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Abstract: In lower-limb rehabilitation, human action recognition (HAR) technology can be introduced
to analyze the surface electromyography (sEMG) signal generated by movements, which can provide
an objective and accurate evaluation of the patient’s action. To balance the long cycle required for
rehabilitation and the inconvenient factors brought by wearing sEMG devices, a portable sEMG
signal acquisition device was developed that can be used under daily scenarios. Additionally, a
mobile application was developed to meet the demand for real-time monitoring and analysis of
sEMG signals. This application can monitor data in real time and has functions such as plotting,
filtering, storage, and action capture and recognition. To build the dataset required for the recognition
model, six lower-limb motions were developed for rehabilitation (kick, toe off, heel off, toe off and
heel up, step back and kick, and full gait). The sEMG segment and action label were combined for
training a convolutional neural network (CNN) to achieve high-precision recognition performance
for human lower-limb actions (with a maximum accuracy of 97.96% and recognition accuracy for
all actions reaching over 97%). The results show that the smartphone-based sEMG analysis system
proposed in this paper can provide reliable information for the clinical evaluation of lower-limb
rehabilitation.

Keywords: sEMG; HAR; deep learning; smartphone; rehabilitation

1. Introduction

During the rehabilitation of lower limbs, rehabilitation therapists provide immediate
feedback and guidance to patients after observing them perform designated actions [1].
However, the real-time guidance of therapists is often influenced by subjective factors
such as feelings, experiences, and judgments, which bring some errors. Additionally, the
rehabilitation service provided by therapists is limited by time and resources, making it
impossible to monitor and guide multiple patients simultaneously or for a long time. It may
delay rehabilitation processes [2,3]. Fortunately, the introduction of sensing information
has provided strong support for implementing this task, allowing rehabilitation therapists
to accurately evaluate patients’ actions based on quantitative experimental data. In this
way, the rehabilitation efficiency was improved significantly [3–6]. Currently, research on
action recognition based on human physiological electrical signals is receiving widespread
attention [7–10]. Among them, surface electromyography (sEMG) signals are widely used
due to noninvasive collection and the ability to reflect the activity of limb muscles [11–14].

Nowadays, recognition systems based on sEMG signals mostly rely on signal ac-
quisition devices in laboratories or medical institutions. Moreover, they are limited to
offline analysis of data on the PC end. There is a lack of real-time monitoring and timely
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feedback on patients’ muscle function and gait posture during rehabilitation [15–17]. This
undoubtedly reduces the convenience of implementing lower-limb rehabilitation plans
and the flexibility of adjusting plans, which may indirectly increase rehabilitation costs
for patients. Therefore, there is a need for a portable miniaturized sEMG collection and
analysis system that can collect data conveniently and offer real-time analysis of collected
sEMG data for patients and rehabilitation teams to make timely adjustments to abnormal
situations [18,19]. The emergence of mobile human–machine data interaction interfaces
caters to this demand. They help in completing action recognition tasks in a more efficient
and simple manner, thereby helping patients recover as soon as possible.

As one of the most widely used mobile devices, smartphones have powerful multicore
processors, internet connection, and efficient operating systems, which can serve as a
convenient platform for point-of-care-testing (POCT). Therefore, in this work, we intro-
duced smartphones to develop a portable sEMG sensor monitoring and analysis system for
lower-limb rehabilitation. The system consists of two main components: (1) a self-made dis-
tributed small sEMG device paired with a Bluetooth low-energy (BLE) module specifically
designed for continuous signal monitoring, which can collect and transmit data of subjects
during normal walking; (2) an Android-based application (app), with multiple functions
for recording, displaying, and analyzing sEMG signals in real time, which can also output
action recognition results, allowing users or caregivers to easily access information through
graphics.

