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Abstract: Interleukin 6 (IL-6) is pleiotropic cytokine with pathological pro-inflammatory effects in
various acute, chronic and infectious diseases. It is involved in a variety of biological processes
including immune regulation, hematopoiesis, tissue repair, inflammation, oncogenesis, metabolic
control, and sleep. Due to its important role as a biomarker of many types of diseases, its detection in
small amounts and with high selectivity is of particular importance in medical and biological fields.
Laboratory methods including enzyme-linked immunoassays (ELISAs) and chemiluminescent im-
munoassays (CLIAs) are the most common conventional methods for IL-6 detection. However, these
techniques suffer from the complexity of the method, the expensiveness, and the time-consuming
process of obtaining the results. In recent years, too many attempts have been conducted to provide
simple, rapid, economical, and user-friendly analytical approaches to monitor IL-6. In this regard,
biosensors are considered desirable tools for IL-6 detection because of their special features such as
high sensitivity, rapid detection time, ease of use, and ease of miniaturization. In this review, current
progresses in different types of optical biosensors as the most favorable types of biosensors for the
detection of IL-6 are discussed, evaluated, and compared.

Keywords: interleukin 6; biosensor; optical biosensor

1. Introduction

A biomarker is a measurable indicator of some biological condition and especially
pathophysiological processes, which can be used to diagnose or prognosticate a patient,
as well as to monitor disease progression or a patient’s response to treatment [1]. Among
the different types of biomarkers (cellular, molecular, vesicular), proteins have been sig-
nificantly investigated and their potential in diagnosing diseases has been determined.
Cytokines are small proteins that play an important role in cell signaling, and are often
used as biomarkers for disease monitoring such as liver diseases [2], cancer progression [3],
and hepatic inflammations [4]. Particularly, interleukin-6 (IL-6) plays a significant role in
the human immune system’s response to infection and cell damage, and is secreted into
the serum by T cells and macrophages in acute and chronic inflammation [1].

IL-6 is a pleiotropic cytokine polypeptide which can produce by various cells such as
lymphocytes, endothelial cells, keratinocyte, neural cells, and bone cells, under stimulation
by special inducers and at the site of inflammation [5,6]. Knowing the structure of IL-
6 is important in analyzing its detection processes, as its properties such as isoelectric
point (pI) and molecular mass affect its sensing function. IL-6 with a tertiary structure
is composed of two glycoprotein chains and characterized by a four α-helical bundle
structure [7]. The α-helix with terminal carboxyl group plays a key role in the receptor
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binding process [8]. Its molecular weight varies from 26 to 30 kDa, depending on cell-
specific post-translational modifications [8]. Human IL-6 contains 212 amino acids [9]. The
29 amino acids serve as the N-terminal signal peptide, which is responsible for directing
IL-6 to the correct orientation during receptor binding [10]. IL-6 communicates with cells
by binding to its receptor, named the interleukin-6 receptor (IL-6R). IL-6R is an integral
membrane protein containing a conserved region of 90 amino acids belonging to the
immunoglobulin supergene family [8,11]. It is a three-domain specific receptor for IL-6
with a double helix structure and containing two anti-parallel fibronectin III type domains.
IL-6R is only found on the surface of specific cells including macrophages, monocytes,
hepatocytes, B cells, and T cells [10]. When IL-6 is inserted into the IL-6R binding pocket,
another 130 kDa signal-transducing β-subunit glycoprotein 130, gp130, acts as a signal
transducer, facilitating the formation of high-affinity extracellular receptor binding sites [8].
The gp130 is a general receptor for the IL-6 cytokine family and contains six β-sheet
sandwich domains [11]. Therefore, in inflammatory disorders, IL-6 activates cells through a
heterodimeric signaling complex including IL-6R and gp130, which is shared with several
other cytokines [12]. The IL-6R is found in two forms, soluble (sIL-6R) and membrane-
bound forms, which differentiates between IL-6 classic (through the membrane-anchored
IL-6R) and IL-6 trans-signaling (through the sIL-6R). Formation of the IL-6 classic signaling,
induced by IL-6 binding to IL-6R and then gp130, activates the JAK/STAT pathway in
macrophages, monocytes, hepatocytes, B cells and T cells (classical signaling) to exert
anti-inflammatory effects (Figure 1). On the other hand, IL-6 binding to sIL-6R and then
gp130 activates the JAK/STAT pathway in non-IL-6R expressing cells (trans-signaling),
resulting in pro-inflammatory responses. Finally, soluble gp 130 (sgp130) can bind to IL-6
and sIL-6R complexes to inhibit cellular IL-6 binding and regulate the trans-signaling
pathway [10,13]. IL-6 receptors can be ideal biorecognition elements in different sensing
techniques and as a suitable substitute for antibodies and aptamers in order to specific
detection of IL-6. Although there are several recent studies on electrochemical biosensors
based on IL-6 receptor as recognition element [14–16], what is missing from these specific
elements is felt in studies related to optical biosensors.
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There are several recent reviews that explain different aspects of IL-6 ranging from its bio-
logical function [8,10], detailed explanations of the activated signaling pathways [8,10,17,18],
to therapeutic methods based on specific blocking of IL-6 [19–21].

Since IL-6 is involved in different biological processes including immune regulation,
hematopoiesis, tissue repair, inflammation, oncogenesis, metabolic control, and sleep [9],
it has a pivotal role in acute, chronic, and communicable diseases. Therefore, IL-6 can be
considered a useful biomarker in diagnosis infection and cardiovascular diseases [22,23],
different kinds of cancer [24,25], and other diseases such as lung fibrosis [26], chronic in-
testinal inflammation [27], acute kidney injury (AKI), chronic kidney disease (CKD) [28–30]
and, recently, COVID-19 [31]. The reported value for IL-6 in the blood of healthy individu-
als is <10 pg/mL [32], and this level is increased in serum or blood of patients with different
pathological problems [33]. The level of IL-6 in in a variety of pathological disorders is
shown in Table 1.

Table 1. IL-6 level in different pathological disorders. Reprinted from Ref. [8].

Pathological Disorder IL-6 Level (pg mL−1)

Alzheimer’s Disease 85–567
Meningitis 450–32,000
Myocardial Infarction 28.5–46.5
Cardiac Myxoma >56
Multiple Myeloma 5–33
Burkitt Lymphoma 100.3
Post-Transplant Lymphoproliferative Disease/PTLD 143–11,020
Cachexia 100
Rheumatoid Arthritis 17
Psoriasis 30,000
Hepatitis B Virus Infection/Hepatocyte Carcinoma 7–18.9
Sepsis 5000–100,000

