMS fields, as shown in [19,31,32].

In a previous study conducted by the authors of this paper [33], the effects of adding a
ferromagnetic core and shield to a proposed cone coil design on the induced electric field
intensity, focality, and decay rate were investigated. A parametric study was also conducted
to evaluate the impact of coil size on these parameters. It was shown that employing a
single coil to activate a deep brain area safely is challenging. In agreement with guidelines
on the safety of repetitive transcranial magnetic stimulation (rTMS), the maximum safe
intensity of 220% of the threshold value, Eth, was chosen as a safety limit, while other
parameters like duration and repetition frequency were controlled [6].

Deep brain stimulation is an essential form of neuromodulation that is delivered to
patients invasively [34]. In this paper, a non-invasive deep brain stimulation approach using
an array of TMS coils is proposed. With a wise choice of the coils’ position, orientation,
tilt, and size and the pulse frequency that affects the E field threshold value, the coil
array configuration can reduce the field in superficial regions concerning a deep targeted
area efficiently.



Biosensors 2024, 14, 32 3 of 17

Various coil array configurations are reported in the literature [35–40], mainly the
multi-channel configuration of magnetic field generators capable of producing focused
magnetic field (B field) patterns by serving as a highly directed near-field array [41]. It has
been shown that near-field arrays may create desirable field patterns [36,37]. However,
no actual array was developed to produce arbitrary field patterns due to constraints in
the number of elements and existing processing [35]. Ruohonen et al. [42] introduced the
multi-channel coil array in 1998. A multi-channel coil array comprises numerous coils that
are arranged based on the space arrangement rule.

Previous multi-coil magnetic stimulation devices were designed based on basic coil
shapes such as planar and hemispherical layouts. Furthermore, these coils were tested on
basic models like free-space or random conductors to measure and analyze the electric field
inside conductive tissues [23,37,41–44]. However, to the best of our knowledge, no research
has been conducted on examining a coil array for deep brain stimulation based on realistic
simulations and experiments.

This paper presents a new system for deep brain stimulation that uses a multi-coil
array. The system is based on a cone coil with dimensions determined by the lowest decay
rate. Various coil array geometries are constructed and evaluated using finite element
method (FEM) simulations. This study investigates the optimal number of coils and their
orientation by comparing the ratio of the maximal superficial E field on the grey matter to
the E field induced at the targeted area, the hippocampus (hippo). This ratio (Egm/Ehippo)
should be less than 2.2 to meet the maximum safe intensity. To achieve this safety ratio, a
coil array system with five coils positioned in a relatively tangential orientation around
the head is presented. Numerical studies show that this system significantly improves the
electric field attenuation rate when mounted on a realistic head phantom, and achieves the
safety ratio within the guidelines, making it a feasible option for non-invasive deep TMS.
The experimental validation of the system on fresh dead pig and head phantom confirms
agreement in the electric field distribution between simulations and measurements.

2. System Conceptual and Design Principle
2.1. Modeling and Simulation

A realistic simulation environment is created using the FEM-based electromagnetic
tool Sim4life to calculate electric and magnetic fields in different regions of the brain [45].
To that end, a multimodal imaging-based detailed anatomical (MIDA) model, which is a
three-dimensional high-resolution computer-aided design model of the head and neck [46],
is utilized in this study. All the tissues are associated with their frequency-dispersive
dielectric properties.

The simulation uses two Sim4life solvers; the low-frequency magnetostatic vector
potential solver is used to compute the B field, while the overall field acquired from this
solver is utilized in the quasistatic low-frequency solver to estimate the E field inside a
head model. The former solver offers the flexibility to handle varied permeability across
the domain, which is essential for precisely gauging the iron core and shielding effects
on the fields. In the simulator, the core and shield for the TMS coils are modeled as a
homogeneous material with a relative permeability of 5000 [28]. The current waveform
was modeled as sinusoidal with a 5 kHz frequency and a peak value of 100 A.