To build the dataset required for this recognition model, an experiment was designed
to collect the sEMG signal segment of different lower-limb actions. To cater to the demands
of lower-limb rehabilitation, six actions (kick, toe off, heel off, toe off and heel up, step back
and kick, and full gait) were designed to form the experimental action set. These six actions
transition from simple single-muscle movements to coordinated movements of multiple
muscle groups, ultimately achieving continuous walking. The gradient motion design from
simple to difficult can help rehabilitation personnel gradually recover lower-limb muscle
function and gait coordination and can thus be used to achieve more comprehensive and
effective rehabilitation training.

A convolutional neural network (CNN) was introduced as a representative of deep
learning models. Its ability to automatically extract features caters to the needs of complex
high-dimensional data processing, which has shown excellent performance in multiple
human action recognition (HAR) studies [20–22]. Even in the face of a large amount of
unlabeled data, CNNs can still achieve accurate classification. Additionally, CNNs have out-
standing transferability, which can be transferred to new activities without labelling [23,24].
Also, a specific method for capturing muscle contraction starting point was proposed to
achieve precise segmentation of sEMG signal caused by single action, which bridges the
differences in individual actions, and pursue the common features of the same action sEMG
initial response point, thereby improving the quality of the dataset, and further optimizing
the training results of the CNN. Then, an easy-to-use human–machine interaction interface
was built into the app, where the CNN can be invoked to enable the smartphone to display
action recognition results online.

The results indicate that the system can provide rich information directly related to
body activities, which are references for improving lower-limb rehabilitation training. The
feasibility of the monitoring system was verified through experimental testing.

2. Materials and Methods
2.1. sEMG Signal Acquisition Device

In this work, a highly reliable distributed wearable sEMG device was developed,
which consists of one master controller and three slave computers. The master controller
c, an Internet of Things chip ESP32 module (Espressif, Shenzhen, China) that integrates
Bluetooth and a high-performance dual-core processor, responsible for receiving and
preprocessing sEMG signals, which is connected to the terminal directly, while each slave
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computer consists of three parts: a power supply and signal transmission board, an sEMG
signal preprocessing board, and a commercial disposable electrode.

The power supply and signal transmission board mainly include ESP32, TP5400
(lithium battery charge and discharge management chip), and their peripheral circuits.
Among them, the power management module enables the device to work independently
and stably. In the wireless communication module, ESP-NOW, a low-power wireless
communication protocol from Espressif was introduced. In the design of the sEMG signal
preprocessing board, to unify the intensity differences of different muscles’ sEMG signal,
which would make it hard to observe signals at the same level, an amplifier (with three
operational amplifiers (AD8236ARMZ, AD8646ARMZ, AD8648ARUZ) as the core, com-
bined with peripheral circuits) was configured in the sEMG signal preprocessing board to
adjust the output gain of the sEMG signal so that the response curve thresholds of different
channels were basically on the same magnitude. The electrode, the lower part, can be
attached to the subject’s skin through adhesive foam and flexible conductive paste, while
the upper part is connected to the metal buckle to complete signal transmission.

When the target muscle contracts, nerve impulses in the muscle fibers cause the muscle
cells to release an electrical charge, generating a weak electrical signal. The sensing system,
with a differential mode input impedance of 110 GΩ, a common-mode rejection ratio of
110 dB, and a sampling rate of 500 Hz, can sense the weak potential changes on the muscle
surface by means of the attached Ag/AgCl electrodes. The quality of the sEMG signals
can be further improved using a differential circuit and a signal amplifier. Then, the signal
transmission board transmits the signal to the master controller through the ESP-NOW
communication protocol. After receiving the data from each slave computer, the master
controller integrates signals and sends them to the terminal (PC or smartphone) through a
Bluetooth module for display and analysis (as shown in Figure 1).
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Figure 1. Portable electromyographic device and its communication method.