Laboratory techniques such as enzyme-linked immunoassays (ELISAs) and chemilu-
minescent immunoassays (CLIAs) are the most common conventional methods for IL-6
detection with high sensitivity (≈10–20 pg mL−1), specificity, and reliability [34]. De-
spite several benefits of these techniques, they are costly, time-consuming, require large
sample volumes, and must be performed by skilled personnel [35]. On the other hand,
Prompt diagnosis is essential for IL-6-related diseases such as sepsis, where diagnosis and
administration of specific therapy within the first 6 h of disease onset can significantly
improve patient outcomes. [36]. Consequently, the development of rapid, cost-effective,
and user-friendly sensing techniques with high sensitivity and specificity, the possibility of
miniaturization, and portability for the detection of IL-6 is and other important biomarkers
is critical. Such sensing devices can also be useful for at-home monitoring of some diseases
in which IL-6 is implicated. Based on the transduction method, biosensors can be cate-
gorized into five groups, including electrochemical, electrical, optical, piezoelectric, and
thermal [37]. Optical biosensors have gained further advantage in biotechnology, disease
diagnosis, medical devices, and environmental assessment, due to their selective, rapid, and
highly sensitive measurements [38]. Optical biosensors are analytical devices that consist
of a biorecognition sensing element integrated with an optical transducer system [39]. They
emit an optical signal that is directly proportional to the analyte concentration. In a broad
classification, optical biosensors are divided into two categories: label-free and label-based
types. In label-free biosensors, the detected signal is directly produced by the interaction of
the analyzed material with the transducer. In contrast, in the label-based biosensors, a fluo-
rescent or a colorimetric label is used and the intensity of the fluorescence or colorimetric
generated signal is proportional to the analyte concentration [39]. A variety of biomaterials,
including antibodies, nucleic acids, enzymes, receptors, whole cells, and tissues can be
used as biorecognition elements in optical biosensors [38,39]. Different major types of
optical biosensors include surface plasmon resonance (SPR), fluorescence/luminescence,
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optic fiber, ring resonator, interferometer, optical waveguide, and photonic crystals. In this
review, we focus on the main types of optical biosensors developed for IL-6 detection in
recent years. Sensor design, performance of detection, and their advantages and disadvan-
tages will be described. As far as we know, there has not been any comprehensive review
in the field of different types of optical biosensors including SPR, colorimetric, fluorescence,
and Raman-based biosensors for IL-6 detection (Scheme 1) in recent years. Therefore, this
review can be a great collection of the main types of optical biosensors for readers. it is
worth noting that, related to the IL-6 detection, optical biosensors are very important not
only in laboratory research and development, but also in commercialized products, such
that some of main detection strategies used in commercial biosensors for IL-6 are related to
optical biosensors, among which we can mention colorimetric and fluorescence biosensors
based on the lateral flow immunoassay (LFIA). Also, this article helps researchers in under-
standing the need to develop other types of optical biosensors, such as chemiluminescence
and label-free Raman technology in the detection of IL-6, as well as the use of other types
of nanomaterials as labels to increase the assay sensitivity and dynamic range of detection.
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Scheme 1. Different types of optical biosensors for IL-6 detection. Scheme 1. Different types of optical biosensors for IL-6 detection.

A roadmap of progress in optical biosensors for IL-6 detection is shown in Figure 2.
It can be observed that paper-based methods, such as lateral flow assays, as well as the
SERS-based biosensors, are emerging and in progress methods for the detection of IL-6 in
the future.
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2. Surface Plasmon Resonance-Based Optical Biosensors

Among all types of optical biosensors, the most common, predominant, and exten-
sively used technique is the surface plasmon resonance (SPR) optical biosensors, due to
high sensitivity, robustness, cost-effectiveness, multiplexing, and diversity [40]. SPR is a
phenomenon which occurs when the free electrons in the metal surface layer are excited
by photons of incident light at a specific angle, causing an evanescent wave [41]. This
causes the production of surface plasmons and thus reduces the intensity of the reflected
light at a specific angle called the resonance angle [39]. This phenomenon is beneficial for
monitoring changes in refractive index, because the evanescent wave is very sensitive to
changes in the vicinity of the surface [41]. SPR occurs only at the nanometer scale in metals
(gold and silver are preferred) and are classified into two categories: Localized Surface
Plasmon Resonance (LSPR), when the phenomenon occurs on sub-wavelength-sized metal
nanoparticles, and SPR, when it happens on thin metallic films [42]. The plasmon generated
is directly dependent on the size of the nanoparticle or metal film and the material used.
Considering the type of material, from a physical point of view, silver is seen to be better
due to its more intense plasmon. However, gold is more used because of its chemically
inert nature [41]. One of the methods benefiting from the characteristics of each material
is the application of multilayer or core–shell nanoparticles [43]. In terms of SPR emission,
a thickness of 40 nm has been found to generate the highest plasmon intensity, while for
nanoparticles, the smaller the diameter, the lower the plasmon intensity [41].

Fluidic SPR is considered the most common SPR method in analytical applications [44].
The Kretschamann configuration of an SPR instrument is commonly applied. A biosensor is
constructed on the prism, coated with nanometric-size metal gold or, more often, on a glass
slide coated with the nanometric-size gold fixed on the prism by an immersion oil [45]. The
fluid sample containing analytes flows through a measuring cell, pressurized by a buffer.
The SPR signal is measured continuously. Converting the SPR signal into an image using
a CCD camera is called SPR imaging (SPRi). In contrast to the fluid SPR assay, the SPRi
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array shows a high potential for the detection of molecular biomarkers [45]. The difference
between the two methods is the presence of an aqueous solution during the measurement
of the SPR method, while in the SPR array, the aqueous solution is removed before the
measurement. The SPRi array technique uses the Kretschmann configuration, with the
biosensor consisting of a gold chip fixed by oil immersion on a prism. The surface of the
chip is designed as an array of measurement points separated by a polymer. The array is
divided into nine measuring cells separated by a hydrophobic paint. Each cell includes
dozens of measurement points. The chip architecture allows simultaneous measurement of
nine separate samples. Using the SPRi array technique, a biosensor was developed for IL-6
determination in blood plasma [45]. The SPRi biosensor was designed onto a gold chip
coated with a photopolymer and hydrophobic paint. Two different strategies were used
for detection. In the first one, the mouse monoclonal anti-IL-6 antibody as the receptor
was immobilized on the gold chip through the cysteamine linker. In the second strategy,
galiellalactone (an IL-6 inhibitor) as the receptor was immobilized on the gold chip with
octadecanethiol (ODM) as the linker. In the antibody-based biosensor, the linear response
range was between 3 (limit of quantification: LOQ) and 20 pg mL−1, while in the case
of the galiellalactone-based biosensor, a linear range between 1.1 (LOQ) and 20 pg mL−1

was obtained. Both biosensors were investigated to determine IL-6 concentration in blood
plasma before and after resection of ovarian tumors and endometrial cysts.

With recent advances in nanofabrication, plasmonic biosensing technologies have been
developed into LSPR-based biosensors [46]. Using the LSPR technique, the surface binding
of analyte molecules is recognized in real time from a shift in photon absorption and
scattering characteristics of collectively oscillating conduction-band electrons, which are
strongly localized on the surfaces of metallic nanoparticles [47]. In this context, a multiarray
LSPR chip was developed for simultaneous detection of multiple cytokine biomarkers in
low-quantity serum samples (1 µL) [47]. The microarray device was fabricated using easy-
to-implement, one-step microfluidic patterning technique, and gold nanorods (AuNRs)
were immobilized on the substrate surface within microfluidic channels using electrostatic
interactions. Then, the nanorode microarrays were incorporated in a microfluidic chip
with eight parallel detection channels comprising of input and output ports to load and
wash reagent (Figure 3a). The patterned AuNR microarrays were conjugated with specific
antibodies against cytokine molecules using EDC/NHS chemistry. Upon addition of
analyte molecules and their binding to antibody-functionalized AuNRs, a redshift and
changing in scattering intensity of longitudinal SPR was observed (Figure 3b). The limit
of detection (LOD) for the six cytokines were determined in the range of 5–20 pg mL−1,
and for IL-6 was 11.29 pg mL−1. The total time of all test steps was estimated to be about
40 min. An excellent correlation was obtained between the LSPR chip and ELISA method.
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inducing a redshift and scattering intensity change in the longitudinal SPR. Reprinted from Ref. [47]
with permission.
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While antibodies are mainly used as detection elements, these very large (∼150 kDa)
Y-shaped proteins show obvious disadvantages in probing nanosized cytokines (6–70 kDa)
in a label-free LSPR assay design [48]. Therefore, development of new probes with smaller
sizes and higher analyte-to-probe mass ratios to exceed the theoretical limit of LSPR
bioassays. Nanobodies and peptides aptamers with high binding affinity to protein analytes
have emerged as new biorecognition element. Peptide aptamers are short sequence of
amino acids with a molecular weight of 3–5 kDa, which shows high affinity to the selected
target. Using antibody-derived peptide aptamers (ADPAs) with very small dimensions
(1.5 nm), He et al. (2022) developed a LSPR imaging (LSPRi) immunoassay for label-free
detection of IL-6. For the biosensor fabrication, a polydimethylsiloxane (PDMS) layer
with microfluidic channels was attached to the APTES-modified glass slides. AuNRs were
loaded into the microfluidic channels and interacted electrostatically with APTES. The
ADPAs was attached on the sensing surface through Au–S bonding. By using a dark
field imaging system and a minimal sample of 3 µL, the immunosensor received label-
free detection of IL-6 with a LOD down to 4.6 pg mL−1 and within a total assay time
of 35 min. Compared to its antibody counterpart, the ADPA showed higher sensitivity
whiling maintaining high specificity.

