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Abstract: The measurement of hemoglobin is a vital index for diagnosing and monitoring diseases in
clinical practice. At present, solutions need to be found for the soreness, high risk of infection, and
inconvenient operation associated with invasive detection methods. This paper proposes a method
for non-invasively detecting hemoglobin levels based on multi-wavelength photoplethysmography
(PPG) signals. AFE4490 and TMUX1109 were used to implement the low-cost collection of an
eight-LED transmissive PPG signal. We used seven regular LEDs and one broadband LED (Osram
SFH4737) as light sources. Additionally, a finger clip integrating multiple sensors was designed and
manufactured via 3D printing to simultaneously monitor the LED–sensor distance and the pressure
from the tester’s finger during PPG signal acquisition. We used a method to extract features from
PPG signals using a sliding-window’s variance and an evaluation metric for PPG signals based on the
AdaCost classification. Data were gathered from 56 participants from the Nephrology department,
including 16 anemic patients. Pearson correlation analysis was conducted on the collected data to
remove any data with a weak correlation. The advantage of using a broadband LED as a light source
was also demonstrated. Several non-invasive hemoglobin regression models were created by applying
AdaBoost, BPNN, and Random Forest models. The study’s results indicate that the AdaBoost model
produced the best performance, with a mean absolute error (MAE) of 2.67 g/L and a correlation
coefficient (R2) of 0.91 The study results show that the device we designed and manufactured can
achieve effective non-invasive hemoglobin detection and represents a new methodological approach
to obtaining measurements that can be applied in a clinical setting.

Keywords: multiwavelength photoplethysmography; hemoglobin; regression model; noninvasive
detection; Pearson correlation analysis

1. Introduction

Hemoglobin (Hb) is an essential protein in human blood that carries oxygen to the
body’s organs and tissues and carbon dioxide back to the lungs for gas exchange [1]. De-
tecting hemoglobin levels plays a crucial role in diagnosing diseases such as anemia [2].
Anemia also requires long-term monitoring of hemoglobin levels to determine their pro-
gression. Anemia is a common disease that can cause loss of fitness, dizziness, and a lack
of concentration [3]. Anemia represents an urgent public health problem. Blood is collected
from a vein or capillary to test for hemoglobin, which can be inconvenient and painful and
increase the risk of infection. Most anemic patients are pregnant women, children, or those
recovering from major surgeries, as well as those with severe chronic diseases, who are
immunocompromised, or who have coagulation disorders [3–6]. Frequent blood tests can

Biosensors 2024, 14, 22. https://doi.org/10.3390/bios14010022 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios14010022
https://doi.org/10.3390/bios14010022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0001-6987-3967
https://doi.org/10.3390/bios14010022
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios14010022?type=check_update&version=1


Biosensors 2024, 14, 22 2 of 19

also lead to poor compliance. Therefore, non-invasive methods of measurement need to
be investigated.

The photoplethysmography (PPG) method has been widely investigated as a non-
invasive hemoglobin assay because of its rapid, non-invasive method of detection and ease
of use [7]. Light is absorbed by the blood, skin, muscle, bone, and pigment as it passes
through tissues such as the fingers, anterior chamber, and earlobes. The regular movement
of arterial blood caused by the heartbeat causes a change in light absorption, resulting in a
PPG signal. This change in the PPG signal partly reflects the absorption of light by arterial
blood components [8]. In the 600–1400 nm spectrum, hemoglobin and water serve as
light-absorbing substances in the blood [9]. The hemoglobin concentration can be deduced
by analyzing the PPG signal’s characteristics in several spectrum bands [10].

