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Abstract: Neurotransmitters are chemical compounds released by nerve cells, including neurons,
astrocytes, and oligodendrocytes, that play an essential role in the transmission of signals in
living organisms, particularly in the central nervous system, and they also perform roles in
realizing the function and maintaining the state of each organ in the body. The dysregula-
tion of neurotransmitters can cause neurological disorders. This highlights the significance
of precise neurotransmitter monitoring to allow early diagnosis and treatment. This review
provides a complete multidisciplinary examination of electrochemical biosensors integrating
nanomaterials and nanotechnologies in order to achieve the accurate detection and monitoring of
neurotransmitters. We introduce extensively researched neurotransmitters and their respective
functions in biological beings. Subsequently, electrochemical biosensors are classified based on
methodologies employed for direct detection, encompassing the recently documented cell-based
electrochemical monitoring systems. These methods involve the detection of neurotransmitters
in neuronal cells in vitro, the identification of neurotransmitters emitted by stem cells, and the
in vivo monitoring of neurotransmitters. The incorporation of nanomaterials and nanotech-
nologies into electrochemical biosensors has the potential to assist in the timely detection and
management of neurological disorders. This study provides significant insights for researchers
and clinicians regarding precise neurotransmitter monitoring and its implications regarding
numerous biological applications.

Keywords: electrochemistry; neurotransmitter; nanomaterials; neurological diseases; nanobiosensors

1. Introduction

Neurotransmitters are chemical substances secreted from nerve cells. They serve as
transporters, and play an important role in transmitting signals within nerves in living
organisms, including the central nervous system (CNS), and in realizing the function and
maintaining the state of each organ. A number of neurotransmitters, including dopamine
and glutamate, play many roles in living organisms [1,2]. Additionally, these neurotrans-
mitters contribute to the maturation and development of the brains of living organisms [3].
When a problem occurs in the production and transmission of neurotransmitters, it can
potentially have fatal consequences in the signal transmission process through nerves, and
may cause cranial nerve-related diseases [4,5]. Therefore, from a biomedical perspective,
the accurate monitoring of neurotransmitter levels in the nervous system is required for the
early prediction and treatment of cranial diseases, such as Parkinson’s, Alzheimer’s, and
Huntington’s [6,7]. In addition, other recent reports have demonstrated that these neuro-
transmitters are associated with cancer occurrence [8]. Furthermore, the precise monitoring
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of neurotransmitter levels is advantageous, in that it is capable of providing a strategy for
stem cell therapy, because it can be used to accurately monitor the differentiation stages of
neural stem cells [9,10].

From this point of view, various biosensors based on fluorescence, Raman spec-
troscopy, and electrochemical techniques have been developed for the accurate monitor-
ing of neurotransmitters [11–13]. Among these biosensing techniques, electrochemical
biosensors have various advantages, including (among others) rapid response, sensitiv-
ity, selectivity, and multiple detection properties [14]. In the case of fluorescence analysis,
invasive cell staining processes are inevitably required, and expert operational skills are
generally necessary to conduct Raman spectroscopic analysis for the monitoring of neu-
rotransmitters. Additionally, in contrast to other techniques, electrochemical biosensors
can be developed based on different electrochemical techniques, such as cyclic voltam-
metry (CV), differential pulse voltammetry (DPV), and amperometry techniques. Fur-
thermore, electrochemical biosensors can utilize various biomolecules, such as enzymes,
proteins, and nucleic acids to detect numerous different target molecules, including
small chemicals, nucleic acids (microribonucleic acid (miRNA), short interfering RNA
(siRNA), viral deoxyribonucleic acid (DNA)/RNA, etc.), and neurotransmitters [15,16].
Moreover, using electrochemical techniques, noninvasive monitoring of cellular states
based on the extracellular redox reactions becomes possible [17,18]. This noninvasive
monitoring approach can be used directly for the development of neuronal stem cell
therapy products by precisely monitoring the differentiation of neural stem cells, which
is difficult to perform by using other types of technique.

However, biomolecule-assisted electrochemical biosensors for neurotransmitter de-
tection are limited in terms of sensitivity and selectivity, owing to the low redox reaction
efficiency and increased noise response. To address these problems, nanomaterials and
nanotechnologies are frequently incorporated into electrochemical biosensors to improve
their sensitivity and selectivity characteristics via (among others) the provision of large
surface areas, an excellent template, and enhanced electron transfer [19,20]. Based on
these studies, biosensors—which can accurately detect neurotransmitter changes with-
out cells—or highly sensitive electrochemical biosensors—which can directly measure
neurotransmitters released from cells—are being developed. Therefore, approaches that
promote the comprehensive understanding and the development of biosensors capable
of monitoring neurotransmitters based on electrochemical technology are necessary for
early diagnosis and treatment of neurological diseases and the development of neural
stem cell therapeutics.

In this review, we provide interdisciplinary information about electrochemical
biosensors incorporating nanomaterials and nanotechnologies that enable the accurate
detection or monitoring of neurotransmitters (Figure 1). First, extensively studied
neurotransmitters that can be monitored electrochemically are presented, and their
roles in living organisms are described. Subsequently, electrochemical biosensors that
can detect neurotransmitters directly, regardless of living cells, are discussed; these
biosensors are categorized on the basis of their respective electrochemical techniques in
recently reported studies. Lastly, cell chips that are able to monitor the neurotransmitters
derived from living cells are outlined; these chips can be categorized as either disease-
related neurotransmitter detection biosensors or stem cell-related neurotransmitter
detection biosensors.
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Figure 1. Schematic of electrochemical nanobiosensors used for neurotransmitter detection. (i) De-
tection of neurotransmitters is important, since a problem in the production and transmission of
neurotransmitters could potentially have fatal consequences in the signal transmission process in
nerves and may cause cranial nerve-related diseases. To achieve monitoring of (ii) the neurotransmit-
ters sensitively and selectively, (iii) various nanomaterials and nanotechnologies have been applied
in the development of electrochemical biosensors. Additionally, utilizing fabricated biosensors, the
neurotransmitters in (iv) neuronal cells, stem cells, and animal models can be monitored.

2. Neurotransmitters for Early Diagnosis and Pathophysiological Monitoring

Neurotransmitters play a role as signal transmitters among connected nerve cells,
mediate the occurrence of various diseases, and maintain a healthy body state [21,22].
Numerous neurotransmitters in the forms of monoamines, amino acids, peptides, purines,
or gasotransmitters (a gas neurotransmitter form) are being studied as detection targets.

First, among the monoamine-type neurotransmitters, dopamine is one of the most
extensively researched neurotransmitters. Dopamine is normally found in the CNS of
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living organisms and is one of the catecholamine families that has several important
functions in the body, including motor control, motivation, and reinforcement, with
important functional associations with the immune system [23]. The dopamine can
be used in enzymatic reactions such as the reaction with dopamine ß-hydroxylase
(DBH), or it can be electrochemically reacted with novel metals such as gold and silver.
As a result of these reactivities of dopamine, it has been extensively studied as the
target of electrochemical neurotransmitter biosensors [24,25]. Specifically, the non-
destructive monitoring of dopaminergic cell differentiation is possible via the direct
electrochemical reaction of dopamine, or through the use of an aptamer (which induces
a redox function capable of reacting with dopamine), thus allowing the monitoring
of cell-derived dopamine by switching between dopamine and dopamine-o-quinone
(Figure 2a) [26]. Additional dopamine roles have recently become known, such as
the regulation of inflammation and the activation of T-cells, thus establishing it as
the most attractive neurotransmitter in the biosensor field [27]. Another well-known
neurotransmitter in the form of a monoamine is serotonin. Serotonin, normally found
in platelets and the CNS, is related to various physiological functions, such as memory,
motor control, and learning, and is involved in inflammation and immunity [28,29]. In
addition to these, there is acetylcholine, which is a monoamine-type neurotransmitter
that plays a role in learning, memory, and muscle movement. Furthermore, acetyl-
choline is related to vagus-nerve-induced T-cell immunomodulation (Figure 2b) [30].
Acetylcholine is suitable for developing biosensors because it can react with acetyl-
cholinesterase in an enzymatic manner through the conversion of acetylcholine into
choline and acetic acid [31]. For instance, in the presence of acetylcholine and water, an
acetylcholinesterase can degrade the acetylcholine into choline and acetic acid, follow-
ing which the produced acetic acid is further converted into acetate and hydrogen ions.
The production of these ions via the detection of acetylcholine by acetylcholinesterase
can be easily measured using electrochemical techniques [32]. In addition to this, other
monoamine-type neurotransmitters, such as catecholamine and norepinephrine, are
being studied as biosensor targets [33,34].