Representative examples of recently developed SPR-based optical biosensors for the
detection of IL-6 have been listed in Table 2.

Table 2. Representative examples of recently developed SPR-based optical biosensors for the detection
of IL-6.

Type of
Biosensor Strategy of Detection LOD Linear Range Matrix Advantages Disadvantages Ref.

SPR

SPRi array technique and
immobilization of antibody
or IL-6 inhibitor on the
surface of gold chip

3 pg mL−1 (antibody),
1.1 pg mL−1 (inhibitor)

3–20 pg mL−1

1.1–20 pg mL−1 Plasma

High sensitivity and
selectivity, good precision
and recovery, rapid
incubation time (10 min),
label-free assay, real time
monitoring

Narrow linear
range, the need
for spectropho-
tometer
device

[45]

LSPR

Microfluidic channel arrays
with immobilized gold
nanorods conjugated with
antibody

11.29 pg mL−1 nr * Serum

Label-free assay, high
sensitivity and selectivity,
multiplex assay, no
cross-reactivity for other
cytokines, high accuracy,
the need for a small
sample volume, label-free
assay, real time
monitoring

Non
determination of
linear range,
long incubation
time (30 min),
the need for spec-
trophotometer
device

[47]

LSPR

Microfluidic channel arrays
with immobilized gold
nanorods conjugated with
antibody-derived peptide
aptamers

4.6 pg mL−1 5 to 1 × 106

pg mL−1 Serum

High sensitivity and
selectivity, label-free assay,
the need for a small
sample volume, total
assay time of 35 min, high
consistency with the “gold
standard”
ELISA, label-free assay,
real time monitoring

The need for
spectrophotome-
ter device, low
reproducibility
in complex
biological
medium

[48]

LSPR

A single-cell secretion
detection chip consisting of
microwells, each well is
surrounded by Au
nanopillars capable of LSPR
measurement, modification
of Au nanopillar with IL-6
antibodies for the direct
detection of single-cell
secreted IL-6 via LSPR
absorbance peak shift

Single-cell cytokine
secretion - -

High specificity,
cost-effective fabrication,
label-free assay, real time
monitoring

Non-
determination of
LOD and linear
range, the need
for spectropho-
tometer device,
non-application

[49]
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Table 2. Cont.

Type of
Biosensor Strategy of Detection LOD Linear Range Matrix Advantages Disadvantages Ref.

SPR

Direct immobilization of
primary antibody through
mixed self-assembled
monolayer (SAM) using
mercaptoundecanoic acid
(MUA) and
6-mercapto-1-hexanol
(MCH) on a gold surface,
and indirect antibody
immobilization to the
Fc-binding domain of
protein G on the mixed SAM;
a sandwich complex
formation between primary
antibody, IL-6 and secondary
antibody

1.3 ng mL−1—Direct
5.7 ng mL−1—Indirect

0.78–12.5
ng mL−1 -

High specificity, label-free
assay, real time
monitoring

Low sensitivity,
narrow linear
range, not
applicable in the
real sample, the
need for spec-
trophotometer
device,
non-application

[50]

LSPR

Antibody immobilization on
the surface of gold-capped
nanopillar-structured
cyclo-olefin-polymer (COP)
film and observation of peak
red-shift in the transmittance
spectrum after IL-6 binding

10 ng mL−1 - -
Label-free assay, real time
monitoring, high
specificity

Low sensitivity,
non,
determination of
linear range, not
applicable in the
real sample, the
need for spec-
trophotometer
device,
non-application

[51]

* nr: not reported.

3. Colorimetric-Based Optical Biosensors

Colorimetric sensors/biosensors show promising potential for the detection of different
analytes due to easy fabrication, rapid detection, low-cost, high sensitivity and selectivity, as
well as easy measurement with the naked eye [52]. Colorimetric immunoassays are among
the most widely used and sensitive methods in the detection of biomarkers. Especially after
the emergence of nanomaterials, new opportunities have been provided in the further devel-
opment of these methods. In this regard, gold nanoparticles (AuNPs) are the most commonly
used nanomaterials in colorimetric sensors/biosensors due to their unique plasmonic char-
acteristics, which enables them to aggregate and change color quickly under the influence of
the changes in their surrounding environment and produce a colorimetric signal visible to
the naked eye. Such biosensors are based on color changing of the AuNP colloidal solution
due to the nanoparticle aggregation, and are defined as aggregation plasmonic sensors [53].
Giorgi-Coll et al. (2020) developed an optical aptasensor based on the aggregation of AuNPs
conjugated with two complimentary “sandwich-type” aptamers, each with different IL-6
target regions [54]. Upon addition of IL-6 molecules, they bound to the aptamers on the
AuNPs surface, resulting in aggregation of the AuNP, a color change from red to pink, and
a corresponding change in the maximum absorption from 520 to 540 nm (Figure 4a). The
test was completed in 5 min without any sample preparation steps. The LOD was obtained
1.95 µg mL−1 with a linear range from 3.3 to 125 µg mL−1. Development of portable and
user-friendly instruments for highly sensitive and rapid detection of IL-6 is the focus of many
researchers. Smartphone-based biosensors have attracted widespread attention and exhib-
ited high potential as portable and cost-effective analytical devices for point-of-care (POC)
diagnostics [55]. In this context, smartphones equipped with optical biosensors, especially
colorimetric sensors, have attracted much attention [55]. In smartphone-based colorimetric
biosensors, the color signal is converted into quantitative data using a smartphone as the
most accessible reading tool. Therefore, smartphones can be suitable for mobile diagnostic
and monitoring devices for POC testing, including paper-based sensors. Alba-Patiño et al.
(2020) developed a paper-based colorimetric biosensor paired with smartphone for the rapid
detection IL-6 as a major biomarker of sepsis in whole blood [56]. To fabricate the biosensor,
captured antibodies were immobilized on the surface of filter paper by dropping. After
adding IL-6 and binding to captured antibody, the detection antibody was included to form
an immunocomplex. Finally, AuNP functionalized anti-rabbit IgGs were added to produce
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colored spots on the paper substrate. The colorimetric signals were evaluated with the
mobile densitometry app. The biosensor was able to detect IL-6 with a LOD of 0.1 pg mL−1,
a linear range of 0.001–10 pg mL−1, and a total assay time within 17 min. Moreover, it was
able to detect an increase in IL-6 of only 12.5 pg mL−1 over baseline levels in whole blood
with 99% confidence.