In recent years, a great deal of research has been conducted on the non-invasive detec-
tion of hemoglobin content via optical methods [11]. Yuan et al. used a 16-pixel InGaAs
detector array and a planar grating spectrometer to construct a near-infrared spectrophoto-
metric system. The authors combined the direct orthogonal signal correction (DOSC) and
partial least squares (PLS) methods to obtain relative Root Mean Square Errors of Prediction
(RMSEPs) of 6.16% and 6.08%, respectively [12]. However, complex spectroscopic systems
can be costly. Ah-San et al. proposed a smartphone-based, non-invasive hemoglobin detec-
tion method. In this method, video images collected from human fingertips are used for
non-invasive hemoglobin prediction. Although the basic hypothesis of this method works,
it must be combined with more effective methods for clinical application [13]. Kesarwani
et al. developed a non-invasive anemia detection system by combining current state-of-
the-art computational methods with observations of palmar pallor. The proposed system
ensured 93% sensitivity with Mean Squared Error (MSE) and Root Mean Squared Error
(RMSE) values of 0.701g/dL and 0.698 g/dL, respectively [14]. However, its accuracy still
needs to be improved. Yogesh Kumar designed a multi-wavelength pulse wave acquisition
device and proposed a highly correlated multiple linear regression model with independent
features; the precision of this method was 0.878 [15]. Kavsaoglu et al. used PPG signals in
combination with different machine learning regression techniques. The authors concluded
that using RFS feature selection methods in combination with Support Vector Regression
(SVR) yielded the best results (MSE = −0.0027 g/dL) [16].

This paper explains the principle of detecting hemoglobin levels using the PPG method.
To improve the traditional finger clip, we designed a finger clip integrating a PPG acqui-
sition system, a linear displacement sensor, and a pressure sensor via 3D printing. This
finger clip can simultaneously acquire eight transmitted PPG signals (the light sources
include seven wavelengths of ordinary LEDs and one broadband LED), the LED–sensor
distance, and the active pressure applied by the user. A window-variance-based PPG fea-
ture extraction method and a PPG signal evaluation index were also designed. In addition,
several non-invasive hemoglobin regression models were created by applying Adaptive
Boosting (AdaBoost), BP neural network (BPNN), and Random Forest (RF) models. The
study results show that the device we designed and manufactured can achieve effective
non-invasive hemoglobin detection.

2. Principles and Methods
2.1. Theory of PPG

A schematic portrayal of PPG signal generation is provided in Figure 1. The process
involves the modulation of light absorption by arterial blood during pulsatile flow through
tissue, manifesting as a dynamic process [8]. The portion of light that passes through tissues
such as fat, muscle, bone, and venous blood forms the static portion of the pulse wave. The
distinctive features in the dynamic part are the primary wave and sub-wave.
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Figure 1. Schematic representation of PPG signal generation.

The selection of red and near-infrared light bands (625–1100 nm) as the emitted light
source wavelengths was deliberate. Within this spectral range, the light demonstrates supe-
rior tissue penetration capabilities [17]. Notably, the absorption coefficients of interfering
substances remain relatively modest, while the absorption peaks of deoxygenated and
oxygenated hemoglobin align near 660 nm and 880 nm, respectively [18].

2.2. Lambert–Beer Law and Its Corollaries

The Lambert–Beer Law is the theoretical basis for the measurement of hemoglobin
via PPG. This law states that when parallel monochromatic light passes perpendicularly
through a homogeneous, non-scattering light-absorbing substance, the absorbance of the
substance at a specific wavelength is linearly related to its concentration based on the light
path [19]. The concentration and content of the light-absorbing substances in a solution can
be found by measuring the solution’s ability to absorb incident light. The formula for the
Lambert–Beer Law is provided in Equation (1):

A = lg
(

Is

I0

)
= εCL (1)

where A is absorbance, Is is the incident light intensity, I0 is the transmitted light intensity,
ε is the absorbance coefficient of the measured substance, C is the concentration of the
measured substance, and L is the optical range.

Human blood hemoglobin predominantly comprises oxyhemoglobin, reduced
hemoglobin, and trace amounts of methemoglobin and carboxyhemoglobin. In the Near-
Infrared (NIR) band, the absorption coefficients of water and plasma proteins are much
smaller than those of hemoglobin [20]. Consequently, hemoglobin is the primary absorb-
ing entity in the dynamic segment of PPG. On this basis, we obtained Equation (2). The
transmitted light intensity in the static segment is expressed by Equation (3):

IAC + IDC = Is10
(

n=4
∑

i=1
εHb(i)CHb(i)+∑ εDCCDC )L

(2)

IDC = Is10(∑ εDCCDC)(L−∆L) (3)

where IAC is the light intensity in the dynamic part of the PPG; IDC is the light intensity in
the static part of the PPG; Hb(i) denotes the hemoglobin type (including oxyhemoglobin,
reduced hemoglobin, methemoglobin, and carboxyhemoglobin); and ∑ εDCCDC is the sum
of the products of the absorption coefficients for all the substances in the static part and
their concentrations. Additionally, ∆L represents the change in fingertip thickness during
cardiac systole and diastole.