Among the neurotransmitters that take the form of amino acids, glutamate is
being studied extensively. Glutamate is distributed extensively in brain tissue, and
at a higher concentration than other amino acids, and performs an important role in
neurotransmission in the CNS, involving cellular metabolic pathways such as the urea
and Krebs cycles [35]. Using glutamate oxidase or glutamate dehydrogenase (GLDH),
electrochemical detection of glutamate can be easily achieved; accordingly, this area has
been extensively studied, and numerous glutamate electrochemical biosensors have
been reported [36]. For example, GLDH was immobilized on the poly(amidoamine)
dendrimer-encapsulated platinum nanoparticles and carbon nanotubes (CNTs) to
achieve its detection in an electrochemical manner (Figure 2c) [37]. Additionally,
there are other attractive amino-acid-type neurotransmitters, including glycine and γ-
aminobutyric acid (GABA) [38,39]. As the peptide form of neurotransmitters, opioids,
which are involved with the release of other neurotransmitters (including dopamine,
acetylcholine, and norepinephrine) during neurotransmission in the CNS, have been ex-
tensively studied [40]. As such, the real-time monitoring of various neurotransmitters
is very important from a biomedical point of view in order to diagnose neurological dis-
eases and determine appropriate therapies in early disease stages. To achieve this goal,
various nanomaterials and nanotechnologies are being used to improve the accuracy
of electrochemical neurotransmitter biosensors.
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Figure 2. Representative neurotransmitters and their detection for early diagnosis and pathophysio-
logical monitoring. (a) Electrochemical dopamine detection achieved via the conversion between
dopamine and dopamine-o-quinone (reprinted with permission from [26]; Copyright © 2021 by the
authors. Licensee: MDPI). (b) Role of acetylcholine in the immunomodulation by T cells (reprinted
with permission from [30]; Copyright © 2019, The Association for the Publication of the Journal
of Internal Medicine). (c) Electrochemical glutamate biosensor composed of glutamate dehydroge-
nase (GLDH), poly(amidoamine) dendrimer-encapsulated platinum nanoparticles (Pt-PAMAM) and
carbon nanotubes (CNTs) (reprinted with permission from [37]; Copyright © 2007, Elsevier B.V.).

3. Recent Advances in Electrochemical Nanobiosensors for Neurotransmitter Detection

The accurate monitoring of the aforementioned neurotransmitters is of primary im-
portance in understanding the complexities of neural systems and diagnosing neurological
disorders [41]. Detailed information on neurotransmitters is presented in Table 1. Over the
years, diverse biosensors employing fluorescence, Raman spectroscopy, and electrochemical
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techniques have been developed for the detection and monitoring of neurotransmitters [42].
Among these methodologies, electrochemistry for biosensors has emerged as a highly
promising and versatile technique, thus offering numerous advantages, such as rapid
response, high sensitivity and selectivity, and multiple detection capability, for the develop-
ment of robust biosensing platforms [43].

Table 1. Representative neurotransmitters with their major functions and locations.

Neurotransmitter Function Location

Acetylcholine Muscle control
Memory

Central nervous system
Peripheral nervous system

Serotonin
Intestinal movement

Mode regulation
Sleep

Central nervous system
Gut

Dopamine
Voluntary muscle movement

Cognition
Reward pathways

Hypothalamus

Norepinephrine Fight/flight response Adrenal medulla

GABA Inhibits central nerve system Brain

Glutamate Excitatory neurotransmitter
Memory

Central nervous system
Peripheral nervous system

Despite the advantages of electrochemical biosensors for neurotransmitter detection,
certain challenges may arise with respect to sensitivity and selectivity owing to limita-
tions in redox reaction efficiency and high noise levels [44]. To address these limitations,
researchers have focused on the incorporation of nanomaterials and nanotechnologies,
aiming to enhance the sensitivity and selectivity of electrochemical biosensors [45,46].
Nanomaterials offer unique properties, such as the provision of large surface areas and
excellent templating capabilities, which improve electron transfer and overall sensor perfor-
mance. On the basis of of these efforts, researchers are actively developing electrochemical
biosensors capable of accurately detecting neurotransmitters. The outcomes of these ad-
vancements are promising for the early diagnosis and targeted treatments of neurological
disorders, as well as disease therapeutics. This chapter aims to introduce recent advances
in electrochemical nanobiosensors for neurotransmitter detection, including the method-
ologies utilized in electrochemical nanobiosensors, such as amperometric, voltammetric,
electrochemical impedance spectroscopy (EIS), and field-effect transistors (FET).

3.1. Amperometric Biosensors

Amperometric biosensors represent a major innovation in the field of neurotransmitter
detection, offering sensitive and selective analysis of these crucial signaling molecules.
By harnessing electrochemical currents, amperometric biosensors can provide real-time
measurements of neurotransmitter concentrations, thus making them invaluable tools for
understanding neural processes and diagnosing neurological disorders [47]. Amperometric
biosensors for neurotransmitter detection consist of three main components, namely, elec-
trodes, biorecognition elements, and working solutions [48,49]. The biorecognition element
is typically an enzyme that is selective to the neurotransmitter of interest. When a sample
containing the neurotransmitter is introduced to the biosensor, the neurotransmitter inter-
acts with the biorecognition element on the electrode’s surface [50]. This interaction triggers
a specific enzymatic reaction in which the neurotransmitter is either oxidized or reduced.
As a result of the enzymatic reaction, there is a change in the number of electrons on the
electrode’s surface. This change in the number of electrons leads to the generation of an elec-
trical current, which is directly related to the concentration of the neurotransmitter in the
sample [51]. By calibrating the biosensor with known standards of the neurotransmitter, the
measured current can be correlated with the actual concentration of the neurotransmitter in
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the sample. Additionally, through Faraday’s law, the number of electroactive molecules can
be directly quantitatively counted. For example, open carbon nanopipettes (CNPs) have
been employed to manipulate the translocation of vesicles of varying sizes using the orifices
of the pipettes for the electrochemical detection of catecholamine molecules from the vesi-
cles [52]. In this study, the number of catecholamine molecules was quantified on the basis
of Faraday’s law, Nmolecule = NAQ/nF. Here, NA, Q, n, and F are Avogadro’s number, the
charge calculated by integrating the current over time, the number of electrons transferred
during the catecholamine oxidation reaction (n = 2), and the Faraday constant, respectively.
For example, dopamine was detected by utilizing an amperometric biosensor composed
of a carbon dot 3-Chloropropyl-trimethoxysilane (CDs-CPTMS)-modified working elec-
trode [53]. Herein, tyrosinase (which can oxidize dopamine to dopamine-o-quinone) was
immobilized on the CDs-CPTMS-modified electrode. Based on the electrochemical reduc-
tion of dopamine-o-quinone at -0.15 V, the amount of dopamine was monitored in synthetic
blood. Owing to the electrochemical properties of CDs-CPTMS, dopamine was sensitively
and selectively detected with a limit of detection of 1.0 nM in a highly reproducible manner.
Other amperometric biosensors (consisting of tyrosinase and chitosan nanoparticles) have
been developed to detect the various catecholamines, such as dopamine, epinephrine, and
norepinephrine (Figure 3a) [54]. The synthesized chitosan nanoparticles demonstrated
highly enhanced immobilization of tyrosinase on the nanoparticles. To enhance the conduc-
tivity of the nanoparticles, graphene was incorporated into the nanocomposite matrix. The
developed tyrosinase/chitosan nanoparticles/graphene nanocomplex-based amperometric
biosensor showed improved sensitive detection of catecholamines, with a limit of detection
of 0.17 µM, owing to its large surface area and excellent conductivity. In another research
study, poly(3,4-ethylenedioxythiophene) (PEDOT)-based carbon electrodes were utilized
for the detection of acetylcholine [55]. PEDOT is conductive polymer that is extensively
used because of its high conductivity and stability. When a negative potential is applied,
anionic analytes from tetrabutylammonium hexafluorophosphate encapsulated within the
PEDOT film migrate into the poly(vinyl) chloride (PVC) membrane, leading to the reduc-
tion of the PEDOT film. This migration results in an accumulation of excess negative charge
within the PVC membrane, thereby attracting aqueous cationic ions. As a consequence,
cations like acetylcholine are detected. The specificity for acetylcholine detection over other
cationic species is conferred by the presence of the selectively added ionophore in the PVC
membrane. In this study, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin was employed as
the ionophore in the PVC membrane, a choice that had previously demonstrated excellent
selectivity for acetylcholine detection. Acetylcholine was more selectively detected than
other interfering small molecules, such as serotonin, amino acids, and ascorbic acid. In one
study, to enhance the sensitivity of amperometric biosensors for acetylcholine, platinum
nanoparticles with porous graphene oxide nanosheets were applied [56]. Owing to the high
conductivity of fabricated composites, sensitive and rapid detection of the acetylcholine
was achieved, with a limit of detection of 1 nM. Moreover, the technique of single-cell am-
perometry (SCA) has been widely used in the field of exocytosis research, as demonstrated
by several studies [57,58]. The direct detection of electrochemically active neurotransmit-
ters, such as dopamine, at the single-cell level can be achieved by the utilization of micro or
nanoelectrodes. This approach allows for the detection of neurotransmitters that are se-
creted from individual vesicles during the process of exocytosis. By conducting an analysis
of the recorded current transients resulting from the oxidation process of neurotransmitters
while a constant potential is applied to the electrode surface, it is possible to measure the
quantity of neurotransmitters released during a single exocytotic event [59].