2.2. The Structural Design of the Cone Coil

The cone coil, which was presented by the authors of [33], is utilized in this study. This
coil, as opposed to traditional one-layer TMS coils, employs three concentric paired coils in
three layers, as shown in Figure 1, and the details of the coil are listed in Table 1. The current
supply is connected to the large element coil in the rear, which is connected to the medium
coil in the middle layer and the small coil in the top layer, near the human head. The large
coil, which is placed distant from the scalp, slows the attenuation of the field inside the
skull because the E-field impinging on the skull is more diffuse and decays more slowly
with longitudinal displacement from the coil (i.e., achieving better penetration depth). The
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small coil concentrates the fields in the desired direction and location of the head. Figure 2
displays the induced E field strength and focality at the grey matter utilizing the proposed
and classic circular and figure-of-eight (Fo8) coils, respectively. The E field value and
distribution in the second column show that adopting the cone coil enhances field intensity
over circular and Fo8 coils. Furthermore, when comparing the field focality [47], which is
defined as the area bounded by 50% of the peak E or B (E > Emax/2 and B > Bmax/2) of
the three coils, the proposed coil outperforms the others, as shown in Figure 2.
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Figure 1. The proposed coil geometry: (a) the coil configuration, (b) three coils with an iron core, and
(c) the final shape after adding a magnetic shield.

Table 1. Design parameters of the coil.

Coil Geometry First Coil Second Coil Third Coil

Outer Diameter (mm) 62 64 30
Inner Diameter (mm) 56 40 20

Height (mm) 10 10 10
Number of Turns 30 30 60

Wire Diameter (mm) 1.2 1.2 1.2
Number of Layers 10 10 10

To study the effect of adding a ferromagnetic structure on a coil’s performance, sim-
ulations were performed with and without modifications on two different coils, and the
results were published in a previous study by the authors of this article [33]. The E field
value and distribution on the grey matter demonstrate the modified coil’s improvements in
field strength and focality [33]. Using a core improves the field value by 95%, and adding
shielding boosts the improvement to 120%. Hence, the proposed coil is modified by adding
a ferromagnetic core and shield structures. The high permittivity of the iron core aids in
increasing and focusing the magnetic field at the coil’s center. The core has a conical form
that fits in the coil and creates a concentrated and more powerful magnetic field on its tip
near the head surface (see Figure 1). On the other hand, a cylindrical core can be used
with the coil to minimize the net weight of the TMS system; it is also cheaper and easier
to fabricate. Additionally, a conical ferromagnetic shield is placed around the coil so the
magnetic flux passes easily through it, preventing it from leaking out. This strategy aims
to increase clinician safety, enhance focality, increase stimulation intensity, and eliminate
mutual coupling between adjacent coils [33].

A parametric study is performed on the coil, assuming different dimensions to investi-
gate the effect of its size on field intensity and the decay rate. In each case, the maximum
values of the field on the head phantom, the surface of the grey matter, and the surface
of the hippocampus are calculated. Figure 3a,b demonstrate the relation between coil
size and the maximum field values on the grey matter and hippocampus, respectively.
Figure 3c depicts the ratio of the maximum field values at the grey matter and hippocampus
(Egm(max)/Ehippo(max)) to examine the influence of coil size on the decay rate.
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Figure 2. TMS performance with different configurations of coils on the MIDA head model and an
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Figure 3. Performance evaluation of cone coil: (a) maximum E field at the surface of the grey matter
vs. R; (b) maximum E field at the surface of the hippocampus vs. R. (c) Egm(max)/Ehippo(max) ratio
vs. R.
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The high-permeability ferromagnetic structure improves field intensity and focality,
allowing a potentially lower current to be used and reducing the stimulator’s burden.
However, this highlights the issue of field rapid decay (as shown in [33]). The fundamental
difficulty with TMS-based deep brain stimulation is the rapid decay of the induced electric
field with depth. To achieve the threshold value in the deep brain area, a substantially
larger electric field value will be centered on the head surface and cortical regions, raising
safety concerns.

This issue can be addressed by increasing the coil size, as indicated by the parametric
study conducted. While the strength of the E field is proportional to the size of the coil, as
shown in Figure 3a,b, the ratio of the E field between the grey matter and the hippocampus
is inversely related to the size of the coil, as shown in Figure 3c, indicating an improvement
in the decay rate.