Lateral flow immunoassay (LFIA) is one of the most ideal and acceptable analytical
techniques among paper-based point-of-care testing (POCT), because of several advan-
tages such as low cost, user friendliness, and time saving. This technique exhibits high
potential for detecting different analytes including disease biomarkers [57,58]. An LFIA
strip commonly comprises four main parts: (1) the sample pad to which the sample (liquid)
is inserted, (2) the conjugation pad consisting of capture bioreceptor labelled with mostly
nanomaterials, (3) the nitrocellulose membrane on which the test (T) and control (C) lines
are sprayed, and (4) the absorbent pad that plays the role of a wick and collects excess
liquid [57]. LFIAs are usually designed based on two main detection strategies, including
sandwich-type and competitive-type assays. A sandwich-type LFIA is the most-preferred
format for the detection of larger-sized analytes (>1 kDa), such as proteins, antibodies, bac-
teria, and cells. In this format, the analyte is sandwiched between the capture antibody and
the labelled antibody on the test line generating a visual color signal directly proportional
to the analyte concentration. The Competitive format is generally performed to detect
low molecular weight analytes which have an antibody binding site. In this format, the
target molecule in the sample and the target/target analog immobilized on the test line
compete for binding to labelled antibodies, resulting in the appearance of a visual color
signal inversely proportional to the target concentration [59].

Since the IL-6 seems to be related to respiratory failure, it can be considered as a
biomarker of COVID-19 detection [60]. For early recognition of COVID-19-infected patients
under imminent risk of acute respiratory failure, a sandwich format of IL-6 LFIA strip
accompanied by a spectrum-based optical reader was developed [61]. The test strip was
designed based on immobilization of 15 nm AuNPs conjugated with anti-IL-6 antibody onto
conjugated pad. The nitrocellulose membrane was coated with anti-mouse IgG monoclonal
antibody and the quality control antibody at the T and C lines, respectively. Under applying
the sample on the strip, the human IL-6 antigen in the sample formed an antigen complex
with the anti-IL-6 antibody–AuNP conjugates. Then, these complexes were captured in
the T line and displayed colored bands. The spectrum-based optical reader provided
continuous spectral reflectance values with high resolution when reading the result of the
T line through an optical module. Clinical samples related to the COVID-19 patients were
analyzed by developed test strips coupled with an optical reader, and satisfactory results
were obtained, which provided a promising POC testing method for early detection of
COVID-19 patients at risk of acute respiratory failure.

AuNPs, as the most common labels in LFIA, are not fully able to cover the desired
need for sensitive detection specially in relation to highly sensitive quantitative analysis
of low-abundance biomarkers such as cytokines [33]. In order to overcome this weakness,
several signal amplification techniques have been developed, enabling sensitive colorimetric
detection of different analytes through AuNP-based LFIAs. Silver enhancement is one of
those methods that is based on the nucleation of silver on the gold surface in the test or
control lines of LFIA strips and increases the intensity of the obtained colorimetric signal.
Since the target detection limit for IL-6 is very low (i.e., in the pg ml−1 range), Rahbar et al.
(2021) employed a silver enhancement technique incorporated with AuNPs-based LFIA to
reach the desired sensitivity [33]. In this study, AuNPs were used as label in conjugation with
the specific IL-6 antibody (Figure 4b). The T line was comprised of the biotinylated polyclonal
human IL-6 antibody and streptavidin, while goat anti-mouse IgG antibody was directly
dispensed at the C line. After conducting the general sandwich test, a silver enhancement
solution containing a 1:1 ratio of silver nitrate and hydroquinone was applied to the strips to
enhance the produced colorimetric signals. With this procedure, IL-6 was detected in both
buffer medium and serum samples with a LOD as low as 1 and 5 pg/mL, respectively.
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In addition to signal amplification techniques, the application of other nanomateri-
als such as Pt nanoparticles with excellent optical properties [62] or nanoscale materials
with natural enzyme-like activities (Nanozymes) and catalytic properties have attracted
interest in colorimetric assays. Unlike natural enzymes, nanozymes provide uninterrupted
biocatalytic activity even under extreme conditions of pH, temperature, and resistance
to protease digestion [63]. Nanomaterials with peroxidase activity have received a lot of
attention in biomedical applications for the past few years. Various nanomaterials such as
metal/metal oxide nanoparticles [64,65], carbon nanomaterials [66], and different metal–
organic frameworks (MOFs) [67], etc., represent excellent catalytic activities by mimicking
the functions or structures of natural peroxidase enzymes, which are widely used to oxidize
organic substrates. In this regard, a magnetic colorimetric immunoassay-based on the
oxidase activity of ceria nanospheres was developed for IL-6 detection [68]. The CeO2
nanospheres were employed to label the signal antibodies (Ab2), while Fe3O4 nanospheres
were used to immobilize capture antibodies (Ab1) (Figure 4c). In the presence of IL-6, an
immunocomplex was formed between Fe3O4-Ab1 and IL-6. After magnetic separation,
CeO2-Ab2 was included to form a sandwich complex of Fe3O4-Ab1/IL-6/CeO2-Ab2. Fol-
lowing magnetic separation and o-phenylenediamine (OPD) addition, ceria spheres with
excellent oxidase activity directly catalyzed the oxidation of substrate OPD to a stable
yellow product, 2,3-diaminophenazine (oxOPD). The absorbance of oxOPD at 448 nm was
related to the IL-6 concentration. The immunoassay showed a low LOD of 0.04 pg mL−1

and a linear range of 0.0001–10 pg mL−1.
Representative examples of recently developed colorimetric-based optical biosensors

for the detection of IL-6 have been listed in Table 3.

Table 3. Representative examples of recently developed colorimetric-based optical biosensors for the
detection of IL-6.

Type of
Biosensor Strategy of Detection LOD Linear Range Matrix Advantages Disadvantages Ref.

Colorimetric/
solution-
based

Aggregation of AuNPs
conjugated with two
complimentary
“sandwich-type” aptamers
and color change from red to
pink

1.59 µg mL−1 3.3–125 µg mL−1
A mixed
protein
solution

High specificity,
short incubation
time (5 min)

Low sensitivity,
narrow linear
range,
non-application in
the real sample, no
very obvious color
change (red to
pink)

[54]

Colorimetric/
paper-based

Immunocomplex formation
between capture antibody
on the surface of paper, IL-6,
detection antibody, and
AuNPs functionalized
anti-rabbit IgG

0.1 pg mL−1 0.001–10
pg mL−1

Whole
blood

High sensitivity,
wide linear range,
application in
complex matrix of
blood, short assay
time (17 min),
smartphone-based
signal
quantification

The need for
several washing
steps like ELISA,
which makes it
difficult to use

[56]

Colorimetric/
LFIA

Immobilization of anti-IL-6
antibody-AuNPs conjugates
onto conjugated pad,
anti-mouse IgG monoclonal
antibody and the quality
control antibody at the T and
C lines, respectively

cutoff
level of 76.85 pg mL−1 nr * Serum

High specificity,
easy to use,
quantitative results
due to combination
with strip reader

Non-determination
of LOD and linear
range

[61]

Colorimetric/
LFIA

Immobilization of IL-6
antibody–AuNPs conjugates
onto conjugated pad,
biotinylated polyclonal IL-6
antibody and goat
anti-mouse IgG antibody at
the T and C lines,
respectively, and silver
amplification

5 pg mL−1 5–1000 pg mL−1 Serum

High sensitivity
and specificity,
wide linear range,
short detection
time (15 min)

Complexity of use
due to the use of
silver amplification
technique

[33]
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Table 3. Cont.