2.2. Data Acquisition
2.2.1. Selection of Muscle Groups

Taking walking posture during limb rehabilitation as reference, multiple muscle
groups in the legs during normal walking were selected. As shown in Figure 2, a complete
gait can be divided into eight stages (a–h), in which stage (a) is mainly the contraction
of the gluteus medius and tibialis anterior muscles; stage (b) is mainly the contraction of
the quadriceps femoris muscle; stage (c) and (d) are mainly the contraction of the muscles
behind the lower leg; stage (e) is mainly the contraction of the rectus femoris, plantaris
flexor, and toe flexion muscles; stage (f) is mainly the contraction of the iliopsoas muscles;
and stage (g) and (h) are mainly the contraction of the quadriceps femoris muscle, biceps
femoris muscle, and tibialis anterior muscles. In order to obtain strong and highly correlated
sEMG signals, it is required to select muscle groups as large as possible, which should be
located on the surface, and easy-to-place electrodes. Three muscle groups, rectus femoris,
anterior tibialis, and gastrocnemius muscle, were selected from the above muscle groups.
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Figure 2. Illustration of a complete gait cycle [25].

2.2.2. Selection of Collection Points

In this paper, three electrodes were required to measure a single muscle area. Two
electrodes were placed on the selected muscle, and the other electrode, as reference, was
placed where the influence by muscle activity is small. Based on the analysis of human
muscle tissue, the knee, tibia, and ankle regions were selected as the positions for reference
electrodes, the locations of the other two electrodes attached to the surface of three muscle
groups, wherein L1–3 successively represents the locations of the action electrodes attached
to the rectus femoris, anterior tibialis, and gastrocnemius muscles; R1–3 sequentially repre-
sents the reference electrode positions of the three muscle groups (as shown in Figure 3
(presented from triple perspectives of front, side, and back)).
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For different muscle groups, the direction of attachment of the sEMG electrodes (the
line between the two action electrodes) should be parallel to the muscle fibers, whereas
the position of attachment of the electrodes (the position of the electrode center) should
be located in a line connecting the beginning and the end of the muscle, whose precise
position can be determined by the longitudinal and transversal directions: longitudinally,
the electrodes should be placed at the midway point between the most distal motor endplate
area and the distal tendon; transversally, the electrodes should be placed on surfaces far
away from the edges of the muscles so that the geometrical distances from the target muscle
to the other muscles can be maximized.

2.2.3. Experiments

Twelve healthy college student subjects (4 females and 8 males, from Jilin, China)
were invited to participate in the experiments. All subjects’ leg muscle strength levels
were 3 and above. Their age range is 23–28 years; their height range is 175–182 cm, and
weight range is 52–98 kg. The subjects, right-handed and with no known neuromuscular or
sensory disorder, were previously informed of the specifics of the experiment and signed an
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informed consent form. The experiment is divided into two parts. Experiment 1 collected
the sEMG signals of a single action, while experiment 2 collected a test dataset closer to the
real control scenario.

In Experiment 1, 8 subjects (A1–A8) were selected for 4 experiments each, with elec-
trodes attached to the surface of the designated muscles at least 6 h apart. During this
period, the subjects were required not to engage in vigorous exercise to ensure that the
muscles returned to the same initial state. In a single experimental cycle, each subject was
required to perform action 1–6 (action requirements are shown in Figure 4) 120 times, and
each action needed to be completed within the execution cycle (5 s). After that, the subject
was allowed to rest for 15 min.
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In Experiment 2, 6 subjects (A1, A2, B1–B4) were selected to perform random actions
100 times. At each moment, the subject performs a single random action based on the
reported information.

