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Abstract: It is of great importance to have sensitive and accurate detection of cis-diol-containing bio-
logically related substances because of their important functions in the research fields of metabolomics,
glycomics, and proteomics. Boronic acids can specifically and reversibly interact with 1,2- or 1,3-diols
to form five or six cyclic esters. Based on this unique property, boronic acid-based materials have
been used as synthetic receptors for the specific recognition and detection of cis-diol-containing
species. This review critically summarizes the recent advances with boronic acid-based materials
as recognition elements and signal labels for the detection of cis-diol-containing biological species,
including ribonucleic acids, glycans, glycoproteins, bacteria, exosomes, and tumor cells. We also
address the challenges and future perspectives for developing versatile boronic acid-based materials
with various promising applications.
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1. Introduction

In terms of sensitivity and selectivity, the recognition element is an important compo-
nent of biosensors for the detection of biological-related substances, such as amino acids,
nucleosides, glycans, proteins, antibodies, nucleic acids, exosomes, and cells [1,2]. The
specific recognition of these species is classically based on antigen-antibody and aptamer-
target interactions [3]. However, these bio-recognition elements are always expensive and
require demanding storage and detection conditions. Therefore, scientists have devoted
much effort to developing effective artificial/synthetic receptors in place of the biological
recognition elements [4]. Among them, boronic acids have attracted considerable interest
due to their specific sugar-responsive properties [5]. The principle of molecular interac-
tions in boronate-affinity materials is the reversible covalent reaction between boronic
acid ligands and cis-diol groups to form five- or six-membered cyclic esters in an alkaline
aqueous solution [6]. The change of the surrounding pH into acid and the presence of other
cis-diol-containing compounds can dissociate the boronate esters, leading to the release of
the captured targets.

Boronate-affinity materials were primarily employed to immobilize and isolate cis-
diol-containing compounds ten years ago in combination with traditional detection tech-
niques [7–10]. For instance, boronic acid-modified columns and beads have been used to
enrich glycoproteins for mass spectroscopy-based glycoproteome analysis [11–14]. Mean-
while, boronic acid derivatives with fluorescent or electrochemical properties are used
to detect small cis-diol-containing species through the boronate-affinity-induced signal
change [15]. Additionally, boron compounds with Lewis acid features can react with
nucleophiles such as fluoride ions (F−) and cyanide ions (CN−) [16–19]. Phenylboronate
compounds can be oxidized into phenol by hydrogen peroxide (H2O2). Based on this
phenomenon, boronic acid derivatives have been utilized to determine F−, CN−, H2O2,
and carbohydrates (e.g., glucose, fructose, and galactose) [20–24]. The analytical properties
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of boronate-affinity materials (e.g., pH stability, binding affinity, and sensing selectivity)
are dependent upon the structure of boronic acid ligands. When the surrounding envi-
ronmental pH is greater than the pKa, boronic acid in the form of a tetragonal boranate
anion (sp3) can combine with cis-diol to produce five or six-membered cyclic eater bond.
When the pH is acidic, the complex is decomposed because of the limited binding between
cis-diol and boronic acid in a trigonal configuration (sp2) [25,26]. Nevertheless, the high
binding pH is unfavorable for the actual physiological detection application. To improve
the sensing performances, the fundamental issues have been widely investigated and
addressed in the past decade [27]. For example, three types of boronic acidderivatives
have been reported to exhibit low pH-binding ability and successfully used to prepare
boronate-affinity materials, including electron-withdrawing groups-derived, Wulff-type
and heterocyclic boric compounds [28–31]. The interactions between different boronic
acidderivatives and cis-diol-containing molecules have been investigated by various ana-
lytical methods, such as affinity capillary electrophoresis and surface plasmon resonance
(SPR) [32–34]. Currently, a broad variety of boronate-affinity materials (e.g., macroporous
monoliths, self-assembled materials, mesoporous materials, nanoparticles, molecularly
imprinted polymers (MIPs), and polymer brushes) have been developed for the immo-
bilization and separation of various cis-diol-containing compounds [35–45]. Especially
boronate-affinity-oriented surface imprinting methods have been well used in the isolation
and immobilization of glycopeptides and glycoproteins because of their attractive features,
such as excellent specificity, enhanced binding strength, widely applicable binding pH, and
good tolerance for non-target cis-diols [46–51].