3.2. Voltammetric Biosensors

Voltammetric biosensors operate by applying a controlled potential to the working elec-
trode, thus allowing the detection of electrochemical reactions involving neurotransmitters.
In comparison to amperometric biosensors, voltammetric biosensors offer distinct advan-
tages. One of the advantages of voltammetric biosensors compared with amperometric
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biosensors is their ability to investigate the electrochemical properties of neurotransmitters
over a range of potentials [60]. While amperometry measures the constant current produced
during an enzymatic reaction, voltammetry provides a more comprehensive view by exam-
ining how the current changes with variations in potential. This feature allows researchers
to obtain deeper insights into the complex electrochemical behavior of neurotransmitters,
thus leading to enhanced selectivity and sensitivity in their detection [26]. In the field of
voltammetric biosensors, CV and DPV stand out.

3.2.1. Cyclic Voltammetry

CV involves the sweeping of the potential back and forth, thus generating a cyclic
current response that reveals the redox behavior of neurotransmitters. This cyclic re-
sponse provides valuable information about the oxidation and reduction processes, thus
enabling the precise quantitative analysis and identification of neurotransmitters [61].
The oxidation peak observed in a voltammogram is a result of the oxidation process
occurring at the electrode surface, specifically involving the neurotransmitters. It is
noteworthy that the amplitude of this oxidation peak is directly proportional to the
concentration of the existing neurotransmitters. Consequently, the quantification of
neurotransmitter concentration can be achieved by directly measuring the peak current
values. Given the aforementioned criteria, the utilization of CV has been investigated as
a viable approach for the detection of electroactive neurotransmitters [62]. For instance,
a CV-based nanobiosensor composed of polypyrrole-derived carbon nanotubes was
developed to detect dopamine [63]. In that research study, heteroatom-doped CNTs
were synthesized based on the pyrolysis of polypyrrole nanotubes. A temperature
of 800 ºC was used as an optimized synthesis temperature, with which the fabricated
heteroatom-doped CNT-modified electrodes exhibited high conductivity and large sur-
face area. Compared with polypyrrole, polypyrrole-derived carbon nanotubes produced
at a temperature of 800 ºC showed higher electrochemical sensing performance. Based
on the CV technique, dopamine in 0.1 M phosphate-buffered saline was detected using
electrodes that exhibited a limit of detection of 0.2 µM. In another study, carbon quantum
dots/copper oxide nanocomplexes were utilized to detect epinephrine (Figure 3b) [64].
Copper oxide nanoparticles are biocompatible, possess considerable surface areas, and
have elevated electrical conductivity. Given the aforementioned characteristics of copper
oxide nanoparticles and the established electrocatalytic capabilities of carbon quantum
dots in the context of electrochemical oxidation of epinephrine, the incorporation of
copper oxide nanoparticles and carbon quantum dots resulted in the formation of elec-
trocatalytic structures for electro-oxidation of epinephrine that exhibited remarkable
sensitivity, with a limit of detection (LOD) of 15.99 µM. The surface areas calculated for
the bare electrode and the electrode with carbon quantum dot/copper oxide nanoparti-
cles were 7.00 cm2 and 7.70 cm2, respectively. Additionally, the developed electrochemi-
cal biosensor demonstrated selective epinephrine detection in the presence of ascorbic
acid, dopamine, and uric acid. Fast Scan Cyclic Voltammetry (FSCV) is a technique
that has contributed to remarkable developments in the field of cyclic voltammetry,
including in the investigation of dynamic electrochemical reactions. FSCV involves the
rapid application of a triangular waveform potential to a working electrode, enabling
real-time monitoring of fast, dynamic reactions [65]. Through the utilization of current
measurements, researchers are able to acquire valuable information related to several
biological processes, including, but not limited to, neurotransmitter release and up-
take [66]. The utilization of this technique has demonstrated significant value in the field
of neuroscience research, providing valuable insights into fundamental elements of brain
functioning regarding addiction and several neurological disorders [67,68]. Moreover,
FSCV has been utilized in several fields, such as environmental monitoring, medici-
nal research, and materials science, wherein the comprehension of fast electrochemical
phenomena holds substantial importance [69,70].
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3.2.2. Differential Pulse Voltammetry

DPV, a variant of voltammetry, further augments sensitivity by utilizing short voltage
pulses. This technique optimizes the signal-to-noise ratio, thus enabling voltammetric biosensors
to detect even trace amounts of neurotransmitters with exceptional accuracy [71]. For instance,
one study employed thermally reduced graphene oxide (rGO) to fabricate nanobiosensors for
the detection of dopamine [72]. The thermal reduction of two distinct graphene oxide samples
was conducted using malonic acid and P2O5 additives as precursors for the synthesis of carbon
suboxide (C3O2). C3O2 plays a crucial role in repairing the conjugated aromatic structure of
reduced graphene oxide sheets. In addition, the thermal treatment of graphene oxide in the
presence of both malonic acid and the P2O5 mixture not only effectively restores theπ-conjugated
system of graphene layers, but also facilitates the successful incorporation of phosphorus (P)
elements into the graphene-based material’s structure. The incorporation of P elements into the
graphene layers creates topological defects and generates numerous active sites, which play a
crucial role in enabling electron transfer to dopamine. While the bare electrode showed peak
current values of 0.15 µA and −0.37 µA for Ipa and Ipc, the developed biosensor showed values
of 4.82 µA and −4.31 µA for Ipa and Ipc. Utilizing the fabricated nanobiosensor, dopamine was
successfully detected using the DPV technique with an LOD of 0.11 µM. In another study, the
researchers took advantage of several key benefits offered by molecularly imprinted polymer
(MIP) membranes prepared in situ (Figure 3c) [73]. These MIP membranes maintained their
original morphology, exhibited strong adhesion to the collector, and allowed precise control
over their structures. To fabricate a three-dimensional porous polyacrylamide–MIP matrix,
they employed a single-step electropolymerization process of acrylamide monomers in the
presence of nickel and template molecules directly on a glassy carbon electrode. The resulting
Ni-polyacrylamide (PAM)–MIP matrix served as a remarkable sensor with a quantitative dual
response toward dopamine and adenine, and successful detection was able to be conducted
using DPV at the respective limit of detections of 0.12 µM and 0.15 µM. Additionally, compared
with bare electrode, the fabricated MIP electrode showed substantially smaller charge resistance
at the electrolyte/electrode interfaces. In both examples from the aforementioned studies, CV
and DPV were utilized to detect the neurotransmitters. However, for the sensitive detection of
neurotransmitters, DPV was the preferred method, owing to its higher sensitivity compared
to CV. As a result, the researchers conducted neurotransmitter detection using DPV to achieve
accurate and precise measurements, taking advantage of its enhanced sensitivity compared
with CV.