2.3. Smartphone-Based sEMG Signal Analysis System

Considering the convenience and widespread acceptance of smartphones, an app for
sEMG signal monitoring and analysis was developed. The software processing framework
is shown in Figure 5. After the electrodes are attached to the target muscle of the subject, the
collection device and smartphone-based app work separately. EMG data are obtained from
the slave computers; then, the real-time monitoring interface runs, and the slave computers
send the data to the master controller through ESP-NOW. After that, the Bluetooth module
inside the master controller starts and sends the integrated 3-channel data to the data
preprocessing module. Then, the data buffer completes the storage of real-time data, and
the control module of the monitoring interface completes the display of sEMG time-varying
data. In the data processing part, the filter completes the filtering of peak noise. Meanwhile,
the users can activate the action capture function through the button on the GUI interface,
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which could capture a single action signal segment through feature extraction and storage
the data before sending it to the control module. The control module further analyzes
the data segment, displays the waveform of the single action data segment and the action
recognition result.
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2.4. Data Processing

In this work, data processing involves the following steps: first, the sEMG signals
obtained in experiment are divided into a set of single action signal segments by using
muscle contraction starting point capture method; second, the data are filtered to remove
high-frequency harmonic components; finally, all samples are integrated and the outliers
are removed from the sEMG data.

2.4.1. sEMG Data Partition Based on Muscle Contraction Starting Point Capture Method

A statistics-based method was proposed to capture the start point of muscle contrac-
tion from EMG data. The proposal of this method draws on the 3σ criterion of normal
distribution, and a similar approach has been applied to analyze human physiological
signals [26]. According to the 3σ principle of normal distribution, the likelihood of an
event occurring in the range [µ− σ, µ + σ] is 68%, the likelihood of an event occurring in
the range [µ− 2σ, µ + 2σ] is 95%, and the likelihood of an event occurring in the range
[µ− 3σ, µ + 3σ] is 99.7%, which encompasses virtually all possibilities. In this work, com-
bining probabilistic theory and mathematical statistics, the dispersion of the muscle in the
resting state is regarded as the mean µ of a normal distribution, the mean of the standard
deviation of all the windowed sEMG data is taken as σ, and the data exceeding 3σ are
the anomalous datapoints (the onset nodes of the muscle’s stretching and contraction). In
the actual data processing process, given the individual variability, we then proposed an
adaptive capture factor θ to optimize the capture range, which resulted in the final capture
principle. The start point is used as the reference point for extracting segments from sEMG
data. The main steps are as follows (as shown in Figure 6).

Step 1: The standard deviation of processed sEMG signals for each segment is cal-
culated through a sliding window. The standard deviation calculation method is shown
in Equation (1). Compared to resting state, muscle contraction is more significant during
exercise, which can be observed in sEMG signals. Therefore, the standard deviation of each
window can effectively describe the degree of variation in sEMG signals.

σ =

√
∑l

i=1 (xi − x)2

l
(1)

where xi is the value of each datapoint in the window, x is the mean value of all data in the
window, and l is the number of datapoints in the window.

Step 2: The data within all windows are calculated to form a standard deviation
sequence, where the standard deviation of each subsegment shows the degree of its dis-
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persion on the complete sEMG signal. This provides an important basis for capturing the
initial moment caused by muscle contraction.

Step 3: Based on the dispersion index and the principle of 3σ in normal distribution,
the probability of events occurring in [µ− 3σ, µ + 3σ] is 99.7%, so the values exceeding
3σ are considered outliers. Herein, the mean value of the normal distribution µ is the
dispersion of the sEMG signal segment in the resting state. When the subject executes the
action, the fluctuation data generated by the muscle show different dispersion compared
with the data in the resting state. By setting the capture threshold, the start time of muscle
contraction is captured. The two key parameters, relative dispersion σd and capture factor
θ are introduced, where relative dispersion provides the basic boundary for describing
window differences and prominence, and its calculation method is shown in Equation (2).

σd =

√
∑n

i=1 (σi − σ)2

n
(2)

where σi is the standard deviation of each window, σ is the mean value of the standard
deviations of all windows, and n is the number of all windows.

After obtaining these two key parameters, the response window, the window where
the muscle contraction starts, is finally determined through Equation (3). The center point
of this window is selected as the initial moment of muscle contraction.

Response Windows = {Wk|σk > σ + θ · σd, σk ∈ S} (3)

where Wk is the response window, k is the standard deviation of the kth window, S is the
set of standard deviation sequences, and σ is the mean value of the standard deviation
sequence.