Nowadays, boronic acid derivatives and boronate-affinity materials have been widely
used in various applications, such as targeted drug delivery, drug discovery, catalysis,
and biosensing [52–57]. With the advancement of nanotechnology and bioanalytical tech-
niques, nanomaterials functionalized with boronic acid groups have been widely utilized
to construct different methods for the detection of cis-diol-containing biological-related
substances, including ribonucleic acids, glycans, glycoproteins, bacteria, exosomes, and
tumor cells [58]. For example, Gao et al. reported an integrated surface-enhanced Ra-
man scattering (SERS) platform for the detection of bacteria using boronic acid-modified
plasmonic gold film to capture bacteria [59]. As one type of glycoprotein, antibodies
with carbohydrate moieties in the constant domain Fc can be immobilized on the surface
of boronic acid-modified substrates or nanomaterials in a site-specific and self-oriented
manner [60–62]. Moreover, versatile techniques combined with nanomaterials have been
applied to the dynamic and real-time imaging of glycosylation and glycoproteins on living
cells, such as fluorescence microscopy, atomic force microscopy, and dark-field optical
microscopy [63,64]. Boronic acid-based polymeric hydrogels have been synthesized to
fabricate glucose-responsive magnetic acoustic resonance sensors or soft sensors for glucose-
stimulated insulin release [65,66]. Moreover, with the fast growth of nanoengineering and
biomimetic manufacturing, boronic acid-based materials and sensing devices have been
constructed for reliable, user-friendly, non-invasive, and cheap healthy diagnostics and
biomedical applications [67,68]. Several professional reviews in this area have been re-
ported [9,69–74]. For example, the advances in boronic acid-based optical chemosensors
were summarized [75–77]. Sun et al. reviewed the development of boronic acid derivatives
for fluorescence imaging of carbohydrates [78]. Anzai et al. reported the progress in elec-
trochemical biosensors based on phenylboronic acid derivatives [79]. Li et al. addressed
the recent progress of boronic acid-based electrochemical sensors for the detection of bio-
logical analytes [80]. Liu’s group published several review papers about the applications
of boronate-affinity materials for the separation and detection of cis-diol-containing com-
pounds [81–84]. Recently, plenty of novel boronic acid-based molecules and nanomaterials
have been exploited to develop different sensing platforms. In this work, we aim to give a
comprehensive summary of the development of biosensors with boronic acid-based materi-
als as recognition elements and signal labels. We focus on the roles of boronic acid-based
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materials in biosensor construction and classified this review into five parts according to
the types of detection techniques.

2. Boronate-Affinity-Based Electrochemical Biosensors

Electrochemical biosensors have been widely used in environmental monitoring,
food safety, and disease diagnosis because of their excellent properties, such as fast re-
sponse, high sensitivity, and low cost. At first, different boronic acid derivatives with an
electroactive moiety (e.g., ferrocene, viologen, and triphenylmethane) were elaborately
synthesized for the development of sensors for saccharide detection [85–87]. The binding
of them with saccharides led to a shift in oxidation potential [88]. Afterwards, boronic
acid derivatives were utilized as synthetic receptors to modify the sensor electrodes for
the capture of cis-diol target substances [89–93]. For example, Tang developed a nanopore-
based single-entity electrochemical technique for label-free detection of single-molecule
glycoprotein-boronate affinity [94]. Different nanomaterials have been used to modify the
electrodes in combination with boronate-affinity interactions, enhancing the sensitivity of
label-free electrochemical biosensors, such as gold nanoparticles (AuNPs) and graphene
oxide (GO) [95–97]. Typically, Thiruppathi et al. developed a disposable electrochemical
biosensor for the detection of glycated hemoglobin based on boronic acid derivative and
multiwalled carbon nanotube-modified screen printed carbon electrode (SPCE) [98]. Hu
et al. fabricated a biomimetic boronic acid-modified graphene-based 3D scaffold for cell
culture and electrochemical monitoring [99]. The capture of the target cis-diol substance
can inhibit electron transfer at the electrode/solution interface, resulting in a change in the
electrochemical signal. However, the low discrimination ability of boronic acid toward
1,2- and 1,3-diol dramatically limits the selectivity of such methods against a range of
saccharides and glycoproteins [100].