3. Design of the Coil Array

To activate deep regions of the brain, such as the hippocampus, a coil array is proposed
to lower the field at cortical areas compared to deep targeted regions. This section illustrates
different coil array designs to select the optimum coil number and arrangement for deep
brain stimulation.

3.1. Number, Orientation, and Current Direction of the Coil

As mentioned in Section 2.2, coil size significantly impacts the field’s decay rate; larger
coils decay at a slower rate. The electric field focality and decay rate are also affected by the
coil’s geometry. The cone coil is found to generate better decay rates without impacting the
system’s focality. In this section, a coil with dimensions that indicate the best decay rate, as
shown in Figure 3c, is utilized as a primary coil in the array. Although it is recommended
to utilize a ferromagnetic shield in conjunction with the coils to prevent undesired mutual
coupling, this practice affects the field decay rate, as shown in [33], and adds weight and
expense to the device. Furthermore, the field created by the shielded coil is more focused
than the field generated by the unshielded coil, which limits the cancellation of magnetic
fields from nearby coils, which is the primary reason for lowering the field in the superficial
areas. As a result, the developed coil array employs an unshielded coil.

After testing a variety of numbers and alignments of coils, the optimum results are
obtained when the coils are placed tangentially to the head surface. The orientation of the
coil elements relative to brain tissue dramatically affects the intensity and decay rate of the
electric field throughout the brain. Since brain tissue is conductive and the air and skull are
nearly insulators, the vector potential will create a buildup of electrical charge at the brain
surface unless the induced electrical field is tangential to it. Many studies have confirmed
that coil components perpendicular to the head surface cause surface charge accumulation,
resulting in the full cancellation of the perpendicular component of the generated field
within the tissue and a significant reduction in any other direction [10,48–50].

In multi-coil magnetic brain stimulation, the stimulating field may be formed and
targeted by suitably altering the number of coils and driving currents. The induced electric
field generated by employing multiple coils is a superposition of the fields from each coil.
The partial cancellation of fields from individual coils enhances field focality and reduces
the cortical field relative to the deep region [41].

The number of array coils and current direction are explored by calculating the safety
ratio (Egm/Ehippo) in various scenarios of different numbers of coils and current directions,
as shown in Figure 4a. The array with five coils positioned in a relatively tangential
orientation around the head has the best (Egm/Ehippo) ratio of 2.07, satisfying safety limits
(less than 2.2). Figure 4a illustrates the E-field distribution on the surface of the grey matter
for each example and the ratio obtained from the various coil array configurations. Also,
the distribution of the E-field on a test line passing through the coronal cross-section of
the phantom (see Figure 4b) for the six-coil array geometries investigated in Figure 3a are
obtained and illustrated in Figure 4b. The five-coil array configuration offers the slowest
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attenuation rate. As a result, the five-coil array configuration can be used to stimulate the
deep brain while abiding by safety restrictions at other cortical regions of the brain.

Figure 4. (a) The E field distribution on the grey matter surface achieved using various coil array
geometries (R). (b) The distribution of the E field on a test line passing through the coronal cross-
section of the phantom is shown inside the figure for the six-coil array geometries in (a).

The design is tested on another subject to examine if the gains are consistent across
participants; Duke, a member of the IT’IS virtual population, is picked as another phantom
for testing the coil array [51]. Duke is a high-resolution, accurate, whole-body anatomical
virtual human model of a 34-year-old adult male. Duke’s head is distinct in geometry
and size from MIDA’s; Figure 5a illustrates the head of the Duke phantom with the coil
array system and the distribution of the induced E field on the grey matter in the top and
bottom images, respectively. The grey matter and hippocampus have maximum E field
values of 123 V/m and 58 V/m, respectively; the safety ratio is 2.12, which is within the
recommended limits.
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shown in the inset.