Type of
Biosensor Strategy of Detection LOD Linear Range Matrix Advantages Disadvantages Ref.

Colorimetric/
solutions-
based

Sandwich immunocomplex
formation of
Fe3O4-Ab1/IL-6/CeO2-Ab2
and oxidase activity of CeO2
nanospheres to catalyze the
oxidation of OPD to yellow
product oxOPD

0.04 pg mL−1 0.0001–10
pg mL−1 Serum

High sensitivity
and specificity,
wide linear range,
satisfactory
reproducibility,
acceptable stability,
and good accuracy

Several incubation
steps and
time-consuming
procedure

[68]

Colorimetric/
LFIA

Anti-IL-6 antibodies
conjugated to AuNPs on
conjugate pad, anti-IL6 and
anti-mouse antibodies on T
and C lines, respectively

0.38 ng mL−1 1.25–9000
ng mL−1 Plasma

Good sensitivity,
high specificity,
wide linear range,
easy to use, good
reproducibility,
good shelf-life (6
months), short
detection time (17
min)

- [69]

Colorimetric/
vertical flow
assay

Spotting of anti-IL-6 capture
antibody on nitrocellulose
membrane, addition of IL-6,
biotinylated anti-IL-6
detection antibody in
AuNPs diluent and
streptavidin-conjugated
AuNPs

10 pg mL−1 in buffer
3.2 pg mL−1 in serum

10–10,000
pg mL−1 Serum

High sensitivity
and specificity,
wide linear range,
high accuracy and
reproducibility

Semi-quantitative
results,
requirement of
several steps in
addition of
reagents

[70]

Colorimetric/
LFIA

Application of selenium
nanoparticles as labels for
conjugation with anti-IL-6
detection antibody

0.1 ng mL−1 - -

Good sensitivity,
high specificity,
good
reproducibility

Non-determination
of linear range,
non-application in
real samples

[71]

* nr: not reported.
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and (c) sandwich immunoassay-based on magnetic nanoparticles and oxidase activity of ceria
nanospheres. Reprinted from Refs. [33,54,68], respectively, with permission.

4. Fluorescence-Based Optical Biosensors

Fluorescence biosensors with high sensitivity are promising sensing platforms in
clinical monitoring. Fluorescence is a two-step chemical phenomenon that involves the
absorption of shorter wavelength light by a fluorophore (excitation), followed by the release
of some of the absorbed energy as longer wavelength light (emission) [72]. Fluorescence-
based biosensors are advantageous because of several key aspects such as sensitivity,
signal detection limits, and accuracy [73]. Organic dyes are generally employed as tags
in fluorescence-based detection methods due to easy availability, low cost, and more
versatility. Most generally used fluorescent dyes are based on cyanine structure or xanthene
dyes. Fluorescein and rhodamine are the first organic dyes used for fluorescent labelling.
Despite the many advantages of these dyes, they suffer from some weaknesses such as light
bleaching, pH sensitivity, and hydrophobicity [74]. With the emergence of nanotechnology
and the production of nanomaterials with fluorescence properties such as quantum dots
(QDs), carbon nanotubes (CNTs), carbon dots (CDs) and up-conversion nanoparticles,
many challenges of these organic materials were overcome [73,74]. One of the interesting
materials used as a fluorescent tag is Europium(III) particles with unique luminescence
characteristics, such as long fluorescence lifetimes, narrow emission spectra, large shifts,
and a very sharp emission profile with a full width at half maximum of about 10 nm,
and emission from atomic states [75]. All these features contribute to high sensitivity and
accuracy in an assay. Using these excellent properties, Eu nanoparticles (EuNPs) were
used as fluorescent label in combination with a time-resolved LFIA for IL-6 detection [32].
For developing this double-antibody sandwich assay, IL-6 monoclonal antibody (mAb)
and chicken IgY were conjugated with EuNPs, and a mixture of them (IL-6-mAb-EuNPs
and chicken IgY-EuNPs) was dispensed onto conjugate pad. A second IL-6 mAb-2 and
anti-chicken IgY were sprayed onto the nitrocellulose membrane as the T line and the C line,
respectively. Upon addition of sample containing IL-6 and its migration toward conjugate
pad, the immunocomplex of IL-6-mAb-EuNPs/IL-6 was formed. After reaching this
complex to the T line, it was captured by the IL-6 mAb-2 and formed IL-6-mAb-EuNPs/IL-
6/IL-6 mAb-2. Chicken IgY-EuNP complexes continued to move along the membrane
and were captured in the C line by the anti-chicken IgY to form Chicken IgY-EuNPs/anti-
chicken IgY complex, which served as the internal control. After the completion of the
reaction, the test strip was analyzed with a portable fluorescence reader by measuring the
fluorescence intensity of the T line (IT) and the C line (IC). The concentration of IL-6 in the
samples was directly proportional to the ratio of IT/IC. This test strip showed a LOD of
0.37 pg mL−1 with a wide linear range of 2–500 pg mL−1.

Carbon quantum dots (CQDs) are considered as a new class of fluorescence nano-
materials. They show a lot of unique advantages compared to traditional fluorescent
nanomaterials, such as excellent photostability, good solubility, low toxicity, and consid-
erable biocompatibility, as well as their small size [76]. Due to these advantages, CQDs
are considered interesting fluorescent labels and ideal alternatives to conventional fluores-
cent compounds, which can be used in a variety of detection purposes such as biomarker
monitoring. The two main drawbacks of CQDs including low performance and trace of
functional groups on their surface restrict the fluorescence efficiency and application of
CQDs [77]. Doping of CQDs by nitrogen, sulfur, and other elements, can improve their
spectral characteristics such that N-doped CQDs (N-CQDs) and S-doped CQDs (S-CQDs)
exhibit higher fluorescence intensity [78]. Using N-CQDs, Mahani et al. (2022) developed
an aptasensor based on the Forster resonance energy transfer (FRET) phenomenon for IL-6
detection as a biomarker of COVID-19 (Figure 5a) [79]. FRET is the transfer of energy from a
fluorescent donor in an excited state to an acceptor in the ground state. This phenomenon is
widely used in fluorescence sensing assays due to its advantages in investigating molecular
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interactions in real time, being relatively simple and easy to use, and having high sensitivity
and spatial resolution [79]. For the fabrication of aptasensor, a DNA aptamer was modified
with N-QCDs at one end and AuNPs at another end to prepare a donor–quencher pair.
In the absence of IL-6, the AuNPs acting as acceptors were effectively located close to
the donors (N-CQDs), which led to a reduction in the emission intensity of the N-CQDs
resulted from their highly overlapping spectra. The interaction of IL-6 with the detection
probe caused aptamers to preferentially bind to IL-6, resulting in structural and conforma-
tional changes that dissociates N-CQDs from aptamers, such that fluorescence emission
was recovered. The designed aptasensor with high sensitivity and specificity showed a
LOD of 0.82 pg mL−1 and a linear range from 1.5 to 5.9 pg mL−1.

Different strategies can be used to increase the fluorescence intensity in response to
minimum detectable concentration, such as conjugate decoration with several fluorescent
molecules [80] and the use of a composite tapered optic fiber [81].