By extracting the intensities of the dynamic and static parts, dividing IAC by IDC, and
taking logarithms on both sides of the resulting equation since the dynamic part of the



Biosensors 2024, 14, 22 4 of 19

PPG, IAC, is much smaller than IDC, based on the Taylor series expansion, we can obtain an
approximate equation, as follows (4):

lg(
IAC + IDC

IDC
) = lg(1 +

IAC

IDC
) ≈ IAC

IDC
= (

n=4

∑
i=1

εHb(i)CHb(i))∆L. (4)

Individual variations such as in skin, bone, fat, and venous blood, as well as fluctua-
tions in the emitted light source attributed to voltage and heat, are thus effectively negated.
A regression algorithm enables the estimation of hemoglobin content.

In the PPG signal measurement system, in addition to the seven regular LEDs, a
Broadband LED (OSRAM SFH4737) is incorporated. Transmitted light is captured by a
photodiode, yielding an integral of the overlap between the photodiode’s spectral response
range, the light-filtering device’s spectral range, and the LED’s emission spectrum. This
value represents the summation of the transmitted light measured by numerous narrow-
band LEDs within a specific wavelength range. This component is introduced into the
equation as a constant since the same device is employed for each measurement. For
broadband LEDs, Equation (4) is reformulated as Equation (5):

IAC
IDC

= ∆L ×
∫ End point

Start point
(

n=4

∑
i=1

biεHb(i)CHb(i)) (5)

where the Start point–End point denotes the broadband LED emission spectral range, the
filter device passband range, and the overlap between the detectable spectral range of the
photodiode; these values remain constant at each wavelength, relating to the sensitivity of
the photodiode and the LED emission intensity.

3. System Composition

We used eight LEDs and one photodiode (PD) in the process of receiving transmitted
light to collect PPG signals, with the measurement site being the right index finger.

Since the conclusions obtained from Equation (4) include the distance variation and
light-traveling factor.Using a linear displacement sensor, we determined the distance
between the light source and the sensor. The linear displacement sensor can be regarded as
a sliding varistor, where the movement of the sensing axis causes a change in the resistance
value of the internal resistor, and the distance traveled by the sensing axis can be deduced
by measuring the voltage output from the sensor. We measured the degree of the muscle
relaxation of the user’s finger using a pressure sensor. In addition, during the detection
process, the behavioral state of the user leads to changes in the quality of the PPG signal,
such as tension changes in body posture. We used these two sensors to monitor the user’s
behavioral state [21].

After collecting the data, the PPG features (the light intensity of the dynamic part and
the static part) were extracted using our designed algorithm. Meanwhile, signal quality
was automatically evaluated using a method we designed. Finally, the extracted PPG
features were inserted into the trained regression model to determine the hemoglobin
content. Figure 2 shows a workflow of the detection process.

3.1. Hardware Component

We used Xilinx (San Jose, CA, USA) ZYNQ7020 as the control core. According to the
absorption characteristics of hemoglobin and the main interferences in the near-infrared
spectral region, seven LEDs in a 2835 package from Ever-light-Electronics., Ltd. (Taiwan,
China), were selected as the light source; all LEDs possessed peak wavelengths of 660 nm,
700 nm, 730 nm, 800 nm, 850 nm, 880 nm, and 940 nm bandwidths at 60 nm. We also used
a broad-wavelength LED lamp bead, namely, a P1616 SFH4737 from OSRAM (Munich,
Germany). The rational layout developed through multiple tests of the eight LEDs on
the PCB guaranteed the highest signal-to-noise ratio. The sensor was equipped with a
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photodiode S1223-01 with a spectral response range of 320 nm-1100 nm from Hamamatsu
(Tokyo, Japan). Also, a 550–1100 nm circular pass filter from GYTECH (Zhuji, China) was
added to the photodiode to avoid interference from stray light.
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Figure 2. The process of non-invasive hemoglobin detection.

The multi-wavelength pulse wave was measured using an AFE4490 dual-wavelength
PPG AFE produced by TI (Dallas, TX, USA) with an acquisition frequency of 500 Hz. To
enable the AFE4490 to drive eight LEDs, we added a TI (Dallas, TX, USA) TMUX1109 4:1
precision multiplexer to the AFE4490’s LED drive channel.