Step 4: After determining the initial moment of muscle contraction, the specified
length of the segment is continuously intercepted based on the execution cycle of different
actions, thereby completing the segmentation task of all sEMG data segments.
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2.4.2. Filtering

High-frequency noise interferes with signals during signal acquisition; it is random
and has no correlation with the response signal. Moreover, the high-frequency noise greatly
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reduces the recognition accuracy. Therefore, a lowpass filter with a cutoff frequency of
50 Hz is used to attenuate high-frequency noise, and a median filter is used to remove out-
liers, reduce artifact interference, and further improve the signal-to-noise ratio of the data.
In this way, relatively smooth signals are obtained. These applied filters are implemented
by using customized scripts in MATLAB (MathWorks, Natick, MA, USA).

2.5. CNN

The precise classification of 6 actions is the core of the entire sEMG analysis system. In
this work, a CNN is used for feature extraction to classify the sEMG signals of given actions.
Instead of relying on the hand-designed features of traditional machine learning algorithms,
a CNN adopts a multilayered neural network structure to autonomously carry out feature
extraction, learning, and hierarchical representation, which enables the model to adapt to
different data situations and is more robust at the theoretical level [27,28]. Additionally,
introducing activation functions makes the model flexible and adaptable when dealing
with complex data in nonideal states (electrode offset, sweat interference), thus making the
whole system better applied in practice.

2.5.1. Network Structure

TensorFlow, the deep learning library, was introduced. The CNN model was built
by using the computing environment provided by Spyder. After data preprocessing, the
experimental data should be processed to make the input size conform to of the model. The
3-channel specified length sEMG data segments are used as inputs, their corresponding
action labels are used as outputs, and sparse categorical cross-entropy is introduced as a
loss function to calculate the cross-entropy loss between the predicted and true labels.

The CNN consists of four convolutional layers and three fully connected layers (as
shown in Figure 7). The first convolutional layer extract local time-domain features from
the sliced sEMG data. Then, higher-level features are extracted through the second, third,
and fourth layers of convolution. Meanwhile, the batch normalization and ReLU activation
functions are used to increase the robustness of the model. After that, the pooling layer is
used to reduce the dimension of each feature map of the input vector. Then, those features
are combined by the last three full connection layers. The dense layer multiplies the feature
tensor and the weight and adds the offset term. The dropout layer randomly zeros some
of the divine elements to prevent overfitting. Finally, the dense layer uses the Softmax
activation function to convert the output value into a probability distribution and output
classification results for 6 different actions. It is worth noting that the pooling layer used
here is a global average pooling of the output of the convolution layer. It has no trainable
parameters, so as to reduce the number of parameters in the full connection layer, improves
the generalization ability of the model, and further reduces the risk of overfitting of the
model.
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2.5.2. Hyperparameter

In the training process, the batch size was 10, the learning rate (LR) was 0.001, and the
epoch was 45. An Adam optimizer was used to optimize convolutional kernel parameters
and update weights. The evaluation metric was accuracy. During training, the model saved
the optimal weights, the weights with the best performance on the validation set through a
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callback function. If the performance of the model on the validation set does not improve
after 12 iterations, the training is be stopped, and the optimal weights are restored.

3. Results
3.1. Original sEMG Data

Taking the raw sEMG training dataset of subject A1 as an example, the sEMG re-
sponse curves for each action in multiple response cycles are shown in Figures S1–S6.
The abscissa in the figure represents time, where the negative value represents the time
before the stopping recording timepoint. The ordinate represents the voltage difference
obtained from two action electrodes, which can be used to represent the intensity of muscle
contraction. It can be observed that during the execution of the actions, the amplitude of
the electromyographic signal may suddenly increase and form a peak. These spikes are
usually short in duration and may exhibit sharp peaks, which are random and have no
correlation with the response signal of the set action.