Additionally, the E-field distribution along a test line that traverses a coronal head slice
is obtained and shown in Figure 5b. Despite differences in the heads of the two phantoms,
Duke and MIDA, their resulting E-field distributions, E-field maximum values, decay rates,
and safety ratios exhibit similarities with minor differences. With both phantoms, a modest
change in the positioning of the coil array while preserving the coil order and current
direction results in a minor divergence in the field, but the safety ratios stays between
1.91 and 2.17, which is below the guideline limits.

3.2. Coil Array System Optimization

Many factors, such as system flexibility, weight, cost, safety, and power consumption,
should be addressed for design optimization. To test the flexibility of the coil array system,
safety inside the brain when a semi-random tangential orientation of the five coils is
employed on the head phantom is evaluated. The results indicate that when the system
coils are arranged tangentially to the head surface while considering their location and
current direction, it is flexible and safe to use even with diverse head sizes and shapes.

More power is required as the number of coils increases because focusing includes
the partial cancellation of magnetic fields from adjacent coils. Yet the increase in power is
closely related to coil size. According to [41], the power escalation induced by increasing
the number of coils is greatly reduced for larger coils. To reduce power dissipation,
the proposed coil array system compensates for the increase in the coil number with
an expansion in coil size, as mentioned in Section 3.1.

Figure 6a shows that the desired safety ratio between the grey matter and hippocampus
E fields can be attained with or without shielding, and by using either a cone or a cylindrical
core. Although the lowest ratio is associated with the cone core, the cylindrical core is
selected for fabrication and testing due to its easy fabrication, affordability, and light
weight. Although this strategy restricts the advantage of the core in field improvement, it
nevertheless passes safety regulations and minimizes the total weight of the TMS system.
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for experimental testing in the top and bottom rows, respectively (the values illustrated next to the
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4. System Validation
4.1. Coil Array Fabrication

To fabricate the array, five coils are made from 0.7 mm of enameled copper wire which
is coiled around a 3D-printed model. The coils are then mounted on a 3D-printed stand
that is designed to fix the coils’ position and orientation in the desired configuration, as
shown in Figure 6b. The coil terminals are soldered to a board with plugs to easily connect
the coils in series or parallel with the pulse generator. A cylindrical core with a diameter
of 25 cm and a relative permeability of 1400 at 0.8 Tesla, which produces a saturation flux
density of 2.2 Tesla, is used in conjunction with the coil. Finally, for easy installation of the
coil array on the testing phantoms, the coil stand is attached to a handle that can be flexibly
moved in three directions. The constructed coil array is depicted in Figure 6b.

4.2. Experimental Setup

The experimental tests must evaluate two essential points: first, the simulation results.
Second, the coil array is compared to a single coil. For that purpose, the electrical field
value and distribution of the cone coil and coil array are assessed on both a head phantom
and on a fresh dead pig and compared with the in silico numerical simulation.

A spherical human head model (15 cm diameter) filled with a physiologic saline
solution is used for lab investigations, while the pig head measurements are carried out
on a dead pig’s head (postmortem), (see Figure 7). All the measurements were obtained
within a few hours of the pig’s death. Since the induced voltage directly reflects the
electromagnetic field, as demonstrated by Faraday’s law, experimental testing is carried out
by passing pulses from a function generator (SIGLENT Technologies (SDG6000X series))
through the coil and measuring the induced voltage inside the head models with the probe.
The function generator used to deliver the stimulation can generate waveforms with a
maximum voltage of 20 Vpp and a maximum bandwidth of 50 MHz. A pulse waveform
of 20 Vpp and a frequency of 5 kHz are utilized to excite the coils and obtain a clear
output from the probe. The field inside the head phantom is measured using three distinct
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probes: a two-wire dipole probe with 1.5 cm between the two tips, a simple sensing coil
with a diameter of 2 cm, and an RF Near Field Probe Set (Aaronia AG). All probes are
covered with an insulating layer, thus allowing for safe measurements. The probes are
moved in three directions within the head model and pig head with a 1 cm resolution
displacement system, and the field distribution is measured in the entire head model
volume with 1–2 cm precision. The probe is connected to a digital storage oscilloscope
(Keysight Technologies InfiniiVision DSO-X 2002A) through a high gain low-frequency pre-
amplifier (Aaronia AG), and the electrical field is calculated from the measured maximal
voltage. The coils in the experimental setup are positioned on the left side of each head
model to mimic the simulation, as shown in Figure 7. The experimental setup schematic
diagram, postmortem experimental setup, and in vitro experimental setup are depicted in
Figure 7a–c, respectively.