To avoid nonspecific binding and improve selectivity, many efforts have been devoted
to the fabrication of sandwich-type biosensors, in which cis-diol-containing targets were
captured by a recognition element-modified electrode and then recognized with boronic
acid-modified signal labels, providing a detectable electrochemical signal. For instance,
boronate-affinity controllable-oriented imprinting can be utilized for surface printing and
molecular immobilization on the boronic acid-modified electrode [101]. In this part, we
mainly summarized the progress of electrochemical biosensors with boronic acid-based
electroactive molecules and nanomaterials as recognition elements and signal labels to
produce electrochemical responses (Table 1).

2.1. Boronic Acid-Based Electroactive Molecules for Electrochemical Biosensors

Boronic acid modified with a redox-active moiety (e.g., ferrocene, viologen, and triph-
enylmethane) can be directly used as an electroactive label to recognize the cis-diol unit of
the target that was captured by the recognition element-modified electrode [102,103]. For
example, Hu and co-workers have reported several electrochemical biosensors for the detec-
tion of biomolecules using 4-(ferrocenylacetamido)phenyl)boronic acid (FcPBA) as the elec-
troactive label, including glycoproteins, DNA, and lipopolysaccharides (LPSs) [104–107].
One of their works shown in Figure 1A is the electrochemical aptasensing of LPS through
the boronate-affinity interaction [107]. LPS was captured by the aptamer immobilized
on the electrode. The polysaccharide chain of LPS consisted of hundreds of cis-diol moi-
eties, which allowed for the capture of electroactive FcPBA molecules via the formation
of boronate ester bonds. The site-specific decoration of target LPS with hundreds of sig-
nal tags resulted in the generation of an amplified electrochemical signal. Compared
with conventional enzyme-based methods, this method showed advantages of unrivaled
simplicity, rapidity, and cost-effectiveness. In addition, our group developed magnetic bead-
based electrochemical and colorimetric methods for the determination of poly(ADP-ribose)
polymerase-1 (PARP-1) using ferroceneboronic acid (FcBA) and 4-mercaptophenylboronic
acid (MPBA) as signal probes [108]. As illustrated in Figure 1B, after the capture of PARP-
1 by the MB-dsDNA, auto-PARylation was triggered in the presence of β-nicotinamide
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adenine dinucleotide (NAD+). The formed poly(ADP-ribose) (PAR) polymer consisted
of abundant ribose units and covalently adsorbed FcBA or MPBA through the formation
of boronate ester bonds. The change in the level of FcBA or MPBA in solution could be
readily determined by measuring the electrochemical signal of FcBA or by monitoring the
MPBA-induced aggregation and color change of AuNPs. Similarly, circulating tumor cells
and Escherichia coli with plenty of sugar units on their surfaces have been determined by
electroactive boronic acid derivatives with the aid of magnetic nanomaterials [109,110].
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Figure 1. (A) Schematic illustration of the boronate-affinity-based amplified electrochemical LPS
aptasensor [107]. Copyright 2022, American Chemical Society. (B) Schematic illustration of magnetic-
based electrochemical and colorimetric strategies for PARP-1 detection by sequestrating FcBA or
MPBA [108]. Copyright 2021, Elsevier.

The limited number of sugar units on the targets will result in the capture of a small
number of electroactive molecules, thus limiting the detection sensitivity. Nanomateri-
als with a high surface area can act as nanocarriers to load boronic acid derivatives and
electroactive molecules, amplifying the electrochemical signals [111–114]. For this consid-
eration, our group developed an electrochemical biosensor for miRNA detection based
on the formation of boronate ester bonds and the dual-amplification of AuNPs [115]. As
shown in Figure 2A, miRNA containing a cis-diol group at the end of the chain was la-
beled with MPBA-AuNP through the covalent interaction between boronic acid group
in MPBA-AuNP and cis-diol in miRNA. Furthermore, dopamine (DA)-modified AuNPs
(DA-AuNPs) were tethered to the surface of MPBA-AuNPs via the interactions between
boronic acids and diphenols. A large number of electroactive DA molecules could produce
an amplified voltammetric signal. The boronate-affinity-based dual-amplification strategy
has also been applied to sandwich-like electrochemical detection of glycoproteins [116].
In addition, You et al. developed an electrochemical platform for horseradish peroxidase
(HRP) detection based on boronate-affinity-based MIP, 6-ferrocenylhexanethiol (FcHT), and
MPBA-modified SiO2@Au nanocomposites (SiO2@Au/FcHT/MPBA) [117]. As displayed
in Figure 2B, after the capture of glycoprotein (HRP) onto the MIP film-modified electrode,
SiO2@Au/FcHT/MPBA were added to react with the cis-diols in HRP, generating a strong
electrochemical signal.