3.2. Preprocessing Results

After data partition from the original sEMG training data of subject A1 by using the
muscle contraction starting point capture method, the single-action sEMG data segment
was fully extracted. Then, the interference of peak noise was effectively eliminated through
filtering.

As shown in Figure 8 (taking the first four samples of A1 subject performing action 1
as an example), a relatively smooth sample signal was obtained, and good consistency was
shown in multiple single-action data segments.
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3.3. Sample Selection

The original sEMG data contain some samples that deviate significantly from the
standard sample signal. When these nonstandard samples are fed into the model for
training, the CNN recognition model has a larger recognition range for the subject’s actions,
which can lead to misidentification of nonstandard actions. Furthermore, due to the fact
that standardized actions have been set, it can affect the effectiveness of rehabilitation.
Therefore, it is necessary to eliminate nonstandard samples.

As shown in Figure 9, the response intensity recorded from each muscle during
different action execution are different. However, the response trend shows significant
consistency within each segment. Taking actions 2 (toe off) and 4 (toe off and heel off) as ex-
amples (as shown in Figure 9b,d), during the execution of action 2, channel 2, recording the
intensity of rectus femoris contraction, there is a very short duration peak, corresponding
to the brief process of rectus femoris contraction causing the toe off. During the execution
of action 4, channel 2 and channel 3 (tibialis anterior muscle) showed peaks in turn, and
the amplitude of these two channels decreased rapidly. Channel 1 (gastrocnemius muscle)
was almost stable near the baseline because of its minor correlation with this action. In
addition, we also added the sEMG response curves of another subject (A2) in the support
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file (as shown in Figure S7), whose signal trend showed good agreement with that of subject
A1. However, a slight difference in the signal amplitude of the sEMG response between
subjects A2 and A1 during performing actions 2 and 5 can be found, which was caused by
individual muscle strength differences. Typically, in the case of a person of approximate
age, individuals with greater muscular capacity will contract their corresponding muscles
more strongly when performing the same movement, resulting in a greater EMG signal
amplitude [29].
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blue: response curve of sEMG at gastrocnemius muscle).

The stable values (corresponding to resting potential), peaks (corresponding to muscle
contraction ability), and durations (corresponding to the speed of action execution) of the
response waveform within the normal range are beneficial variables for the recognition
model. However, waveforms with significant differences in the number of peaks, duration,
and peak values in the sample are abnormal samples that need to be removed. The
abnormal samples mainly include abnormal response peak size (much larger than the
normal response peak, abnormal response peak (with additional response peaks), and no
response peak (without response during the execution cycle). The waveform diagrams are
shown in Figure S8a–c, which have been removed from the dataset.

3.4. Performance Evaluation

The sEMG data collected through experiments were used to train the CNN recognition
model. The training curve converged, as shown in Figure 10. The highest accuracy rates
during the training phase were 97.96%.
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Figure 10. Training results of CNN sEMG recognition model.

After the training of the CNN recognition model, the confusion matrix was introduced
to evaluate the classification effect of the model. Two groups of data samples were selected
to evaluate the confusion matrix. One is the training set samples, whose results are shown
in Figure 11a. The results can be used to measure the applicability of the CNN recognition
model to the classification of subjects who provide CNN training samples. The second is the
test set samples from the second part of the sEMG signal acquisition experiment, as shown in
Figure 11b. The samples of subjects B1 to B4 in experiment 2 did not participate in the model
training process; the recognition result can used to represent the recognition accuracy of the
model for the action of users who have never used the sEMG recognition system.
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According to the confusion matrix in the Figure 11, the secondary indicators of the
model include accuracy rate, accuracy, precision, recall, and F1 Score. The analysis results
are shown in the Table 1. According to Table 1, the classification accuracy of the model in
both the training and testing sets has reached over 97%, indicating excellent classification
performance of the CNN recognition model.
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Table 1. CNN Recognition Model Evaluation.