4.3. In Vitro Validation

For in vitro validation, the electric fields from the simulation and experiments of
the cone coil and coil array applied on a homogeneous spherical model of the head are
obtained and assessed. Although the spherical model simplifies head geometry, it is a
practical reduction for studies that focus on the electric field characteristics of TMS coils.
Furthermore, the results obtained with the spherical model are not limited to a particular
subject’s head anatomy and coil position, allowing for general conclusions about the effects
of coil properties and stimuli. The spherical model also provides a standard framework for
studying coil configurations that can be easily reproduced by other researchers [52–55].

A homogeneous sphere with a diameter of 15 cm and an anisotropic conductivity
of 0.33 S/m is used to model the human head in the Sim4life simulation environment.
Since the magnetically induced electric field in a sphere is insensitive to radial variations in
conductivity [54,56], the individual head tissue layers are not distinguished. The cone coil
and the coil array are applied to the phantom.
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The in vitro experimental model also consists of a spherical glass tank with a diameter
of 15 cm, as shown in Figure 8a. The tank is filled up to a liquid height of 12–14 cm. This
model emulates the brain as a homogeneous conductor with an average brain conductivity
of 0.33 S/m, obtained using a 0.2% saline solution [57]. Figure 8b depicts the simulation
and measurement results for the normalized E field value on a test line subjected to a single
coil and the coil array system.
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4.4. Validation on Postmortem Tissue

While in vitro studies are useful for validating the simulation results of the coil array
design, assessing its performance, and comparing it to a single coil, the effect of tissue
conductivity variation is not included. Scientific studies over the last five decades have
demonstrated that pigs have a high potential for biomedical research due to biological
similarities to the human body and the pig’s suitability as a laboratory animal [58–63].
Since the dielectric properties of pig brain tissues are similar to those of humans [64,65],
postmortem validation is performed on cadaver pig heads as analogs for human heads.
The postmortem validation is carried out in accordance with ethical approval from the
University of Queensland Animal Ethics Committee (221/AE000776).

Within a few hours of its death, a dead pig’s head is utilized to test the coil array
system. The pig, a 10-month-old Danish Landrace sow (female) weighing ~95 kg, had no
history of head injuries. To facilitate the measurement of the electric field within the skull, a
boning knife is used to cut into skin and tissue around the skull enclosing the brain from the
upper left side, and then a Bosch GOP 10 saw is used to cut through the skull, as illustrated
in the bottom row of Figure 6a. The pig head is then fitted with the coil array system and a
single cone coil separately, and the electric and magnetic fields inside the brain tissues are
measured using the near-field probes. Inside the pig brain, the near-field probes are moved
in three directions, and the field distribution of each coil system is measured in the entire
brain volume with a 1 cm resolution.

Since the shape and size of the pig brain differ from those of humans, it is difficult to
reconcile the in vitro measurement results with simulations performed on a realistic human
head model. Hence, a realistic high-resolution virtual pig model from the IT’IS ViZoo
population, displayed in the top row of Figure 9a, is imported into the Sim4life simulations.
The same experimental setup is replicated in the Sim4life simulation environment, and a
numerical study of the field distribution inside the pig brain with the coil array system
mounted on it, is performed. The simulation results are compared to the measured data
to validate the system. Figure 9b depicts the simulation and measurement results for the
E field distribution on a test line through a coronal cross-section of the pig head using a
single coil and the coil array system. Additionally, Figure 9c,d illustrate the simulation and
experimental data of the E-field value and distribution on several slices of the pig head.
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the coronal cross-section of the head using one coil and the coil array. (c) The simulation results for
the distribution of the E-field on different slices of the head. (d) The measurement results for the
distribution of the E-field on different slices of the head.