Fiber optic cables, as one of the components of biosensors, are used as extenders of sensor
amplifier systems to increase their sensitivity to signals, especially in inaccessible areas, and
increase the range of the sensor. Fiber optic biosensors can be used both invasively and non-
invasively in medical applications. They have been employed in different applications such as
gas, tissue, or body fluid analysis, as skin electrodes, as catheters, and as endoscopic tools [82].
Fiber optic biosensors are distinguished from other biosensors by the optical-based transducer
that utilizes absorption, reflectance, luminescence, refractive index, and scattering of light to
transform the signal for processing (Figure 5b). In this regard, a fluorescent immunosensor on
optical fiber was designed for the multiplex detection of cytokines, including interleukin-1β
(IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). To develop the biosensor, the streptavidin-
modified fiber surface was coated with biotinylated captured antibodies against three different
cytokines. On the other hand, three different fluorescent magnetic beads, including fluorescent
green magnetic beads, fluorescent orange magnetic beads, and fluorescent red magnetic beads,
were used for the conjugation with detection antibodies. After complex formation between
immobilized antibodies, cytokine molecules, and conjugated detection antibodies, the final
fiber biosensor was imaged using a laser scanning confocal microscope. This multiplex
immunosensor was applied for the detection of three cytokines with the LOD of 12.5 pg mL−1

and a linear range of 12.5–200 pg mL−1 [83].
A dual amplification strategy, including the application of polydopamine thin film as

a protein linker in combination with surface plasmon-enhanced fluorescence spectroscopy
(SPFS), was used for sensitive detection of IL-6 [84]. In this platform, PDA thin film was
deposited on glass substrate coated with gold (Figure 5c). The captured antibody was
directly attached to the sensor surface without using any coupling agent. Then, IL-6 was
detected by SPFS using a sandwich assay format upon addition of secondary detection
antibody labelled with Alex Fluor 647. The use of PDA for functionalization of the sensor
chip increased the sensitivity and inhibited nonspecific adsorption of the detection antibody
onto the sensor surface. A LOD of 2 pg mL−1 with a linear range of 2–2372 pg mL−1 was
obtained.

Representative examples of recently developed fluorescence-based optical biosensors
for the detection of IL-6 have been listed in Table 4.

Table 4. Representative examples of recently developed fluorescent-based optical biosensors for the
detection of IL-6.

Type of
Biosensor Strategy of Detection LOD Linear Range Matrix Advantages Disadvantages Ref.

Fluorescence/LFIA

A double-antibody
sandwich
immunofluorescent
assay based on EuNPs
combined with lateral
flow immunoassay

0.37 pg mL−1 2–500 pg mL−1 Serum

High sensitivity
and specificity,
wide linear range,
high reliability,
acceptable
reproducibility,
short detection
time (15 min)

Need a reading device [32]
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Table 4. Cont.

Type of
Biosensor Strategy of Detection LOD Linear Range Matrix Advantages Disadvantages Ref.

Fluorescence/FRET

A FRET-based
aptasensor using
nitrogen-doped carbon
quantum dots
and gold nanoparticles

0.82 pg mL−1 1.5–5.9 pg mL−1 Serum
High sensitivity
and specificity,
simple procedure

Narrow linear range,
long incubation time (1
h), Need
spectrofluorimeter to
read the results, no
evaluation of
reproducibility

[79]

Fluorescence/fiber
optic

Coating of
streptavidin-modified
fiber surface with
biotinylated capture
antibodies and
conjugation of detection
antibodies with three
different fluorescent
magnetic beads

12.5 pg mL−1 12.5–200 pg mL−1 Serum High sensitivity
and specificity

Narrow linear range,
long incubation time (2
h), need a microscope to
obtain results and then
perform image analysis,
no evaluation of
reproducibility

[83]

Fluorescence/SPFS

Sandwich immunoassay
based on captured
antibody
immobilization on PDA
layer and its complex
formation with IL-6 and
fluorescent labelled
detection antibody

2 pg mL−1 2–2372 pg mL−1 Serum
High sensitivity
and specificity,
wide linear range

Requirement of several
steps in addition of
reagents, time
consuming process, no
evaluation of
reproducibility

[84]

Fluorescence/LFIA

Quantum dots
(QDs)-based LFIA strip
by conjugating
CdSe/ZnS QDs to the
IL-6 antibody and
spraying onto conjugate
pad, immobilization of
captured antibody IL-6
mAb2 and rabbit
anti-mouse IgG onto T
and C lines, respectively

1.995 pg mL−1 10–4000 pg mL−1 Serum

High sensitivity
and specificity,
wide linear range,
simple analysis,
high accuracy, high
stability of strips at
high temperature,
high precision and
acceptable
reproducibility,
short detection
time (18 min)

Need a reading device [85]

Fluorescence/LFIA

Application of CdSe
QDs as label for
conjugation with
detection antibody and
utilization of two image
processing software for
quantification of results

1.38 and 2.28 nM 0–20 nM Serum

High sensitivity
and selectivity,
good
reproducibility,
multiplex assay

Narrow linear range,
need a reading device [86]

Fluorescence

Quenching of
aptamer–fluorophore
conjugate by adsorption
to the graphene oxide
outer layer of graphene
oxide/nickel/platinum
nanoparticle
micromotor (MM) in
the absence of IL-6 and
fluorescence recovery
by the aptamer-
fluorophore separating
from the MMs in the
presence of IL-6

0.02 pg mL−1 0.07–1000 pg mL−1 Serum

High sensitivity
and specificity,
wide linear range,
the need for small
sample volume

No evaluation of
reproducibility, long
incubation time
(30 min)

[87]
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Figure 5. A schematic representation of (a) A FRET-based aptasensor for IL-6 detection; (b) a fiber-based
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thin film as protein linker in combination with SPFS technique. Reprinted from Refs. [79,83,84],
respectively, with permission.

5. Surface-Enhanced Raman-Scattering-Based Optical Biosensors

Raman Spectroscopy is a non-destructive analytical technique which provides a unique
vibrational fingerprint spectrum of a molecule [88]. The principle of detection is the
interaction of light (from a high intensity laser light source) with the chemical bonds within
a material. Since the Raman phenomenon results from inelastic scattering of light, the
spectral signal intensity is very weak, and this major drawback prevents the technique
from being used for detection applications [88]. This limitation was overcome by the
discovery of the Surface-Enhanced Raman Scattering (SERS) phenomenon, where a low
Raman cross-section can be enhanced when the molecules to detect are adsorbed on rough
metal surfaces or by nanostructures [89]. Therefore, SERS is known as a powerful technique
with high efficiency to enhance the Raman signal of chemical and biological species, and is
capable of observing and identifying very low concentration of molecules, which paves
the way for single-molecule sensing [90,91]. Due to the high sensitivity of SERS-based
assays, this technique can be extensively used for detection of very low quantities of
desired analytes in medical diagnoses [92,93], the food industry [94,95], and environmental
monitoring [96,97]. SERS-based detections can be performed in two formats, direct and
indirect. Direct detection is based on ability of SERS technique for providing unique
molecular fingerprints of molecules adsorbed on a nanostructured metallic surface, as
well as other types of nanomaterials [98]. However, direct detection of some molecules
such as proteins by the SERS technique is very difficult, due to their low Raman scattering
cross-section and the lack of the presence of the chromophore moiety in the molecular
structure to generate a strong SERS signal [34]. Therefore, the combination of highly
specific biomolecules (e.g., antibodies and aptamers) with SERS for indirect sensing can
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greatly improve the use of the SERS technique in highly selective quantification of such
analytes [99]. In the indirect SERS assay, two strategies can be used: label-based and label-
free. The label-based strategy is considered an indirect method that relies on the use of
SERS tags. The use of SERS labels results in highly sensitive detection of biological analytes
by reporting the Raman spectrum of the reporter molecule in close proximity to the SERS
substrate [100]. Compared to the label-based strategy, the label-free approach does not
require a Raman reporter molecule and can directly report the intrinsic SERS fingerprint
relies on the mutual interaction of target molecule with the SERS substrate [101].