Enzymatic reactions have been well combined with redox cycling for signal amplifi-
cation [118]. Boronic acid derivatives and enzymes can be simultaneously loaded on the
surface of nanomaterials. Our group developed an electrochemical biosensor for the detec-
tion of miRNAs based on the triple signal amplification of AuNPs, alkaline phosphatase
(ALP), and the redox cycling reaction [119]. As shown in Figure 3, MPBA-biotin-AuNPs
were used to label miRNAs through the formation of boronate ester bands. Furthermore,
the streptavidin-conjugated ALP (SA-ALP) conjugates were attached to the biotin-peptide-
modified AuNPs via the SA-biotin interactions. ALP could catalyze the hydrolysis of the
electrochemically inactive substrate p-aminophenyl phosphate (p-APP) into the electroactive
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product p-aminophenol (p-AP). The oxidized p-AP could be cycled by the reducing reagent
tris(2-carboxyethyl)phosphine (TCEP), thus enabling an increase in the anodic current.
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2.2. Boronic Acid-Based Nanomaterials for Electrochemical Biosensors

Nanomaterials with enzyme-like characteristics (nanozymes) can be used as substi-
tutes for natural enzymes to promote the sensing performance of electrochemical biosen-
sors [120–123]. For this view, Son et al. developed a boronate-affinity sandwich bioassay
for glycated albumin using 3-aminophenylboronic acid (APBA)-modified Prussian blue
nanozymes (Figure 4A) [124]. In this study, glycated albumin was captured by boronated
agarose beads and then labeled with APBA-modified nanozymes. After the formation
of sandwich complexes, nanozymes catalyzed the oxidation of TMB by H2O2, and the
oxidized TMB products were determined by differential pulse voltammetry (DPV). In
addition, DNA techniques such as hybridization chain reaction (HCR), rolling amplifica-
tion reaction, and strand displacement reaction can be integrated with electrochemical
biosensors for signal amplification. Sun et al. developed an ultrasensitive microfluidic
paper-based analytical device (µPAD) for the electrochemical detection of glycoprotein oval-
bumin based on MIP film and boronate-affinity interaction [125]. As displayed in Figure 4B,
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SiO2 nanoparticles were sequentially modified with AuNPs, MPBA, and capture DNA
(SiO2@Au/dsDNA). After the HCR reaction in the presence of two hairpin DNA strands, a
large number of CeO2 NPs were linked to the dsDNA polymers through the amidation reac-
tions (SiO2@Au/dsDNA/CeO2). The µPAD surface was decorated with Au nanorods and
MPBA to form boronate-affinity-based MIPs with double recognition capacity. Ovalbumin
was captured by MIPs and then labeled with SiO2@Au/dsDNA/CeO2 through boronate-
affinity interactions. The redox-active CeO2 nanoparticles catalyzed the conversion of
1-naphthol to naphthoquinone, producing an amplified electrochemical signal.
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Due to the high abundance of metal ions, nanomaterials can be electrochemically
decomposed into metal ions in acid solution and then electrochemically reduced, pro-
ducing a strong redox peak for signal amplification. In this aspect, Amor-Gutiérrez et al.
used Ag2S QDs as electrochemical labels to determine Escherichia coli [126]. Song et al.
reported a sandwich-type electrochemical immunosensor for carcinoembryonic antigen
(CEA) detection using boronic acid-functionalized AuNPs-loaded nanocomposites as sacri-
ficial labels [127]. As illustrated in Figure 5, magnetic hollow magneticsilica coated with
nickel/carbon (Ni/C@SiO2) nanocomposites were modified with anti-CEA as the immune
sensing platforms. CEA was captured and then recognized by boronic acid-functionalized
CPS@PANI@Au. After the magnetic separation, the sandwich-type complexes were trans-
ferred onto the electrode surface. After 120 s of pre-oxidation in 0.1 M HCl solution at
1.25 V, AuNPs were oxidized to Au3+ ions and the reduction signal was measured by DPV.