The ADC acquisition chip was 3PA1030 produced by 3PEAK (Suzhou, China), and the
linear displacement sensor was a KS8 from Miran (Shenzhen, China); An FSR402 produced
by Interlink Electronics (Irvine, CA, USA) was used to detect finger pressure on the sensor.
The housing of the non-invasive hemoglobin instrument was also printed via 3D printing.
Figure 3 illustrates a schematic of the emission spectrum, the optical bandpass filter, and
the detector spectral range sensitivity.

3.2. Design of Finger Clip

Investigating the limitations inherent in conventional finger clips, as elucidated by
Dinesh Kumar et al. [22], revealed that individual variations in finger dimensions and
the presence of tremors during detection can induce alterations in a finger clip’s opening
and closing angles. Such deviations subsequently impact the area of light captured by the
photodiode, causing fluctuations in received light intensity. Furthermore, modifications of
the range and trajectory of transmitted light through the finger contribute to variations in
received transmitted light intensity and the signal quality.

Our devised finger clip design, depicted in Figure 4, integrates a PPG acquisition
device, a linear displacement sensor, and a pressure sensor utilizing advanced 3D printing
technology. The vertical orientation of the finger clip ensures constant inclination, thereby
maintaining a consistent alignment of the light source with the photodiode. The mobile
component of the finger clip allows movement of the linear displacement sensor axis
mechanically, enabling the deduction of the distance between the light source and the
sensor. Positioned beneath the photodiode, the pressure sensor detects the applied force
from the finger. The application of Teflon tape on susceptible components minimizes wear,
while light-shielding sponge material safeguards select areas from prolonged exposure for
sustained stability.
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Figure 4. The structure of our finger clip: (A) Traditional Finger Clip: PD light-receiving surface
changes with the opening and closing of the finger clip. (B) Our Finger Clip: The PD light-receiving
surface does not change with the opening and closing of the finger clip. The pressure exerted by the
finger and the distance from the light source to the sensor can be monitored. (C) Structural drawing
of the finger clip we designed: Employing 3D printing techniques, we fashioned this device, allowing
for assembly without the need for adhesives or screws.

The conceptualization of our physically non-invasive hemoglobin detector, coupled
with an example of the utilization of the finger clip, is depicted in Figure 5.
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4. PPG Signal Processing and Indicators for Signal Quality Evaluation
4.1. The Extraction Method for the PPG Signal Features

For the acquired PPG signals, we used a sliding average filter to filter out high-
frequency noise. Then, a Chebyshev bandpass FIR filter of 0.6–10 Hz was used to filter out
the baseline drift and high-frequency interference. PPG peaks and troughs were identified
using morphological methods, and the difference between the peaks and neighboring
troughs was calculated. Then, we arranged the values from largest to smallest according to
the characteristics of the PPG, ignoring the effects of individual outliers. Because the height
from the systolic blood pressure peak to the starting point is significantly greater than the
height from the diastolic blood pressure peak to the notch point, the corresponding value
is close to 1:1. The first half of the values was ranked from largest to smallest. Here, the
portion of the larger value ranged from the height of the systolic blood pressure peak to
the starting point, i.e., the dynamic portion of the PPG. For this data section, we designed
a window to select the data; the window size was half of this section. We compared the
variances of each window to select the window with the most minor variance and output
the average value of the data in this window. We then used the sliding variance algorithm
to accelerate the calculations. The recursive formulae for the sliding variance and mean are
shown in Equations (6) and (7) An = 1

∆n

n+∆n
∑

i=n
Xi

An = An−1 +
(Xn+∆n−Xn−1)

∆n

(6)

 Rn = 1
∆n

n+∆n
∑

i=n
(Xi − An)

2

Rn = Rn−1 +
Xn+∆n−Xn−1

∆n2 {(Xn+∆n + Xn−1)(∆n − 1)− 2∆nAn−1 + 2Xn−1 }
(7)

where Equation (6) is a recursive formula for the average, and ∆n represents the number of
participants in the average, i.e., the window size. X represents the specific values involved
in the average, and n represents the starting point of the window. An represents the mean
value of the nth window. Equation (7) is a recursive formula for variance, and Rn represents
the variance of the nth window.