3.3. Electrochemical Impedance Spectroscopy Biosensors

EIS has emerged as a very effective technique for the advancement of the field of
nanobiosensors, exhibiting high sensitivity and selectivity in the field of neurotransmit-
ter detection. EIS-based nanobiosensors take advantage of the dynamic changes in electri-
cal impedance resulting from the specific binding events between neurotransmitters and
biomolecular recognition elements immobilized on nanomaterial surfaces [74]. For example,
anti-GABA antibodies were modified on a gold electrode to detect GABA [75]. Through
the antibody–antigen reaction, GABA was captured on the gold substrate. The changed
impedance parameters indicated the underlying biomolecular changes on the gold surface of
the immunosensor. In another study, an aptamer-modified microelectrode was developed
to detect neuropeptide Y, which is a different form of the neurotransmitter [76]. The micro-
electrodes were coated with carbon fiber and platinum. Through the conjugation between
aptamer and neuropeptide Y, the change in impedance with neuropeptide Y concentration
was measured. This technique allows the monitoring of neurotransmitter concentrations
in real time without the need for labeling, thus enabling exceptional precision and fast re-
action times [77]. For instance, the researchers demonstrated a novel, label-free biosensor
for the detection of acetylcholine using a single enzyme (acetylcholinesterase) and EIS [78].
Acetylcholinesterase was covalently immobilized onto the surface of gold microelectrodes
through an amine-reactive crosslinker dithiobis (succinimidyl propionate) (Figure 3d). Fur-
thermore, they effectively passivated the gold electrode with SuperBlock, which eliminated
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or reduced any nonspecific response to other major interfering neurotransmitter molecules,
such as dopamine, norepinephrine, and epinephrine. Acetylcholinesterase is an enzyme that
rapidly breaks down acetylcholine into acetate and choline, increasing local H+ concentration.
Acetylcholinesterase, immobilized on a gold electrode, forms an electrical double layer. As
acetylcholine is degraded, ions at the enzyme surface change from one cation to two cations
+ one anion, altering local pH. With acetylcholinesterase degrading about 25,000 molecules
per second, there is a significant impact on ion concentration, perturbing the double layer.
This results in changes in capacitance and resistance, detectable via EIS. Using this strategy,
the various concentrations of acetylcholine (from 5.5 µM to 550 µM) in whole blood could
be sensitively detected using the fabricated label-free nanobiosensors without the need for
any electrical or fluorescence tagging molecules. In another research study, an electrochemical
biosensor was fabricated using a combination of multiwalled carbon nanotubes (MWCNTs)
and nickel nanoparticles embedded in an anandamide-imprinted polymer [79]. The syn-
thesized nickel nanoparticles were integrated with MWCNTs and molecularly imprinted
polymer, resulting in a nanobiosensor with enhanced sensitivity and selectivity. Through
the CV with K3Fe(CN)6/K4Fe(CN)6 solution, the current value of the bare electrode showed
the lowest value (0.01 mA) among the electrodes at each fabrication step; however, after
the fabrication steps, the fabricated nanobiosensor showed a maximum current response
of 0.11 mA. The fabricated nanobiosensing platform demonstrated highly sensitive detec-
tion of anandamide, with a limit of detection of 0.01 nM and 50% stability over 4 months.
Despite potential interfering components, such as acetylcholine and dopamine, owing to
their chemical similarities, the fabricated sensor displayed selectivity toward anandamide.
Furthermore, impedimetric nanobiosensors have been developed by researchers for the de-
tection of dopamine. For instance, a novel electrochemical nanobiosensor based on zinc
oxide with embedded polyvinyl alcohol nanoplatelets was developed for the determination
of dopamine over a broad range, with a limit of detection of 5.0 nM [80]. In another case, a
fullerene-pyrrole-pyrrole-3-carboxylic acid nanocomposite-modified molecularly imprinted
impedimetric nanobiosensor was developed for the detection of dopamine in urine [81].
The study exhibited impressive sensitivity and enabled the detection of dopamine with a
remarkable LOD value of 8.77 ng/mL.
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with permission from [54]; Copyright © 2022 by the authors. Licensee: MDPI). (b) Plot of the peak
current of the cyclic voltammogram of carbon quantum dot/copper oxide nanocomplex-modified
glassy carbon electrode in 0.4 mM epinephrine solution as a function of the square root of scan rate
(reprinted with permission from [64]; Copyright © 2022, Elsevier B.V.). (c) Schematic of the assembly
process of the dual-response MIP-sensing membrane and electrochemical detection of dopamine
and adenine (reprinted with permission from [73]; Copyright © 2022, Elsevier B.V.). (d) Schematic of
the assembly process of the dual-response MIP-sensing membrane and electrochemical detection of
dopamine and adenine (reprinted with permission from [78]; Copyright © 2023, Elsevier B.V.).

3.4. Field Effect Transistor Biosensors

FET biosensors have emerged as prominent technologies in the field of biosensing
owing to their high sensitivity and selectivity in detecting various biological substances,
such as neurotransmitters [82]. The biosensors make use of the distinct electrical character-
istics of semiconducting materials, thus enabling them to effectively transform biological
interactions into quantifiable electrical signals [83]. The mechanism of FET biosensors
is based on modulating the conductance of a semiconductor channel in response to the
binding or interaction of the target neurotransmitter with a biorecognition element immo-
bilized on the sensor surface [84]. In general, the gate of the FET biosensor is modified with
a biomolecular receptor that is specific to the target neurotransmitter. This receptor can
be an antibody, enzyme, or molecularly imprinted polymer, and its role is to selectively
bind and capture the desired neurotransmitter [85]. When the neurotransmitter molecule
forms a complex with the receptor protein located on the surface of the ion channel gate, it
initiates a modification of the distribution of electrical charges, hence causing the electric
potential difference across the semiconductor channel to be modified. The change in the
surface charge leads to a variation in the conductance of the semiconductor channel, thus
resulting in a measurable electrical signal. The FET biosensor’s capacity to convert molecu-
lar binding events into electrical modifications makes it a very promising framework for
the rapid, label-free, and real-time identification of diverse analytes [86]. Consequently,
it has attracted significant interest in the research of neurotransmitters. For instance, in
one study, an electric-field-assisted assembly was employed to construct single-walled
carbon nanotubes onto prepatterned electrodes by adopting an FET architecture [87]. By
utilizing a mixture of micro- and nanofabrication methods complemented by microfluidics,
the researchers effectively integrated the assembly into a highly advanced sensing platform.
The combined setup enabled the monitoring of electrical signals in real time, and facilitated
the reversible detection of several analytes. The drain-source current of the fabricated FET
biosensor exhibited a significant decrease upon the introduction of dopamine, ascorbic acid,
and adrenaline, ultimately stabilizing at a plateau after about 100 s. Furthermore, the optical
detection of the analytes was conducted by measuring the fluorescence from single-walled
carbon nanotubes in 96-well plates with the analytes. Through the incorporation of optical
transduction, they demonstrated a correlation between an increase in fluorescence intensity
and a decrease in the electrical current of single-walled carbon nanotubes for the detection
of dopamine, epinephrine, and ascorbic acid. This approach allowed the simultaneous elec-
trical and optical detection of these neurotransmitters and antioxidant compounds using the
same sensing platform. These findings reveal the existence of common signal transduction
mechanisms between optical and electrical sensors. While optical sensors offer noncontact
readout advantages, thus making them suitable for in vivo applications, electrical sensors
provide ease of on-chip integration. The correlation observed in the signal responses of
both sensor types offers flexibility in choosing between the two readout technologies when
designing next-generation nanobiosensors. In another study, the researchers developed a
modular conductive metal–organic framework (c-MOF)-gated FET biosensor array for the
sensitive detection of neurotransmitters utilizing two different types of c-MOF: Cu3HHTP2
(HTP) and Cu2TCPP (TCP) [88]. In this study, the c-MOF films served as a highly effective
sensing layer, adsorbing analytes inside their pores. The c-MOF structures, functioning
as a recognition module, exhibited the capacity to elicit distinct, nonspecific interactions
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with analytes determined by various factors, such as molecular size, charge, and binding
affinity. The unique characteristic of fabricated nanobiosensors allowed the discrimination
of signal transduction processes among analytes, without the need for either biological or
complex synthetic receptors. As a result, the fabricated FET biosensor demonstrated high
sensitivity, and was able to effectively perform the detection of catecholamines even in
fluids with high ionic strength, thus resulting in clearly interpretable electrical signals. The
limits of detection of the fabricated FET biosensor were 1.74 nM (HTP) and 1.95 nM (TCP)
for dopamine, 1.52 nM (HTP) and 1.55 nM (TCP) for norepinephrine, and 1.66 nM (HTP)
and 1.88 nM (TCP) for epinephrine. Moreover, acetylcholine was detected by employing
a polyaniline-reduced graphene-oxide-based FET enzymatic nanobiosensor [89]. Owing
to the doping effect in the graphene channel and polyaniline film for electrostatic enzyme
immobilization, the sensitive electrochemical detection of the acetylcholine was achieved
with an LOD of 72.3 nM.