Silver and copper nanoparticles (AgNPs and CuNPs) can be directly electrochemically
oxidized to generate a well-definedredox peak [128,129]. Our group have developed several
electrochemical biosensors for the determination of miRNAs and glycoproteins based
on MPBA-induced in-situ formation of AgNPs aggregates for signal amplification [130].
As shown in Figure 6A, miRNAs captured by the DNA-modified electrode could be
labeled with MPBA via the formation of boroante esters, and then the thiol group in
MPBA could capture citrate-capped AgNPs through Au-S interaction. Meanwhile, free
MPBA molecules in solution induced the in-situ assembly of AgNPs on the electrode
surface via the covalent interactions between the α-hydroxycarboxylate of citrate and
the boronic acid group of MPBA and the formation of Ag-S bonds. The oxidation of
AgNP networks produced a significantly amplified electrochemical signal. The strategy
based on MPBA-induced in-situ formation of AgNP aggregates on the electrode surface
was further used to detect glycoproteins and enzymes [131,132]. For instance, Xia et al.
reported electrochemical bioassays of tyrosinase and protease (thrombin) based on the
MPBA-induced in-situ formation of AgNPs aggregates [133]. As displayed in Figure 6B,
tyrosinase could catalyze the hydroxylation of tyrosine residue in the peptide modified
on the electrode surface. Furthermore, the generated o-diphenolmoieties were labeled
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by MPBA/AgNPs, producing a strong electrochemical signal. However, thrombin could
catalyze the cleavage of peptides, thus inhibiting the formation of MPBA/AgNPs networks
on the electrode surface.
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In contrast to noble metal nanoparticles, CuNPs are much cheaper, and their oxidation
peak potential is well separated from that of AgNPs. Thus, CuNPs have been used as
electrochemical tracers for the detection of targets. Wei et al. developed an electrochem-
ical immunosensor for the determination of the alpha fetoprotein-L3 (AFP-L3) isoform
ratio (AFP-L3%) using MPBA-Cu NPs and Lens culinaris agglutinin (LCA)-AgNPs as
electroactive tags [134]. As illustrated in Figure 6C, after the capture of AFP, MPBA-Cu NPs
were used to label the total AFP through the interaction between the boronic acid group
and carbohydrate. LCA-AgNPs were used to specifically bind with the fucose of AFP-L3.
Based on the independent oxidation signals of CuNPs and AgNPs, the concentrations of
AFP and AFP-L3 have been simultaneously quantified. To improve the sensitivity and
accuracy, An et al. developed a ratiometric electrochemical biosensor for the detection
of exosomal glycoproteins using MPBA-modified core-shell nanoparticles of silica-silver
(MPBA-SiO2@AgNPs) as signal labels [135]. SiO2 was used to carry the CD63 aptamer and
N-(2-((2-aminoethyl)disulfanyl)ethyl) ferrocene carboxamide (FcNHSSNH2). The nanocom-
posites were immobilized on the surface of GO-cucurbit[7] (GO-CB[7])-modified electrode
through the host-guest interaction between Fc and CB[7]. After the capture of exosomes
by CD63 aptamers, MPBA-SiO2@AgNPs were introduced to identify glycoproteins on the
exosome surface. A large amount of AgNPs produced an amplified electrochemical signal
with FcNHSSNH2 as the internal reference molecule.

As a typical class of crystalline porous materials, metal-organic frameworks (MOFs)
are self-assembled from metal ions/clusters and organic ligands. Through the elegant
design of electroactive building blocks, MOFs can be directly used as signal probes in
electrochemical bioassays for signal amplification [136,137]. Very recently, we reported an
antibody and enzyme-free electrochemical biosensor for the determination of recombinant
glycoproteins based on nitrilotriacetic acid-nickel ion (NTA-Ni2+)-modified magnetic beads
(MBs-NTA-Ni2+) and 4-formylphenylboric acid (FPBA)-functionalized Cu-MOFs (FPBA-
Cu-MOFs). As shown in Figure 6D, recombinant human erythropoietin (rhuEPO) was
captured by MBs-NTA-Ni2+ through the sequential chemical recognition of NTA-Ni2+ and
the hexahistidine (His6) tag on the target protein. After magnetic separation, FPBA-Cu-
MOFs were attached to the target through the interaction between the boric acid group
of PFBA and the glycan residue on rhuEPO. The magnetic sandwich conjugates were
transferred onto the electrode with the aid of a magnet. A strong DPV signal was obtained
from the electrochemical reduction of abundant Cu2+ ions in the MOFs.
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Table 1. Analytical performances of various electrochemical biosensors with boronic acid-based
materials as recognition elements and signal labels for the detection of ribonucleic acids, glycoproteins,
bacteria, exosomes, and tumor cells.