The height of the peak systolic pressure compared to the start of the next cycle in the
PPG signal after de-baseline drift via the FIR filter may also be slightly different from the
height of the peak systolic pressure compared to the beginning of the previous cycle. We
extracted both amplitudes according to the sliding window variance method. We calculated
the weighted average according to the variance of each amplitude to obtain the size of the
dynamic portion of the PPG. The process followed for calculating the amplitude of the
dynamic part of the PPG signal using the variance window is shown in Figure 6.
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Following the same method, we next sorted the troughs of the PPG from largest to
smallest and calculated the variance of the latter. The window with the least variance
yielded the mean value of the starting point, representing the size of the static part. This
method yields the most reliable data, avoids chance and error, and suppresses outliers.

4.2. Signal Quality Evaluation Methods

For signal quality evaluation in this study, we employed the minimum variance,
indicative of the dispersion degree of the photoplethysmogram (PPG) signal amplitude,
along with the count of PPG peaks and valleys, reflective of the filtering impact observed
during the calculation of both dynamic and static components. These metrics were utilized
as features to formulate signal quality assessment indices through the application of the
AdaCost classification algorithm.

AdaCost, an algorithm rooted in AdaBoost methodology, integrates cost-sensitive
principles by amalgamating multiple weak classifiers to form a robust classifier [23]. During
the classification process, distinct costs were assigned to different classification errors to
minimize the total cost. To establish a binary classification dataset, 100 samples from the
data collection phase underwent manual annotation to distinguish signals exhibiting poor
quality from those meeting the specified criteria. Cases where signals possessed poor
quality but were erroneously classified as satisfactory received higher assigned costs.

The classification outcomes, as depicted in Table 1, were evaluated using three metrics,
namely, recall score, precision score, and F1-score, providing insights into the efficacy of
the model’s classification performance. Adaboost served as the baseline for the compar-
ison with AdaCost in our classification approach. The AdaCost categorization yielded
superior results.
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Table 1. Classification results of AdaBoost and AdaCost.

Classification Model Recall Score * Precision Score * F1 Score *

AdaBoost 0.83 0.75 0.79

AdaCost 0.94 0.89 0.92
* Recall score: Recall quantifies the number of positive class predictions made out of all positive examples in the
dataset. Precision score: Precision quantifies the number of positive class predictions that actually belong to the
positive class. F1 score: The harmonic mean of precision and recall.

5. Data Collection and Correlation Analysis
Data Collection

In this study, 56 volunteers were recruited from the Department of Nephrology at
the First Affiliated Hospital of Jinan University, with ages ranging from 20 to 72 years.
Among the participants, 33 were male, 23 were female, and 16 were identified as anemic
individuals (adult male Hb < 120 g/L; adult (non-pregnant) female Hb < 110 g/L). A
non-invasive hemoglobin detector facilitated the collection of eight sets of PPG signals,
complemented by data obtained from displacement and pressure sensors. Concurrently,
the actual hemoglobin levels, blood pressure, creatinine, and urea levels of the volun-teers,
being from the nephrology department, were recorded to explore potential in-fluences on
non-invasive hemoglobin tests. During data acquisition, the volunteers reclined comfort-
ably on a bed, placing their right index fingers into the detector’s finger clip. Measurements
were conducted during stable breathing, with volunteers remaining calm throughout the
process. After the test, blood collection, blood pressure testing, and the acquisition of actual
hemoglobin, creatinine, urea, diastolic and systolic blood pressure, and heart rate data were
conducted within a 5 min window using specialized hospital instruments. The processing
flow of the pulse wave data and the results of a single acquisition are shown in Figure 7.
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Figure 7. (a) Original PPG signal; sampling rate, 500 Hz; number of samples, 6400. (b) PPG signal
after mean filtering. (c) PPG signal after filtering with an FIR filter. (d) The result of a single data
acquisition; each PPG signal is followed by the pressure sensor data and displacement sensor data
recorded in real time during the measurement.

The filtering process illustrated in Figure 6 could be wholly implemented in the
hardware used. Measurement data acquired after mean filtering were output as displayed
in (d) and stored on an SD card to compile the dataset. Clinical information about the
volunteers is detailed in Table 2.
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Table 2. Summary tables including all the relevant clinical characteristic.