Index Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Resting State

Training set

Recall 0.9668 0.9715 0.9377 0.9807 0.9691 0.9996 0.9792
Precision 0.9474 0.9954 0.9791 0.9335 0.9626 1.0000 0.9930
F1 score 0.9570 0.9833 0.9579 0.9565 0.9658 0.9998 0.9860

Accuracy - - - 0.9743 - - -

Test set

Recall 0.9698 0.9810 0.9260 0.9753 0.9635 0.9989 0.9797
Precision 0.9396 0.9866 0.9764 0.9430 0.9557 1.0000 0.9931
F1 score 0.9545 0.9838 0.9505 0.9589 0.9596 0.9994 0.9863

Accuracy - - - 0.9721 - - -

4. Mobile Interface

In this work, Qt, an application development framework was introduced. A software
platform was developed for analyzing sEMG signals by introducing multithreading technol-
ogy [30,31]. Qt provides a rich toolset and class libraries, enabling developers to develop an
app in C++ or other programming languages (such as Python). Its cross-platform characteris-
tics facilitate the deployment of sEMG signal analysis systems on multiple platforms.

The established CNN recognition model is further integrated into the mobile interface.
In addition, the app allows users to observe the activity intensity and feature changes
of lower-limb muscles during action execution, as shown in Figure 12a. This app has
convenient interactive capabilities and is easily accepted by users. Before using the app,
we briefly explained to the subjects the basic functions of the app and how to use it, and
throughout the experimental phase, no subjects were troubled by the use of the app. As
shown in Figure 12b, the application interface consists of three graphical panels and seven
buttons, with a total of five main functions, including Bluetooth communication, filtering,
data export, action capture, and action recognition.
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4.1. Bluetooth Communication

The Bluetooth function in the app interface includes activating Bluetooth communi-
cation, refreshing connectable devices, and connecting to specified devices. As shown in
Figure 12, when the users click the Bluetooth button, the corresponding event processing
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function is triggered. In the event processing function, call the API function to start the
Bluetooth communication function and initialize the Bluetooth adapter. The “Refresh”
button is used to refresh the list of all Bluetooth devices that can be connected within the
communication range, scan the surrounding Bluetooth devices, obtain the list of connected
devices, update the device list or dropdown menu in the application interface, and display
the available devices for selection. The “Connect” button is used to connect the application
to the specified Bluetooth device. When the users select the device to be connected and
clicks the “Connect” button, a connection is established with the selected device. After
successful connection, update the application interface to reflect the connection status and
take subsequent actions.

4.2. Filtering

The median filtering function is introduced into the app, which accepts the original
sEMG data as input and returns the data after median filtering. After receiving the original
sEMG data, it is transferred to the median filter function for processing. The median filter
function filters each datapoint and replaces it with the median value of the data in its
neighborhood. This can effectively eliminate outlier and spikes. Use the drawing module
of Qt to display the filtered sEMG data curve in the app interface. The filtered data were
used to update the plot to display the smoothed curve after median filtering.

4.3. Data Export

The “Save” button can be used to record the time that the button was clicked based on
a timestamp, which is recorded as a node timepoint. At this point, the recording variable is
set to true and data recording begins. During the data acquisition process, the status of the
recording variable is monitored. If the recording variable is true, it indicates that data are
being recorded. Store each collected datapoint in memory or a temporary array until the
“Data export” button is clicked again. When the users click this button, set the recording
variable to false to terminate recording data. Afterwards, convert the previously recorded
data to .CSV format and save it to a file. According to requirements, saved CSV files can be
sent out through network communication protocols (such as TCP/IP) or other appropriate
methods.

4.4. Action Capture

The app obtains original sEMG data from devices through Bluetooth modules. These
data are usually collected continuously in the form of a timeseries. In order to capture EMG
signal segments that execute a single action, the app needs to divide the entire collected
dataset into multiple segments. Using the “Start capture” button, when the triggering
conditions are met, the application starts extracting the current sEMG signal segment,
intercepting a specific time window or index range from the collected data to obtain the
signal segment for executing a single action. In the application interface, the processed
signal segments are displayed for visual observation by users. Additionally, the signal
segment can be saved to a file for future offline analysis.