Combining SERS with aptamer as recognition element can be a very promising method
for label-free, sensitive, and specific detection of various target molecules. The principle
of label-free detection using the aptamer itself as an intrinsic Raman reporter is as fol-
lows: upon interacting with the target molecule, the aptamer folds into a different three-
dimensional configuration, such as a hairpin or G-quadruplex, and this conformational
changes close the surface of the SERS substrate results in a corresponding change in output
Raman signals, with which the analyte can be specifically measured with high sensitiv-
ity [102]. With this concept, a label-free SERS assay was developed for IL-6 detection using
an IL-6 specific aptamer attached to the AuNPs array as a sensitive probe [102]. For the
design of this aptamer–SERS biosensor, the original sequence of aptamer was modified with
extra thymine, guanine, and adenine bases near thiol linker (Figure 6a). The T fragment
functioned as a spacer between the surface of AuNPs and the aptamer to provide specific
flexibility and inhibit non-specific adsorption of the aptamer, while the SERS intensity ratio
of G and A operated as an output signal in the aptamer-IL-6 interaction. Upon addition
of aptamer into serum containing IL-6, the 5′ loop of the aptamer was opened and the
aptamer could adopt a vertical stretched position, causing a decrease in the adenine signal
at 736 cm−1. Therefore, IL-6 could be detected by observing the change in the I660/I736 ratio
of the SERS intensity derived from the guanine and adenine bases in the aptamer sequence.
This label-free assay exhibited a LOD of 0.8 pM and a linear range of 10−12–10−7 pM. It
was applied to detect IL-6 in mice serum with high selectivity.

Since the application of a SERS tag results in a highly sensitive detection, indirect label-
based SERS can be useful for analytes where detection of small amounts is of particular
importance. Among these analytes is IL-6, which usually requires a detection limit of ppb.
For this reason, most of SERS-based IL-6 detection are performed with the aid of SERS tags.
For example, Xie et al. (2023) developed a SERS-based sandwich immunoassay for the
detection of IL-6 in serum using Fe3O4 nanoring, silver nanoparticles (AgNPs), AuNPs,
and 4-mercaptobenzoic acid (4-MBA) as the SERS signal molecule (or SERS tag) [103].
As shown in Figure 6b, a Fe3O4 nanoring with a high specific surface area and strong
magnetic property was functionalized with AuNPs and specific antibodies, and used as
capture substrate. AgNPs modified with 4-MBA and antibodies were used as probe. Upon
addition of the target molecule to the solution, it bound to antibodies in both probe and
capture substrates to form a sandwich-like structure. SERS detection was performed after
enrichment by ferromagnetism, and detection of IL-6 based on the signal of the probe
molecules was successfully carried out. A LOD of 0.028 pg mL−1 and the linear range
of 0.1–1000 pg mL−1 was obtained. The proposed immunoassay exhibited very high
sensitivity and selectivity, and only required a very small amount of sample.

In another study, a self-calibrating aptamer biosensor using a recognition-release
mechanism was developed for IL-6 detection [34]. For the fabrication of aptasensor, AuNPs
functionalized with mercaptobenzonitrile (MBN) Raman tag were coated with AgNPs to
obtain a Au@MBN@AgNPs core–shell structure (Figure 6c). Then, the core–shell struc-
ture was modified with IL-6 aptamer (ssDNA1) and complementary pairing with the
complementary strand (ssDNA2) labeled with cyanine 3 (Cy3). In the presence of IL-6,
ssDNA1 could specifically bind to IL-6 and release ssDNA2-Cy3 conjugate to attenuate
Cy3 signaling. The internal standard molecule MBN with a signal in the biological Raman
quenched region (1800–2800 cm−1) was embedded into the core–shell structure in order
to minimize the error caused by the experiment, which could prevent the effect of Raman
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signals of different biomolecules in the complex environment. Therefore, the stability of
the assay results was improved using the internal standard molecule as the calibration
peak. Using this strategy, a minimum LOD of 0.056 pg mL−1 and a linear range of 10−9 to
10−5 mg mL−1 was obtained.
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tection of IL-6; (b) a sandwich-based immunoassay using Fe3O4 nanoring for IL-6 detection; and (c) a
SERS-based self-calibrating aptasensor using a pair of Raman tags. Reprinted from Refs. [34,102,103],
respectively, with permission.

Dual-mode sensors are very interesting for the joint detection of disease biomarkers by
SERS or other types of sensing techniques. Generally, in SERS-based assays for multiplex
detection, application of more than one Raman reporter molecules is necessary. In this
regard, an important point to consider is selection of SERS probes with characteristic peaks
in the Raman-silent region that do not interfere with each other. Based on this concept,
a SERS sandwich-like method combining multisite boronic acid-functionalized magnetic
nanomaterials (MBMNPs) and interference-free probes, including 4-mercaptobenzonitrile
(4-MP) and ethynylbenzene (EB) reporters conjugated with antibodies as bio-capture
and bio-recognition elements, was developed for joint detection of the sepsis biomarkers
IL-6 and procalcitonin (PCT) [104]. For both core–shell interference-free SERS probes,
AuNPs and highly SERS-active silver were selected as the substrates. The IL-6 antibody
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was immobilized on the surface of Au@4-MP@Ag, while PCT antibody was bound by
dopamine quinone on the Au@Ag@polydopamine (PDA)-EB surface. The 4-MP and
EB showed characteristic peaks at 2224 cm−1 and 1987 cm−1,respectively, in the Raman-
silent region. Upon addition of target analytes, a sandwich complex was formed between
MBMNPs, target molecules, and Raman probes Au@4-MP@Ag and Au@Ag@PDA-EB.
The ultrasensitive and accurate multi-target joint detection of sepsis was carried out by a
portable Raman spectrometer. The SERS immnosensor exhibited the LODs of 0.584 and
2.99 pg mL−1 for IL-6 and PCT, respectively. The response curves were obtained in the
range of 1–5000 pg mL−1 for IL-6 and 10 pg mL−1–50 ng mL−1 for PCT.

Representative examples of recently developed SERS-based optical biosensors for the
detection of IL-6 have been listed in Table 5.

Table 5. Representative examples of recently developed SERS-based optical biosensors for the
detection of IL-6.

Type of
Biosensor Strategy of Detection LOD Linear Range Matrix Advantages Disadvantages Ref.