NO. Hemoglobin
Content (g/L) Gender Age

Blood Pressure
(mmHg)

Diastolic/Systolic

Heart Rate
(BPM)

Creatinine
(µmoI/L)

Urea
(mmol/L)

1 135 Male 23

2 128 Female 25

3 130 Male 72 129/80 70 94.8 8.09

4 136 Male 21

5 110 Male 48 147/97 79 67.3 2.91

6 148.5 Male 26

7 147.9 Male 36

8 119 Female 30 165/107 70 173.8 8.92

9 136.5 Male 25

10 117 Male 36 129/102 93 229.8 10.34

11 133 Male 24

12 118 Male 38 160/98 75 360.2 27.17

13 92 Male 38

14 125 Female 28

15 133 Female 64 120/76 85 66.3 5.38

16 124 Female 55 155/84 63 61.1 5.16

17 106 Male 58 141/93 63 551.3 29.5

18 119 Male 24

19 131 Male 26

20 124 Female 25 120/80 86 90 4

21 150 Male 28

22 88 Male 27 152/92 84 207.1 13.07

23 102.5 Male 48

24 126 Female 26

25 133 Female 24

26 115 Male 40

27 140 Female 41

28 129.7 Female 30

29 132.7 Male 24

30 103 Female 33

31 109 Male 30

32 132 Female 24

33 122 Male 36

34 123 Female 39

35 134.6 Male 25

36 132 Male 26

37 118 Male 35

38 138 Female
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Table 2. Cont.

NO. Hemoglobin
Content (g/L) Gender Age

Blood Pressure
(mmHg)

Diastolic/Systolic

Heart Rate
(BPM)

Creatinine
(µmoI/L)

Urea
(mmol/L)

39 127 Male 26

40 132 Female 23

41 128 Female 39 117/63 70 67.3 2.91

42 129 Female 25

43 128 Female 27

44 138 Male 24 110/80 70 90 4

45 136 Male 27 155/110 60 178.4 9.04

46 133 Male 20 160/101 97 344.1 34.16

47 136 Male 36

48 135 Male 24 110/80 88 90 4

49 125 Female 28

50 125 Female

51 134 Male 44

52 127.9 Female 55 125/74 68

53 127 Female 36

54 131 Male 24

55 129 Female 25

56 96 Male 32 152/92 86 474.6 4.29

6. Results
6.1. Models for Hemoglobin Level Predictions

In this investigation, we employed three prediction models: AdaBoost, a BP neural
network, and Random Forest models. In the evaluation of regression prediction perfor-
mance, we utilized the determination coefficient (R2), mean square error (MSE), and mean
absolute error (MAE).

6.1.1. AdaBoost Regression

AdaBoost (Adaptive Boosting) is an integrated learning method designed to combine
multiple weak learners to build one strong learner [24,25]. In this paper, we used a
decision tree as the base classifier. Decision trees are highly interpretable, do not necessitate
the normalization of input features, are computationally undemanding, and are easy to
implement quickly in hardware. The number of estimators was chosen such that the best
value in the range of 1–10 and the maximum depth in the range of 1–6 could be found. We
found the optimal parameters using a grid search.

6.1.2. BP Neural Network

A BP neural network (BPNN) is a multi-layer feed-forward neural network that
performs error correction using an error back-propagation algorithm [26]. In terms of
structure, the input and output layers of the network are single-layer structures, while the
hidden layers are more variable and can be single- or multi-layer structures [27]. In this
study, we used a double hidden layer structure. The activation function of the network
was found from among “identity”, “logistic”, “tanh”, and “real”. The activation function
was optimized in terms of “identity”, “logistic”, “tanh”, and “real”, and the maximum
number of iterations was 10,000, while the solver was optimized in terms of “blogs”, “sad”,
and “Adam”.



Biosensors 2024, 14, 22 12 of 19

6.1.3. Random Forest Regression

Random Forest Regression (RF) is an integrated learning method based on decision
trees. RF improves the stability and accuracy of predictions by combining predictions
from multiple trees [28]. Random Forest can quantify the importance of features and guide
feature selection [29]. The number of estimators was chosen such that the best value in
the range of 1–10 and the maximum depth in the range of 1–6 would be found. Optimal
parameters were found using a grid search.

6.2. Correlation Analysis

Pearson correlation analysis was employed to assess the magnitude and direction
of the linear association between paired variables. This method, rooted in covariance
principles, yields a correlation coefficient ranging from −1 to 1. The coefficient is computed
by dividing the product of the covariance of two variables by their respective standard
deviations. The proximity of the absolute value of the correlation coefficient to 1 signifies a
robust linear relationship between the variables, whereas proximity to 0 indicates a weaker
linear connection [30].