4. Cell-Based Electrochemical Monitoring Systems for Neurotransmitters

As mentioned above, neurotransmitters play a critical role in signal transmission
within the central and peripheral nervous systems. Deviations in neurotransmitter release
can lead to significant neurological problems. In Section 3, various electrochemical sen-
sors for the accurate and sensitive measurement of neurotransmitters outside the body,
developed with the use of several bodily fluids, were presented and analyzed. However,
measuring neurotransmitter concentrations based on bodily fluids can introduce poten-
tial error during sample collection and processing. To address this issue, researchers are
developing electrochemical sensors that directly measure the neurotransmitters released
from neuronal cells and neural stem cells. These electrochemical sensors utilize in vitro cell
culture models to study neurotransmitter release dynamics and enable precise measure-
ments. Additionally, implantable electrochemical sensors provide real-time monitoring of
neurotransmitter levels, thus offering valuable insights into dynamic changes and their
correlation with neurological disorders or treatment responses. The ongoing development
of electrochemical sensors is promising for improving the accuracy and understanding of
neurotransmitter dynamics in research and clinical applications.

4.1. In Vitro Neurotransmitter Detection System from Neuronal Cells Using
Electrochemical Sensors

Several neurotransmitters are nerve disorder diagnostic markers that can be used
to conduct measurements in electrochemical detection systems in vitro. Of these, in vitro
electrochemical biosensors for serotonin are being developed to address the need for precise
measurements of the serotonin released from neurons. Serotonin plays a critical role in
regulating mood and cognitive functions, and dysregulation is associated with neurological
and psychiatric disorders. In vitro electrochemical biosensors allow the direct measurement
of serotonin in controlled laboratory settings, thus providing high sensitivity and specificity.
They enable real-time monitoring of serotonin dynamics from neuronal cells, offering
insights into its temporal fluctuations and the severity of disorders. Mahato et al. developed
a novel biosensor for performing fast detection of serotonin using nanocomposites of Au-
nanorattles (AuNRTs) and rGO on gold nanoparticles (AuNPs) deposited on a glassy
carbon electrode (Figure 4a) [90]. The biosensor exhibited a linear dynamic range of
3 × 10−6–1 × 10−3 M and a limit of detection of 3.87 (±0.02) × 10−7 M, thus making it
suitable for normal and abnormal pathophysiological conditions. The sensor successfully
detected serotonin in urine, blood serum, and in vitro models, thus demonstrating its
direct clinical/practical applicability and long-term stability for up to 8 weeks. Nakatsuka
et al. produced quartz nanopipettes with 10 nm orifices functionalized with aptamers
that enabled the specific and selective recognition of serotonin [91]. These nanopipettes
were able to detect physiologically relevant amounts of serotonin in complex environments
like neurobasal media. The detection mechanism was investigated using complementary
techniques such as quartz crystal microbalance and EIS, and a theoretical model supporting
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the experimental findings was proposed. This study highlighted the potential of aptamer-
modified nanopipettes as rapid, label-free nanotools for diverse biological systems, thus
offering high sensitivity and selectivity for the detection of small molecules. Ashraf et al.
developed an ultrasensitive electrochemical sensor for the specific detection of serotonin in
early disease diagnostics [92]. The sensor utilized a Cu2O metal oxide (MO)-incorporating
CNT core, which was subsequently deposited with platinum nanoparticles (Pt NPs) on a
CNTs-Cu2O-CuO nanopetal composite. The synergistic effects of improved surface area,
conductivity, and electron transfer, induced by Pt NPs and the mixed-valence states of
copper, enhnaced the electrocatalytic performance of the sensor, thus achieving a low limit
of detection of 3 nM, a broad and linear concentration range, reproducibility, and durability.
The proposed electrochemical sensor achieved the successful detection of serotonin in biotic
fluids and real-time tracking of serotonin efflux from various cell lines, showcasing its
potential as an early-disease diagnostic tool.

In addition to serotonin detection, the detection of dopamine using electrochemical
methods is very promising in the fields of neuroscience and clinical diagnostics. As men-
tioned previously, dopamine is an important neurotransmitter that is involved in regulating
various physiological processes, including mood, motivation, reward, and movement control.
Abnormal dopamine levels are associated with neurological disorders, such as Parkinson’s
disease, schizophrenia, and addiction. The electrochemical detection of dopamine makes
it possible for researchers to study its release, uptake, and metabolism in real time, thus
providing insights into its role in neurotransmission and disease pathology. Castagnola et al.
implemented a high-sensitivity, real-time electrochemical sensor for multisite detection of
dopamine in order to study its complex dynamics in the brain and improve treatments for
neurological and neuropsychiatric disorders (Figure 4b) [93]. The presented three-dimensional
fuzzy graphene (3DFG) microelectrode arrays demonstrated responses with exceptional
selectivity, sensitivity (2.12 ± 0.05 nA/nM), and stability (stabilizing after at least 200 h, cor-
responding to 7.2 million cycles) for electrochemical sensing of dopamine. The high surface
area of 3DFG allows miniaturization without compromising performance, thus making it a
promising platform for high-resolution dopamine detection using fast-scan cyclic voltamme-
try (FSCV). Huang and co-workers developed a highly sensitive electrochemical sensor for
dopamine detection using a composite of graphene quantum dots (GQDs) and MWCNTs [94].
The combination of GQDs and MWCNTs improved the conductivity of the electrodes and
enhanced the selectivity for the purposes of dopamine detection. The sensor exhibited ex-
cellent performance with a broad linear range of 0.005–100.0 µM, a low limit of detection of
0.87 nM, and successful detection of dopamine in human serum and live PC12 cells. Yang et al.
quantified the electrochemical performance of cavity carbon nanopipette electrodes (CNPEs)
and applied them for dopamine detection using FSCV [95]. Cavity CNPEs exhibited fast
temporal responses comparable to traditional carbon-fiber microelectrodes, while open-tube
CNPEs had slow and varying temporal responses. The increased currents observed in cavity
CNPEs were attributed to the trapping of small cavities. An increase in the local dopamine
concentration resulted in an FSCV frequency-independent response and cyclization peaks
typically observed with high concentrations of dopamine. Cavity CNPEs demonstrated higher
selectivity for dopamine compared with ascorbic acid, and were able to detect dopamine in
mouse brain slices without clogging, thus making them promising neurochemical sensors
with nanoscale spatial resolution. Eom et al. presented an overoxidized polypyrrole/sodium
dodecyl sulfate (SDS)-modified MWCNT electrode for highly sensitive and selective detection
of dopamine [96]. The electrode prepared using SDS (as a dopant) and NaOH (as an oxidizing
agent) enabled the detection of dopamine at concentrations as low as 5 nM, with a limit of
detection of 136 pM. The electrode exhibited excellent selectivity for dopamine compared
with interfering molecules such as ascorbic acid and glucose. Furthermore, the electrode
demonstrated potential for performing the in vitro detection of dopamine secreted from
dopaminergic cells (PC12 cells) and exhibited biocompatibility, thus making it a promising
candidate for neural interface applications in monitoring dopamine concentrations in vitro
and in vivo.
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In terms of other neurotransmitters, the major excitatory and inhibitory neurotrans-
mitters in the brain are glutamate and GABA, respectively. Doughty et al. developed
a microwire-based electrochemical biosensor for measuring the real-time dynamics of
glutamate and GABA in brain tissues [97]. The biosensors, coated with glutamate and
reagent-free GABA, were designed in a geometrically improved plane for signal acquisition.
The biosensors were able to successfully detect changes in glutamate and GABA levels in rat
hippocampal slices and a freely moving rat over fourteen weeks, highlighting their poten-
tial for the study of neurotransmitter dynamics in various brain regions. Li et al. reported a
graphene-based FET biosensor functionalized with synthesized glutamate receptors for
real-time monitoring of glutamate release from cultured rat hippocampus neurons [98]. The
immobilized metabotropic glutamate receptors (mGluR) on the graphene surface enabled
the specific binding of target glutamate molecules, thus resulting in changes in charge
density. The biosensor demonstrated high sensitivity, detected glutamate in the femtomolar
range in cell culture medium, and enabled real-time monitoring of glutamate release from
primary rat hippocampus neurons. The study proposed a novel approach for the specific
detection of released glutamate molecules from differentiated neurons, enhancing our
understanding of neuronal communication, and offered the possibility of detecting other
electrochemically inactive small molecules released by cells. Scoggin et al. developed a
highly sensitive enzymatic glutamate microbiosensor in the form of a platinum microelec-
trode array, enabling continuous and real-time measurements of glutamate concentration
from multiple recording sites [99]. The microbiosensor exhibited nearly four-fold higher
sensitivity to glutamate compared to previously reported enzymatic sensors. By analyzing
glutamate dynamics in cultured astrocytes and glioma cells, the microbiosensor effectively
distinguished normal versus impaired glutamate uptake, showcasing its potential for mon-
itoring and understanding glutamate signaling in both normal and pathological conditions.
Additionally, the microbiosensor can be utilized to evaluate the effects of therapeutic drugs
in treating various neurological diseases.