SERS/label free

Aptamer-functionalized
AuNPs array based on
analyzing the change in the
I660/I736 ratio of the SERS
intensity derived from the
guanine and adenine bases
in the aptamer sequence

0.8 pM 10−12–10−7 pM Mice
serum

High sensitivity and
specificity, wide
linear range,
label-free assay, good
reproducibility

The need for
Raman
spectroscopy
device,
short-term
stability of SERS
substrate

[102]

SERS/label-
based

A sandwich immunoassay
based on complex formation
between Au@Fe3O4
nanoring functionalized
with antibodies, IL-6, and
AgNPs functionalized with
4-MBA and antibodies

0.028 pg mL−1 0.1–1000 pg mL−1 Serum

High sensitivity and
specificity, wide
linear range, good
stability of Ag@
4-MBA@Antibody

Long incubation
time (30 min), no
evaluation of
reproducibility

[103]

SERS/label-
based

A self-calibrating aptasensor
using immobilization of
aptamer and its
complimentary strand
modified with Cy3 on the
surface of
Au@MBN@AgNPs

0.056 pg mL−1 10−9–10−5 mg mL−1 Serum

High sensitivity and
specificity, wide
linear range, excellent
accuracy and
reliability

No evaluation of
reproducibility,
long incubation
time (90 min)

[34]

SERS/label-
based

Combining multisite
functionalized magnetic
nanomaterials with
interference-free SERS
nanotags 4-MP and EB for
multi-target detection of IL-6
and PCT

0.584 pg mL−1 1–5000 pg mL−1 Serum

High sensitivity and
specificity, wide
linear range, high
stability and
reproducibility of
SERS probe

Multi-step
preparation of
sample

[104]

SERS/label-
based

The core–shell nanoparticles
embedded with a Raman
reporter Au@4MBA@AgNPs
were coupled to the tracer
antibody, while the biotin
was coupled to the captured
antibody to form an
antibody–antigen–antibody
sandwich structure;
capturing of sandwich
structure by streptavidin
magnetic beads and
detection by Raman

1.6 pg mL−1 0–1000 pg mL−1 Serum

High sensitivity and
specificity, wide
linear range, short
detection time and
simple operation,
short incubation time
-5 min), good
repeatability and
precision

- [105]

SERS/label-
based

Magnetic sandwich
immunoassay using
core–shell Au@Ag
embedded with a Raman tag
and coupled with the tracer
antibody as immunoprobe,
biotin coupled with a second
antibody and magnetic bead
coated with streptavidin

0.54 pg mL−1 0–1000 pg mL−1 -
High sensitivity and
specificity, wide
linear range

No evaluation of
real samples [106]



Biosensors 2023, 13, 898 19 of 24

Table 5. Cont.

Type of
Biosensor Strategy of Detection LOD Linear Range Matrix Advantages Disadvantages Ref.

SERS/label-
based

A microfluidic system based
on sandwich
immunocomplex formation
between immobilized
antibodies against IL-6
captured on a Ag-Au
bimetallic SERS-active
surface, IL-6 and AuNPs
conjugated with Raman tag
and detection antibody

2.3 pg mL−1 0–30 pg mL−1 Plasma

High sensitivity, high
enhancement factor,
high reproducibility
and stability of SERS
substrate

Narrow linear
range [107]

6. Conclusions and Future Perspectives

IL-6 is an important biomarker involved in many diseases. Its pathological level varies
from 2.45 and 500,000 pg mL−1 depending on the biological fluid, type, and severity of
the disease. During recent years, various types of optical and electrochemical biosensors
have been developed to detect this crucial biomarker (for more information, refer to
references [10]). The main goal of all these studies has been to develop biosensors with high
sensitivity and accuracy, high selectivity, integrability, and ease of use, and applicability
in complex biological fluids. An important factor to consider here is that the detection
limit of the developed biosensor should be within the range of prognostic levels of IL-
6. Moreover, the sensor should be able to be used in complex biological fluids easily,
without the need for complex sample pre-treatment and without interfering with interfering
agents. Currently, apart from ELISA-based diagnostic kits, the only other commercialized
method for IL-6 detection is the immunofluorescence assay (e.g., AccuDx CQ IL-6 from
Accurex Co.(Mumbai, India) or RapidFor from Vitrosens Co. (Istanbul, Turkey)), which is a
successful example of optical biosensors based on LFIA. This fast test kit is able to detect
IL-6 in human serum, plasma, whole blood and peripheral blood samples within 15 min.
The AccuDx CQ IL-6 sandwich LFIA test uses an anti-human IL-6 monoclonal antibody
I conjugated with fluorescence latex coated on the junction of nitrocellulose membrane
and sample pad, and another anti-human IL-6 monoclonal antibody II coated on the test
line. The fluorescence intensity of test line increases in proportion to the amount of IL-6 in
sample. After sample addition and immunoreaction, the test strip is inserted into AccuDx
CQ Immunofluorescence Quantitative Analyzer to read results. The concentration of IL-6
in sample is measured and displayed on the screen. The value is stored in AccuDx CQ
and available for downloading. The results can be easily transmitted to the laboratory or
hospital information system. However, the assay suffer from a narrow dynamic range.
As shown in Tables 1–4, by comparing all the types of optical biosensors developed for
the detection of IL-6, it can be concluded that almost all of them have good sensitivity,
but in the meantime, SERS-based biosensors, in addition to having the lowest detection
limit, also show a wider dynamic range. Although Raman is a new technique that has
received a lot of attention from researchers in recent years, and it still faces challenges
such as low reproducibility and difficulty in applying it to biological samples, it can be
hoped that by removing these obstacles, this method become one of the best detection
techniques with high sensitivity and wide dynamic range. In this regard, miniaturization
and development of portable Raman systems in order to facilitate the diagnosis process in
the clinic, emergency room, or even at home is of particular importance. Among different
strategies of SERS-based biosensors, label-based methods (using Raman tag) have been
widely used and only a handful of label-free and fingerprint-based methods have been
investigated, while label-free methods can be less expensive, simpler, and faster compared
to using Raman labels. Concerning other types of optical biosensors, fluorescent biosensors
with high sensitivity are promising in response to minimum detectable concentration. These
biosensors show high sensitivity and stability by using the unique features of fluorescent
nanomaterials and have a high potential for commercialization.
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In general, by reviewing the literature, it can be observed that a few studies have been
performed in the field of IL-6 detection, and there is still a lot of work to be performed
in the field in terms of both the variety of detection methods and the improvement of
sensitivity and dynamic range. For example, in recent years, there is no research on
the detection of IL-6 using chemiluminescence biosensors. On the other hand, it seems
that the methods based on lateral flow immunoassay and SERS are more welcomed by
researchers. In relation to the recognition element, antibodies have been the most used
elements in biosensors for IL-6 detection, while in addition to antibody and aptamer,
other recognition elements such as molecularly imprinted polymer (MIP) with lower cost,
reusability, and easy functionalization can be integrated into sensor platform instead of
widely used antibodies or even aptamers.

Given the common role of IL-6 in many pathologies, diagnosis based on IL-6 levels
alone is generally impractical. The design and development of multiplexed sensors for
the diagnosis of specific diseases facilitates such diagnosis. In this regard, multiplexed
sensors can combine with machine learning methods in order to facilitate fast and accurate
interpretation of sensor outputs. Machine learning is a subfield of artificial intelligence
that offers another method to obtain insight into complex data. Machine learning-assisted
biosensors can be applied in complex environments and without having the features of
a laboratory study [108]. Machine learning techniques such as artificial neural networks
(ANN) are emerging as promising approaches for data analysis, and can be integrated
with sensors to improve disease diagnosis and prognosis. Due to the variable level of IL-6,
as a common biomarker in many diseases, in different people and biological fluids, the
application of machine learning methods to analyze the signals of IL-6 sensors improves
the interpretation of such complicated results. ANNs are a subfield of deep learning tech-
niques that employ mathematical operations and self-learning methods to extract beneficial
information from data sets. Moreover, by integrating machine learning analysis tools and
multiphotonic effects to increase applications in optical biosensors, the potential exists for
better interpretation of biological factors. In conclusion, the integration of optical biosensors
for IL-6 with advanced machine learning algorithms provides significant advantages in
terms of rapid, accurate, and reliable disease monitoring and diagnosis.
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