Correlation analyses were performed on the collected alternative modeling parameters
(creatinine, LED–sensor distance, pressure sensor data, age, gender, blood pressure, heart
rate, urea, and hemoglobin). A correlation matrix of the data was calculated using Pearson’s
correlation coefficient [31], and a heatmap of the correlation analysis of the data was plotted.
Due to issues regarding the compliance of the volunteers, only 16 volunteers’ information
(blood pressure, creatinine, and urea) was ultimately collected, and the information of these
16 volunteers was analyzed for relevant correlations. As shown in Figure 8, the ratio of the
dynamic part to the static part of the PPG signal at each wavelength strongly correlated
with the actual hemoglobin content. Especially for broadband LED, the correlation coef-
ficient reached 0.91. Blood pressure, creatinine, and urea have certain correlations with
hemoglobin (perhaps only for nephrotic patients), and the ratio of the dynamic part to
the static part of the PPG signal measured via the broadband LED also correlates with
human creatinine at an absolute value of 0.58. The LED–sensor distance has a weaker
correlation with this ratio. However, the data from the pressure sensor were associated
with the measurement of hemoglobin content using the PPG method.
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Henceforth, we opted to employ the ratio of the dynamic to static components of
the PPG signal across eight frequency bands, alongside the average pressure sensor data
during detection, as input features, constituting a total of nine input features. Additionally,
we conducted an analysis by excluding the pressure sensor data, resulting in eight input
features, to discern the potential impact of pressure sensor data on prediction outcomes.
Figure 9 depicts certain features within the normalized dataset, with increased darkness of
the line corresponding to elevated hemoglobin content.
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6.3. Performance Comparisons of the Models

The 56 samples were randomly divided into two groups at a ratio of 7:3, among which
17 samples were used as a test set for model validation and performance evaluation. In
total, 39 samples were used as a training set to train the regression model.

To prevent overfitting, we divided the training set using 10-fold cross-validation. We
divided the training set into different subsets, excluded one subset as the validation set
in each training iteration, and used the other subsets as the training set. In this way, after
cycling many times, we could ensure that the samples were different each time. The average
of the evaluation metrics for the test set in 10 regressions was taken as the final assessment
metric. The average metrics of the three models in the 10-fold cross validation are shown in
Table 3.

Table 3. Performance of three models in cross-validation.

Classification Model R2 MSE MAE

AdaBoost 0.89 13.43 2.50

BP neural network 0.86 22.21 3.32

Random Forest 0.90 13.02 2.48

Random forests achieved better performance in the test set, and we used the radar
charts shown in Figure 10 to show in detail the performance of the three models in the
10-fold cross-validation. Each vertex of the radar plot corresponds to 1 fold in the 10-fold
cross-validation. Each model achieves an R2 of 0.8 or more in each fold.
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The application of K-fold cross-validation is restricted to validation purposes and
does not serve as a foundation for conclusive model parameter judgments. Nevertheless,
it proves invaluable for discerning optimal hyperparameter combinations, facilitating
structural adjustments to a model, and subsequently reinitializing the model for enhanced
parameterization. Ultimately, the model undergoes a comprehensive re-training on the
entire dataset, utilizing the optimal hyperparameters, and the resultant generalization
performance is evaluated through assessment scores on the test dataset.

The model’s training parameters encompassed the dynamic-to-static ratio of the PPG
signal across eight bands and the mean value of pressure sensor data during detection.
Additionally, we conducted a comparative analysis by excluding pressure sensor data,
thereby forming a dataset consisting of eight features. Table 4 presents the statistical
analysis values for the proposed models.

Table 4. The performance of the three models in statistical analysis.

Classification Model
R2 MSE MAE

Nine Inputs Eight Inputs Nine Inputs Eight Inputs Nine Inputs Eight Inputs

AdaBoost 0.91 0.86 13.99 20.78 2.67 3.35

BP neural network 0.87 0.82 24.64 26.86 3.77 3.91

Random Forest 0.89 0.85 15.20 22.92 2.80 3.15

As shown in Table 4, all three models showed better results with the addition of data
from the pressure sensor. Among them, the AdaBoost model was the most effective, with
an R2 of 0.91, an MSE of 13.99, and an MAE of 2.67.