4.2. Stem-Cell-Released Neurotransmitter Detection Systems Using Electrochemical Sensors

In recent years, attempts have been made to utilize stem cells for the treatment of
various diseases. Neural cells pose challenges in terms of regeneration and functional
restoration compared with other cell types. Therefore, the differentiation of stem cells
into neural cells in vitro and their subsequent transplantation is actively being researched.
However, assessing the accuracy of neural differentiation remains difficult, thus making
transplantation-based therapies inherently risky. During the process of differentiation, stem
cells release neurotransmitters, and precise and sensitive measurements of these neuro-
transmitters cannot not only facilitate the therapeutic use of stem cells, but also enhance
our understanding of their properties. Accurate measurement of neurotransmitter release
would provide valuable insights into the functionality of differentiated neural cells and
contribute to the development of safer and more effective stem-cell-based therapies. Kim
et al. fabricated a cell chip using indium tin oxide-coated glasses (ITO), gold nanoparti-
cles (GNP), and RGD-MAP-C peptide composites to enhance electrochemical signals and
the proliferation of human neural stem cells (HB1.F3) [100]. The composite electrode of
ITO/60 nm GNP/RGD-MAP-C achieved the highest enhancement of voltammetric signals
and cell proliferation. DPV revealed a negative correlation between cell viability and dox-
orubicin concentrations, showing the sensitivity of the cell chip for assessing the adverse
effects of drugs on HB1.F3 cells, especially at low concentrations. The same research group
developed large-scale homogeneous nanocup electrode arrays (LHONA) for the effective
detection of dopamine production and for monitoring the differentiation of human neural
stem cells (hNSCs) into dopaminergic neurons (Figure 4c) [17]. The LHONA platform
demonstrated excellent performance at detecting dopamine at low and high concentrations,
with an LOD of 100 nM. The nanoscale pattern sizes and nanotopographical characteristics
of LHONA enhanced the functions of dopaminergic cells and allowed sensitive monitor-
ing of dopamine production, thus making it a promising tool for the preclinical testing of
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dopaminergic neurons derived from stem cells and optimization of differentiation protocols.
Furthermore, they developed a cylindrical gold nanoelectrode (CAuNE) platform using
laser interference lithography and electrochemical deposition, with the CAuNE-700 nm
electrode exhibiting the best performance for dopamine detection in a linear manner in the
range of 1–100µM and a limit of detection of 5.83µM [101]. The homogeneous periodic
features of CAuNEs allowed successful culturing of human neural cells and detection
of dopamine in their presence, thus making the platform valuable for disease diagnosis,
dopaminergic neuronal functional tests, and toxicity assessments on human neuronal
cells. Amato et al. fabricated structurally patterned pyrolyzed three-dimensional carbon
scaffolds (p3D-carbon) to differentiate hNSCs into dopamine-producing neurons and sense-
released dopamine (Figure 4d) [102]. The p3D-carbon induced spontaneous differentiation
of hNSCs into mature dopaminergic neurons with high efficiency and promoted neurite
elongation. The conductive properties and 3D environment of p3D-carbon facilitated the
electrochemical detection of a larger fraction of released dopamine compared with conven-
tional two-dimensional (2D) electrodes, thus providing real-time confirmation of the fate of
hNSC-derived neurons. This study introduced new conductive 3D scaffolds that enabled
efficient hNSC differentiation and in situ monitoring of dopaminergic neuron development.
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Figure 4. In vitro neurotransmitter detection system from neuronal cells and stem cells using elec-
trochemical sensors: (a) Schematic of the sensor probe developed using Au-nanorattles (AuNRTs)
and reduced graphene oxide (rGO) (AuNRTs-rGO) nanocomposite based on the serotonin detection
mechanism (reprinted with permission from [90]; Copyright © 2022, Elsevier B.V.). (b) Scanning electron
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microscopy image and Raman spectra of three-dimensional fuzzy graphene microelectrode (top) and
color plot (bottom left) and background-subtracted cyclic voltammogram showing reduction and ox-
idation peaks of injected dopamine and serotonin (reprinted with permission from [93]; Copyright ©
2022 Elsevier B.V.). (c) Schematic representation of the conversion of hNSCs into dopaminergic (DAer-
gic) and non-DAergic neurons (top) and cyclic voltammogram of cells undergoing differentiation
into DAergic neurons (DA neurons) (bottom) (reprinted with permission from [17]; Copyright © 2015
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). (d) Schematic of p3D-carbon where the cells
differentiate at the bottom or between pillars (top), calculated average charge related to the amount
of detected dopamine released by human neural stem cells (hNSCs) (bottom left), and characteristic
current–time trace recorded during amperometric detection of dopamine (bottom right) (reprinted
with permission from [102]; Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

Research on differentiating stem cells into neurons is important for the development of
treatments and understanding neurological disorders. However, traditional 2D cell culture
models do not fully replicate the complexity of neural cells in the human body. In recent
years, active research has been conducted on the development of neural cell models in the
form of spheroids or organoids, aiming to more accurately emulate the CNS. Consequently,
there are ongoing efforts focused on the development of techniques for analyzing neuro-
transmitters in real time from 3D neural cell models. Nasr et al. developed a novel method
for creating functionalized borosilicate glass capillaries with nanostructured textures as
electrochemical biosensors for detecting glutamate release from cerebral organoids derived
from human embryonic stem cells [103]. The biosensor exhibited catalytic activity for
glutamate oxidation with high sensitivity and a broad linear range from 5 µM to 0.5 mM,
down to 5.6 ± 0.2 µM. It was able to successfully detect glutamate within the organoids at
different time points, thus demonstrating its reliability and potential for the monitoring
of glutamate levels over time in a culture system. Zanetti et al. developed a novel elec-
trochemical sensing approach for detecting dopamine in human midbrain organoids that
emulated the affected region in Parkinson’s disease [104]. Traditional analysis methods for
these organoids are time consuming and invasive, and are not able to monitor organoid
development. By employing a redox-cycling technique and modifying the sensor’s surface,
the authors [104] achieved enhanced selectivity and sensitivity, and reduced interference.
The developed approach was able to successfully detect and monitor dopamine release in
both healthy and Parkinson’s-disease-specific organoids, confirming its potential for drug
screening and personalized disease modeling applications.

4.3. In Vivo Neurotransmitter Monitoring Systems Using Electrochemical Sensors

Various diseases arise from the CNS that can severely compromise quality of life.
Neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease, are
prominent examples of brain disorders that lead to a decline in cognitive and motor abilities.
These conditions are often accompanied by abnormal neurotransmitter secretion, either
in insufficient or excessive amounts. The dysregulation of neurotransmitters contributes
to the underlying pathophysiology of these diseases. Thus, real-time measurements of
neurotransmitters within the brains of living organisms are extremely useful for under-
standing disease progression, the evaluation of treatment efficacy, and the facilitation of
drug development. Accurate and precise monitoring of neurotransmitter dynamics can
provide valuable insights into the functional state of the brain, thus providing a deeper
understanding of the mechanisms underlying neurodegenerative disorders.