5. Discussions

The proposed coil array can generate an electrical field distribution in the brain of
a realistic head phantom that can reach the neuronal activation threshold in deep brain
structures while keeping the superficial tissues safe. The simulation results are validated
through a series of in vitro and postmortem experiments. Figures 8 and 9 show a significant
agreement between the numerical simulation and the in vitro and postmortem experimental
data. These two figures demonstrate that the coil array is more effective than a single coil
in deep areas.

Even though in vitro validation using homogenous head models is a feasible approach
for studies comparing different coil designs, absolute values of the derived field distri-
bution are inaccurate and untrustworthy. When comparing Figures 8b and 9b, it is clear
that variation in tissue properties inside the head has a considerable impact on coil field
distribution that cannot be neglected.

Although numerous coils can be used for deep brain stimulation, the field may not be
focused on deep targets. Magnetic stimulation is distinguished by the fact that the peak E
is regularly seen in shallow regions [66]. Figure 4a depicts the field distribution at the grey
matter for various coil configurations. The proposed system’s focality is reasonable when
compared to other conventional coil geometries due to the cancellation in the magnetic field
caused by wisely choosing the current direction for the coils, as illustrated in the figure.

The proposed coil array can stimulate deep brain areas successfully, even up to a
distance of 5 to 6 cm from the surface of the head (refer to Figure 4b). However, the
standard Fo8 coil can only create suprathreshold fields in a shallow region of up to 2.5 cm
underneath the coil’s center [22]. The depth of penetration is determined by the intensity
of the pulse generator with respect to the motor threshold. Simulation results suggest that
providing pulses less than 220% of the maximum safe limit for superficial grey matter
stimulation effectively activates the hippocampal region, which is located 4–6 cm away
from the surface.

When the modeling and measurement results for single-coil and coil array topologies
are compared, the coil array outperforms the single coil, as seen in Figures 8 and 9. In the
superficial area, the field value of a single coil is larger than that of a coil array; however, in
deep brain areas, the array produces a higher field than the single coil. This is due to the
placement of the array coils with respect to the head and the constructive addition of the
fields at deep areas.

The capacity of the proposed coil array to activate deep brain areas such as the
hippocampus while remaining safe in other brain regions could have significant clinical
ramifications. Many recent rTMS studies in Alzheimer’s and Parkinson’s disease patients
found substantial health improvements when cortical targets (left and right motor and
dorsolateral prefrontal cortex) were stimulated with a typical figure-of-eight coil [67–69].
Treatment using a non-invasive deep brain stimulation system, such as the suggested coil
array, will allow for the simultaneous stimulation of several brain areas, including the
targeted structure; the penetration depth can be adjusted by altering the stimulator power
or varying the distance between the coils and the skull.

The envisioned deep-TMS coil array is a novel tool with promise for both research
and therapeutic applications in mental and neurological illnesses linked with deep brain
dysfunction. This coil array can be improved further by controlling coil activation using
an inverter system linked to a control panel; this configuration will provide flexibility in
activating single or multiple coils. In addition, employing the inverter’s circuit to perform
the quick sequential activation of the coils one at a time will enhance system focality.
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In this work, the core’s response to the application of an external magnetic field is
considered linear, knowing that such an assumption is not valid for relatively high field
amplitudes. The obtained results, however, can be valid for materials with high saturation
values. To fully account for the core’s response, the core’s material hysteresis loop should
be modeled.

6. Conclusions

To overcome the rapid decay of the field inside the brain, a coil array that includes five
cone coils was designed for deep brain stimulation. Our numerical study indicated that the
magnetic core and shielding increase the electric field intensity and enhance focality but do
not improve the field decay rate. However, the decay rate can be reduced by increasing coil
size at the expense of focality. Thus, the array was optimized in terms of size, numbers,
positions, and structure to ensure the safe and efficient stimulation of the deep brain region
(the hippocampus). The designed array efficiently maintained an electric field attenuation
rate to approach the stimulation threshold in deep areas while keeping the field in all other
regions within safety limits. The array was tested numerically on realistic human head
models and experimentally on a head phantom and a postmortem pig head. The numerical
and experimental results validate the efficacy of the proposed array in non-invasive and
repetitive deep brain stimulation.
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