Figure 11 shows a comparison between the actual values and the prediction results of
each model for the case with nine inputs. The AdaBoost model achieved better performance
for all the test samples. The BPNN model had large deviations in the 4th, 6th, and 17th test
samples. The random forest model performed well for all samples except the 14th test
sample. However, the predicted values deviate significantly from the true values of the
14th sample.
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Figure 12 presents a Bland–Altman diagram for the three regression models fore-
casting hemoglobin concentration. Notably, the AdaBoost model’s predictions closely
align with the actual values, with no data surpassing the 95 percent consistency threshold.
The AdaBoost prediction model emerges as the most suitable for modeling this dataset,
showcasing superior predictive capabilities. In contrast, the BPNN results exhibit more
deviations from the actual values, with two data points falling outside acceptable bounds.
While the random forest model accurately predicts most data points, seven predictions
significantly deviate from reality.
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Figure 12. (a) Bland–Altman diagram of the AdaBoost regression model for predicting hemoglobin
concentration. (b) Bland–Altman diagram of the BPNN regression model for predicting hemoglobin
concentration. (c) Bland–Altman diagram of the RF regression model for predicting hemoglobin
concentration. The horizontal coordinate of the Bland-Altman diagram is the mean of the predicted
and actual values, the vertical coordinate is the difference between the predicted and actual values,
and the diagram in-cludes three lines, with the middle line indicating the mean of the difference,
and the top and bottom lines being the upper and lower limits of the 95 per cent consistency
boundaries. The Bland-Altman diagram allows visualisation of the measurement deviation and
degree of consistency between two observations. If most of the points are distributed near the mean
difference and within the standard deviation, the two data sets are in good agreement.

7. Discussion

The Lambert–Beer Law served as the foundational theoretical framework for our
non-invasive hemoglobin detection approach, employing eight bands of LEDs as an il-
lumination source. A specially designed finger clip, along with additional features, was
implemented to mitigate potential interference factors during testing. Our experimental ob-
servations revealed that the spacing between the light source and the sensor had a minimal
impact on predictions. This effect appeared to be mitigated by the division of the dynamic
and static components of the measured pulse wave, serving as a basis for signal quality
assessment. Finger pressure emerged as a notable influencer, evident in both correlation
analyses and prediction outcomes. The pliability of human fingers and the resulting diverse
deformations may affect parameters such as muscle contraction and the vascular perfusion
index, warranting further experimentation for comprehensive validation. Notably, our
exploration unveiled a superior noninvasive detection technique utilizing broadband light
sources, with potential applications in creatinine detection. Our study harnessed three
regression models, all demonstrating commendable predictive outcomes and validating
our conceptual framework. However, further data accumulation, diverse population ex-
perimentation, and the identification of additional influencing factors are imperative for
refining the efficacy of our device.

8. Conclusions

In this study, we designed a device for measuring hemoglobin based on the properties
of PPG. The measurement of hemoglobin is based on PPG’s ability to respond to the
absorption of arterial blood components. We used eight bands of LEDs as light sources for
PPG acquisition, including a broadband LED. A finger clip was designed to acquire more
features and achieve better immunity to interference. The most appropriate PPG period
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was selected using a variance window, and features were computed while the quality of the
signal was classified via the AdaCost algorithm. In addition, we recruited 38 volunteers for
clinical trials to obtain accurate data. In the correlation study, we found that blood pressure
and creatinine levels may interfere with the prediction of hemoglobin levels using NIR
PPG features in patients with kidney disease. Adding a pressure sensor to the bottom of
the PD and using a broadband LED facilitated the prediction of hemoglobin content. The
results showed that the AdaBoost model offered the best effects, with an R2 of 0.91, an MSE
of 13.99, and an MAE of 2.67. The proposed device and method have great potential for
monitoring hemoglobin concentrations.

In the future, we need to collect more data to train the model to achieve better results.
We also need to find features or measurements with greater correlation for non-invasive
hemoglobin testing, improving the vital recognition ability of our detection system. In
addition, based on the results of the correlation analysis, we will further investigate the
non-invasive measurement of other critical physiological indicators such as creatinine and
blood pressure. Wearable devices are also an important direction of development and
could include flexible electronics [32], triboelectric nanogenerators [33], inkjet printing, and
other technologies, which will make non-invasive body-parameter-testing devices more
conducive to long-term monitoring.
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