In recent years, multiple research groups have expended considerable efforts in
the development of techniques for the direct insertion of electrodes into the brain.
These electrodes are designed to detect and measure neurotransmitter secretion in real
time, with high sensitivity and temporal resolution. By monitoring neurotransmitter
dynamics, researchers aim to unravel the intricate relationship between neurotransmit-
ter imbalances and the progression of neurodegenerative diseases. In the case of in vivo
dopamine measurements, Liu et al. developed a regenerated FET biosensor combined
with an in vivo monitoring system for dopamine detection (Figure 5a) [105]. The biosen-
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sor utilized gold-coated magnetic nanoparticles as a recognition unit for dopamine
and allowed simple regeneration following the removal of a permanent magnet. The
FET biosensor demonstrated high sensitivity, selectivity, and stability, with a linear
response in the range of 1–120 µmol L−1 and a low-limit of detection of 3.3 nmol L−1.
This innovative platform enabled online and remote control of the sensitivity and the
limit of detection, providing potential for reusability, cost effectivness, and large-scale
production. Taylor et al. developed a PEDOT/CNT nanocomposite coating for highly
sensitive and selective detection of resting dopamine (DA) [106]. The PEDOT/CNT-
coated carbon fiber electrodes (CFEs) exhibited a significantly increased sensitivity
for detecting resting DA. Implantation of PEDOT/CNT-functionalized CFEs in the rat
dorsal striatum allowed the measurements of absolute basal DA concentrations and
monitoring changes in DA levels in response to drug administration. Additionally,
functionalizing PEDOT/CNT onto gold electrode sites in silicon microelectrode arrays
enabled multisite DA sensing with excellent spatial resolution, thus offering a versatile
approach for high-resolution tonic DA detection. Liu et al. reported a miniaturized mi-
croprobe system for wireless optical interrogation and neurochemical sensing in deep
brain regions [107]. The system combined microlight-emitting diodes for optogenetic
stimulation and PEDOT:PSS-coated diamond films for the electrochemical detection
of dopamine. The implantable optoelectrochemical probes, controlled remotely and
wirelessly, were successfully used for optogenetic interference and real-time detection
of dopamine release in freely behaving mice. This integrated approach demonstrated
the potential for simultaneous optical control and electrochemical sensing in complex
nervous systems. Raju et al. implemented novel polymer and waveform modifications
to enhance the detection of 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid
(DOPAC), a dopamine metabolite neurotransmitter [108]. The application of a specific
waveform for DOPAC detection improved its sensitivity by eliminating interference
from the dopamine waveform. Additionally, the use of positively charged cationic
polymers (like polyethyleneimine) enables the preconcentration of DOPAC on the
electrode’s surface, further enhancing detection sensitivity. These findings have impli-
cations for the development of electrode materials and waveform strategies to detect
important biomolecules, such as dopamine metabolites. Hou et al. presented a novel
interfacial functionalization strategy using aptamer cholesterol amphiphiles (aptCAs)
to immobilize aptamers onto alkyl chain-functionalized CFEs (Figure 5b) [109]. This
approach enabled the development of highly selective systems for the investigation of
neurochemical dynamics in living systems. The successful immobilization of aptamers
on the CFE surface offers new possibilities for designing in vivo sensors to explore
brain chemistry.

In addition to in vivo dopamine detection systems, other in vivo neurotransmitter
sensing systems have also been developed using electrochemical techniques. Ganesana
et al. developed an electrochemical biosensor with a diameter of 50 µm for real-time
monitoring of L-glutamate in vivo (Figure 5c) [110]. The biosensor incorporated a perms-
elective poly o-phenylenediamine glutamate oxidase membrane and ascorbate oxidase to
enhance selectivity and eliminate interferences. The biosensor exhibited a linear response
in the range of 5–150 µM, high sensitivity, rapid responses, and 1-week storage stability,
thus making it suitable for future applications in glutamate detection. Castagnola et al.
demonstrated the successful detection of exogenous melatonin in the brain using FSCV
on pre-activated CFEs [111]. The CFEs exhibited high sensitivity and low limits of de-
tection for melatonin detection, with improved stability and minimal fouling following
prolonged preconditioning. The FSCV method enabled drift-free, long-term monitoring
of administered melatonin in mouse brains, thus providing reliable and continuous
measurements of melatonin concentration and dynamics. Additionally, electrochemical
biosensors with integrated circuitry have recently been developed that are able to realize
the sensitive in vivo detection of neurotransmitters. Since these miniaturized biosensors
can achieve high sensing performance, including recording and signal processing by
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complex circuits in the biosensors, the circuit-integrated electrochemical biosensor has
the potential to advance the in vivo monitoring of neurotransmitters. For instance, a
wireless and battery-free implantable electrochemical biosensor was developed [112].
The developed device was simultaneously capable of optogenetic stimulation and the
identification of electrochemical signals in vivo due to it being a miniaturized biosens-
ing system with a complex circuit that included wireless power transfer technology.
In another study, a glass carbon electrode with flexible circuits was utilized to detect
dopamine in vivo [113]. The electrode was coated with PEDOT and carbon nanotubes to
decrease the impedance of the electrode. Employing multiple channels on the electrode,
in vivo phasic dopamine release was monitored.

Among the in vivo neurotransmitter sensing systems presented, in some studies, mul-
tiple neurotransmitters were successfully measured using a single electrode. Lendor et al.
developed a solid-phase microextraction-based (SPME) approach as a minimally inva-
sive method for performing quantitative measurements using multiple neurotransmitters
in vivo, including dopamine (Figure 5d) [114]. The optimized miniaturized SPME probe
enabled simultaneous sampling and sample preparation, with tailored coatings for the
extraction of small hydrophilic molecules. The developed SPME-HPLC-MS/MS protocol
demonstrated accurate and precise measurements of neurochemicals in a surrogate brain
matrix, with potential applicability to the study of neurochemical levels in various brain
systems implicated in psychiatric disorders. Li et al. developed a novel neurochemical
biological interface called NeuroString, which consisted of a stretchable, tissue-mimicking
material for sensing neurotransmitters [115]. The NeuroString sensors enabled long-term,
real-time, and multiplexed monitoring of monoamine levels in the brains of freely behaving
mice, and enabled serotonin dynamics measurements to be performed in the gut without
disrupting natural movements. This flexible and conformable biosensing interface could
potentially be used to study the effects of neurotransmitters on gut microbes and brain–gut
communication, and has implications for biomolecular sensing in other soft organs in
the body. Xie et al. reported an organic electrochemical transistor array (OECT-array)
technique for the real-time monitoring of catecholamine neurotransmitters (CA-NTs) in
rat brains [116]. The OECT array allowed the sensitive and rapid detection of nanomolar
concentrations of CA-NTs with a low working voltage and long-term stability. By utiliz-
ing this technology, the complex interplay between different brain regions and pathways
involved in dopamine release could be simultaneously mapped, thus providing insights
into the reciprocal innervation between the ventral tegmental area and the substantia nigra
pars compacta. Recent advancements in electrochemical techniques, made possible by
the utilization of smaller electrodes, have ushered in new opportunities for the precise
measurement of storage and regulatory processes within individual living cells [117,118].
One notable development in this field is the introduction of ‘intracellular vesicle impact
electrochemical cytometry’ by Li et al., a technique that enables the quantification of cat-
echolamines within individual vesicles [119]. This innovation has been widely adopted,
and has played a pivotal role in enhancing our comprehension of the ‘partial release’ hy-
pothesis, especially when juxtaposed with the quantities of catecholamine released through
exocytosis. These advancements in real-time measurements of neurotransmitters offer a
promising avenue for both clinical applications and basic research. They have the potential
to revolutionize the field of neuroscience, thus providing crucial insights into the under-
lying neurochemical changes associated with neurological disorders. Furthermore, this
technology introduces new possibilities for the development of targeted therapies and
personalized treatment approaches tailored to individual patients based on their unique
neurochemical profiles.
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Figure 5. In vivo neurotransmitter monitoring system using electrochemical sensors: (a) photograph
of the crucian fish brain, the field-effect transistor biosensor setup on the fish brain (left), and
the Ids output signal of the crucian fish brain monitored by the biosensor (right) (reprinted with
permission from [105]; Copyright © 2021, Elsevier B.V.). (b) Schematic of aptCA-functionalized
carbon fiber electrodes (CFEs) for in vivo dopamine sensing (left), and the current responses of
aptCA-functionalized CFEs in the rat nucleus accumbens upon electrical stimulation of the rat’s
medial forebrain bundle (right) (reprinted with permission from [109]; Copyright © 2020, Wiley-VCH
GmbH). (c) Amperogram of stimulated glutamate release in the subthalamic nucleus of a rat brain
slice (left) and stimulated rat brain in vivo (right) (reprinted with permission from [110]; Copyright ©
2019, Elsevier B.V.). (d) Schematic of the solid-phase microextraction-based approach used for
quantitative measurements of multiple neurotransmitters (reprinted with permission from [114];
Copyright © 2019, American Chemical Society).