Receptors Target Signal Label Linear Range LOD Ref.

PNA DNA FcPBA 1 × 10−5–10 nM 2.9 fM [104]
Aptamer Mucin 1 FcPBA 5 × 10−2–50 U/mL 0.021 U/mL [105]
Aptamer LPS FcPBA 1 × 10−3–1 ng/mL 0.34 pg/mL [107]
dsDNA PARP-1 FcBA 0.1–50 U 0.1 U [108]

Aptamer CTCs FcBA 50–2 × 104 cells 50 cells [109]
IgY E. coli FcBA 10–108 CFU/mL 3 CFU/mL [110]

Aptamer Thrombin Fc-MMA-based
polymer 5 × 10−2–100 pM 35.3 fM [106]

Aptamer CEA MPBA/Thi/SiO2 1 × 10−3–10 ng/mL 0.49 pg/mL [111]
Biotin Avidin Fc/MPBA-AuNPs 0.75–19.6 pM 0.2 pM [112]

Aptamer V.P AuNPs/FcHT/MPBA 10–109 CFU/mL 3 CFU/mL [114]

DNA miRNA-21 MPBA-AuNPs and
DA-AuNPs 0.1–10 pM 45 fM [115]

Aptamer PSA MPBA-AuNPs and
DA-AuNPs 0.125–3.65 pM 50 fM [116]

MIP HRP SiO2@Au/FcHT/MPBA 1 × 10−3–100 ng/mL 0.57 pg/mL [117]

Aptamer rHuEPO MPBA-biotin-AuNPs
and ALP 0.02–2 pM 8 fM [118]

DNA miRNA-21 APBA-biotin-AuNPs
and ALP 0.01–5 pM 3 fM [119]

APBA glycated albumin APBA-PBNPs 5 × 10−3–1 mg/mL 3.47µg/mL [124]
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Table 1. Cont.

MIP OVA MPBA-
SiO2@Au/dsDNA/CeO2

1–1 × 106 pg/mL 0.87 pg/mL [125]

Antibody CEA BA-CPS@PANI@Au 6 × 10−3–12 ng/mL 1.56 pg/mL [127]

Annexin-V apoptotic Jurkat
cells

ABA-AuNPs and
silver 1 × 102–3.5 × 103 cells 38 cells [129]

DNA miRNA-21 MPBA and
citrate-AgNPs 0.1–50 fM 20 aM [130]

Aptamer PSA MPBA and
citrate-AgNPs 0.5–200 pg/mL 0.2 pg/mL [131]

Peptide Tyrosinase and
thrombin

MPBA and
citrate-AgNPs 1 × 10−3–0.5 mU/mL and 0.025–5 ng/mL

0.1 nU/mL and
0.02 ng/mL [133]

Antibody AFP-L3 and total
AFP

MPBA-CuNPs and
LCA-AgNPs 50–1 × 105 pg/mL and 0.4–1 × 103ng/mL 40 and 10 pg/mL [134]

Aptamer Exosomal
glycoprotein MPBA-SiO2@Ag 4.2 × 102–4.2 × 109 particles/µL 368 particles/µL [135]

NTA-Ni2+ rhuEPO FPBA-Cu-MOFs 0.01–50 ng/mL 5.3 pg/mL [138]

Abbreviation: PNA, peptidenucleic acid; FcPBA, (4-(ferrocenylacetamido)phenyl)boronic acid; Fc-MMA, fer-
rocenylmethyl methacrylate; LPS, lipopolysaccharide; dsDNA, double-stranded DNA; PARP-1, poly(ADP-
ribose) polymerase-1; FcBA, (dihydroxyboryl)ferrocene; CTCs, circulating tumor cells; IgY, egg yolk antibody;
MPBA, 4-mercaptophenylboronic acid; Thi, thionine; CEA, carcinoembryonic antigen; Fc, ferrecene; FcHT, 6-
ferrocenylhexanethiol; V.P., Vibrio parahaemolyticus; DA, dopamine; PSA, prostate specific antigen; MIP, molecularly
imprinted polymer; HRP, horseradish peroxidase; rHuEPO, recombinant human erythropoietin; ALP, alkaline
phosphatase; APBA, 3-aminophenylboronic acid; PBNPs, Prussian blue nanoparticles; OVA, ovalbumin; BA,
boronic acid; CPS, carboxy-functionalized polystyrenespheres; PANI, polyaniline; CuNPs, copper nanoparticles;
LCA, Lens culinaris agglutinin; AgNPs, silver nanoparticles; AFP, alpha fetoprotein.