4.5. Action Recognition

The action capture module processes and encapsulates the captured single-action
segment data and sends the data to the Python script server by using the Bluetooth com-
munication protocol. A server-side script written based on Python can be used to receive
sEMG data sent by the master controller. The socket of Python is used to connect the
server and app. After receiving the data, they are passed to CNN recognition model for
action recognition. After receiving the sEMG data sent by the master controller on the
server, they are input into the trained CNN model for action recognition and the results are
obtained. Then, the result of action recognition is sent back to the app through a Python
script. As shown in Figure 12a, the subject is performing action 2 (toe off), and after the



Biosensors 2023, 13, 805 14 of 16

mobile app captures the information, the model sends the recognition results back to the
app for display with low latency (as shown in Figure 12b).

In summary, this app has practical functions such as monitoring visualization, detailed
recording, transmission, and processing of sEMG data. In addition, the collected data
can be used to further analyze more available information, such as lower-limb action
recognition results, standardized action execution prompts, and so forth. Based on this, a
smartphone-based sEMG signal analysis system was successfully established by combining
self-made collection devices.

5. Conclusions

In this work, a wearable sEMG sensing module was developed, which utilizes a
distributed multichannel communication system and wireless communication module to
achieve direct connection between the detection device and the mobile phone, enabling the
system to achieve real-time monitoring of sEMG data in rehabilitation scenarios. At the same
time, a specific sEMG response timepoint capture method was proposed to adapt to the
differences in muscle responses among different subjects, providing an effective dataset for
CNN-based lower-limb action recognition models, thereby achieving feature extraction of
complex sEMG signals and completing the classification task of six different leg postures.
The results showed that the recognition accuracy during the training period was 97%. Subse-
quently, by using a CNN, the smartphone was equipped with action recognition function
based on real-time sEMG signals, which further provided substantial assistance for portable
electromyographic signal analysis research and necessary data support for patient behavior
evaluation during the rehabilitation process. Although the existing structural volume of the
sEMG instrument cannot meet the needs of sEMG signal detection for shallow small muscle
groups, the volume needs to be further reduced to expand its application scenarios.

In conclusion, this work carried out experimental flow design, software, and hardware
development in the context of rehabilitation research, and initially validated the idea of
real-time action recognition based on sEMG signals on smartphones. However, in order
to indeed apply this system to the disabled population in the future, it is necessary to
increase the experimental samples of disabled people to improve the portability of the
CNN model. However, the ability of real-time collection and excellent performance in
analyzing sEMG data of this system gives us the confidence to believe that the continuous
monitoring system of physiological electrical signals based on smartphones will become an
important development trend in HAR research. Furthermore, it will be used as a powerful
booster to promote the wider application of related research in the healthcare field.
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response curve of sEMG at gastrocnemius muscle). Figure S5. The original sEMG time-varying
curve of A1 subject executing action 5 (red: response curve of sEMG at rectus femoris muscle; black:
response curve of sEMG at tibialis anterior; blue: response curve of sEMG at gastrocnemius muscle).
Figure S6. The original sEMG time-varying curve of A1 subject executing action 6 (red: response
curve of sEMG at rectus femoris muscle; black: response curve of sEMG at tibialis anterior; blue:
response curve of sEMG at gastrocnemius muscle). Figure S7. Filtered response curve of sEMG
signals of subject A2 executing each action (red: response curve of sEMG at rectus femoris muscle;

https://www.mdpi.com/article/10.3390/bios13080805/s1
https://www.mdpi.com/article/10.3390/bios13080805/s1
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black: response curve of sEMG at tibialis anterior; blue: response curve of sEMG at gastrocnemius
muscle). Figure S8. Abnormal sample waveform.
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