5. Conclusions and Future Perspectives

Neurotransmitters are important substances in the neurotransmission system, and
various neurotransmitters are used for the transmission of signals among nerve cells. As
such, when important neurotransmitters are absent or fail to fulfil their essential roles,
they can cause cranial neurological diseases; this will invariably lead to the occurrence of
other diseases, such as cancer. Therefore, accurate neurotransmitter sensing is essential
for the early diagnosis and treatment of neurological and other diseases. To this end,
numerous electrochemical biosensors have been developed thus far, and with the intro-
duction of nanomaterials and nanotechnologies, nanobiosensors with increased sensitivity
and the capability to conduct multiple diagnoses have been reported for the detection
of neurotransmitters. Moreover, these nanobiosensors can not only be used to diagnose
neurotransmitters, but can also serve as the basis for the development of neural stem
cell therapeutics by monitoring neurotransmitters derived noninvasively during the neu-
ral stem cell differentiation process. In this review, interdisciplinary information about
electrochemical nanobiosensors incorporating nanomaterials and nanotechnologies with
the aim of achieving the accurate detection and monitoring of neurotransmitters was
discussed. For this purpose, representative neurotransmitters were provided. Recently
reported electrochemical nanobiosensors incorporating nanomaterials or nanotechnologies
in order to detect these neurotransmitters were also discussed; these were categorized
into (i) direct neurotransmitter detection action regardless of living cells, (ii) cell chips
for disease-related neurotransmitter detection, and (iii) stem-cell-related neurotransmitter
detection. The recently conducted studies in which the electrochemical neurotransmitter
biosensors discussed in this review were developed are summarized in Table 2.
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These electrochemical nanobiosensors are applicable to disease diagnosis, stem cell
differentiation processes, and organoid production and theragnosis [120,121]. For instance,
these nanobiosensors can be utilized to monitor the production of brain organoids com-
posed of neurons, construction of the neurological disease model, and can verify organoid
characteristics. Additionally, these nanobiosensors can serve as basic tools for the organ-on-
a-chip development, as well as the development of new drugs [122]. In addition, they can
be used for theragnostic applications of neurological diseases based on the combination of
real-time diagnosis and medical treatments, which have recently been attracting attention
in the biomedical field [123]. Furthermore, it has been reported that some neurotransmit-
ters have further roles (beyond simple intrasynaptic signal transmission), including brain
functioning [30,124]. Additionally, by focusing on its inherent function for monitoring,
electrochemical sensors can be applied to clinical investigations, along with the flexi-
ble/wearable/implantable electronic devices that have recently begun to attract attention
in the biosensor field, enabling the practical real-time monitoring of neurotransmitter-
related diseases in patients [125–127]. Electrochemical nanobiosensors can also be used as
a core component in the development of probe-free electronic devices capable of perform-
ing sensing functions such as the electronic nose/tongue, for the monitoring of various
targets, including neurotransmitters [128]. Additionally, in the near future, by combining
biosensing functions with the fields of machine learning and artificial intelligence, they are
expected to play a role as an analysis tool not only for achieving precise and sophisticated
diagnosis, but also for performing real-time data analysis [129]. In conclusion, the research
on the development of electrochemical neurotransmitter nanobiosensors covered in this
review is expected to have a tremendous biomedical impact, ranging from organoids to
organs on a chip, and from theragnosis to future electronics.

Table 2. Representative electrochemical nanobiosensors used for the detection of neurotransmitters
illustrated in this review.

Sensing
Techniques Targets Nanomaterials/Nanotechniques Sample Type Limit of Detection Reference

Amperometric

Dopamine CDs-CPTMS Cell-free 1.0 nM [53]

Catecholamine Chitosan nanoparticle Cell-free 0.17 µM [54]

Acetylcholine
Poly(3,4-

ethylenedioxythiophene)
(PEDOT)/carbon electrodes

Cell-free Not applicable (N/A) [55]

Acetylcholine Platinum nanoparticles/porous
graphene oxide nano sheets Cell-free 1 nM [56]

Serotonin Pt NPs on the carbon nanotubes
(CNTs)-Cu2O-CuO

HaCaT cell
4t1 cell

P815 cell
3 nM [92]

Glutamateγ-
aminobutyric

acid
Microwire Rat hippocampal

slices N/A [97]

Glutamate Platinum microelectrode array Astrocyte 6.3 µM [99]

Dopamine Three-dimensional carbon
scaffolds (p3D-carbon)

Human neural stem
cells N/A [102]

Glutamate Borosilicate glass capillaries Human cerebral
organoids 5.6 µM [103]

Dopamine Interdigitated gold microsensor Human midbrain
organoids 476 nM [104]

Dopamine Carbon fiber electrode (CFE) Rat nucleus
accumbens N/A [109]

Glutamate
Poly o-phenylenediamine (PPD)

membrane/glutamate
oxidase/ascorbate oxidase

Rat brain slices and
in vivo 0.044µM [110]
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Table 2. Cont.

Sensing
Techniques Targets Nanomaterials/Nanotechniques Sample Type Limit of Detection Reference

Voltametric

Dopamine Polypyrrole-derived carbon
nanotube Cell-free 0.2 µM [63]

Epinephrine Carbon quantum dot/copper
oxide nanocomplex Cell-free 15.99 µM [64]

Dopamine Reduced graphene oxide sheets Cell-free 0.11 µM [72]

Dopamine, Adenine
Ni-polyacrylamide-molecular

imprinted polymer (PAM-MIP)
matrix

Cell-free 0.12 µM
0.15 µM [73]

Serotonin

Gold (Au)-nanorattles
(AuNRTs)/reduced graphene
oxide (rGO)/Au nanoparticles

(AuNPs)

Neuronal cell 0.39 µM [90]

Dopamine
Graphene quantum dots

(GQDs)/multiwalled carbon
nanotubes (MWCNTs)

PC12 cell 0.87 nM [94]

Dopamine Cavity carbon nanopipette
electrodes (CNPEs) Mouse-brain slices 56 nM [95]

Dopamine

Overoxidized
polypyrrole/sodium dodecyl

sulfate (OPPy/SDS)-CNT
electrode

PC12 cell 136 pM [96]

Dopamine Homogeneous nanocup electrode
arrays

Human neural stem
cells 100 nM [17]

Dopamine Cylindrical gold nanoelectrode Human neural stem
cells 5.83µM [101]

Dopamine PEDOT/CNT-functionalized
CFEs Rat dorsal striatum 2.03 nM [106]

Dopamine PEDOT: PSS-coated diamond
films

Ventral tegmental
area of the mouse 0.5µM [107]

Melatonin CFEs Mice brain 20.02 nM [111]

Dopamine, Serotonin Graphene-based biosensing
neural interface Mouse brain/colon 5.6 nM

3.5 nM [115]

EIS

Acetylcholine Gold microelectrodes Cell-free N/A [78]

Anandamide Nickel nanoparticles/Imprinted
polymer Cell-free 0.01 nM [79]

Dopamine Zinc oxide-embedded polyvinyl
alcohol nanoplatelets Cell-free 5.0 nM [80]

Dopamine
Fullerene-pyrrole-pyrrole-3-

carboxylic acid
nanocomposite

Cell-free 8.77 ng/mL [81]

Serotonin Quartz nanopipettes Neurobasal medium N/A [91]

FET

Dopamine,
Epinephrine

Single-walled carbon
nanotubes/microfluidics Cell-free N/A [87]

Dopamine,
Epinephrine,

Norepinephrine

Conductive metal–organic
framework (c-MOF)-gated

field-effect transistor (FET) arrays:
Cu3HHTP2 (HTP) (i) and
Cu2TCPP (TCP) types (ii)

Cell-free

1.74 nM (i) 1.95 nM
(ii)

1.66 nM (i) 1.88 nM
(ii)

1.52 nM (i) 1.55 nM
(ii)

[88]

Acetylcholine Polyaniline/reduced graphene
oxide Cell-free 72.3 nM [89]

Glutamate Graphene
Primary embryonic

rat hippocampal
neurons

1 fM [98]

Dopamine Gold-coated magnetic
nanoparticles Fish brain 3.3 nM [105]
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