3. Boronate-Affinity-Based Fluorescent Assays and Imaging

As a consequence of their high simplicity and sensitivity, fluorescence biosensors
have become important tools for the detection of different biological species. By modi-
fying the fluorescent molecules or nanomaterials with boronic acids, the binding event
between boronic acid and cis-diol-containing substance can be converted to the signal
change of fluorescence intensity or emission band [139–145]. According to the principle of
signal change, boronic acid-based fluorescent methods can be mainly divided into three
categories: binding-induced fluorescent enhancement, aggregation-induced quenching
or emission, and sandwich boronate-affinity biosensors (Table 2). In addition, boronic
acid-based fluorescent hydrogelators have been elaborately synthesized to prepare cis-
diol-responsive hydrogel-based soft sensors for fluorescent sensing and controlled drug
release [66,146,147]. Fluorescence boronic acid derivatives have been combined with non-
invasive techniques to design novel devices for continuous physiological monitoring and
bioimaging of cis-diol-containing species because of their advantages of high-resolution
and real-time detection [148]. Notably, Geddes’s group developed a daily and disposable
glucose-sensing contact lens based on boronic acid-modified fluorophores for continuous
ophthalmic sensing of glucose [149–151].

3.1. Binding-Induced Fluorescent Enhancement

Boronic acid is an electron-withdrawing group that can quench the fluorescence of the
adjacent fluorophore through a photo-induced electron transfer (PET) process [152–155].
The covalent interaction between boronic acid and a cis-diol-containing substance can
block the electron transfer and restore the quenched fluorescence. In the “turn-off-on”
detection mode, the fluorescence of nanomaterials modified with boronic acid molecules
wasquenched due to the PET process from nanomaterials to the boron moieties [156]. Based
on this fact, Chang et al. reported “turn-on” fluorescence biosensors for the detection
of HRP and transferrin (TRF) using boronic acid-functionalized quantum dots (QDs)
(Figure 7A) [157]. In this study, Mn-doped ZnS QDs were coated with boronic acid-
functionalized polymers via a one-step sol-gel polymerization technique. Boronic acid
groups quenched the fluorescence of QDs. HRP or TRF could react with boronic acid groups
to form boronate ester bonds, thus leading to the recovery of fluorescence. In addition,
Zhang et al. prepared a MOF-based fluorescent nanoprobe for the detection and imaging
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of phosphorylation and glycosylation based on the Zr(IV)-phosphate and boronate-affinity
interactions, respectively (Figure 7B) [158]. In this work, 3-carboxybenzeneboronic acid
was reacted with alizarin red to form a complex that could be embedded in UIO-66-NH2.
The glycosyl site then reacted with the complex to release alizarin red, leading to the
fluorescence recovery. Meanwhile, phosphorylated sites could interact with the metal
node Zr(IV) of UIO-66-NH2 to interrupt the metal-ligand charge transfer, also restoring the
fluorescence. To lower the pKa value and stabilize the boronic esters in neutral pH media,
Wulff-type boronic acid derivatives consisting of an amine adjacent to the boric group
were employed to modify the fluorescent nanomaterials [159]. g-C3N4 nanosheets have
intrinsic N atoms in both the backbone and edges. Boronic acid-modified g-C3N4 (B-g-CN)
nanosheets exhibit the similar features of Wulff-type boronic acid derivatives [160]. Wang
et al. demonstrated that boronic acid groups could quench the fluorescence of g-C3N4
nanosheets through the PET process. The interaction of glycoprotein immunoglobulin G
(IgG) and boronic acid caused the fluorescence recovery [161].
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On the contrary, the covalent interaction between boronic acid and glycan can cause
the fluorescence of nanomaterials to decrease, while the presence of some substances can
recover the quenched fluorescence, achieving “turn off-on-off” detection. For example,
Wang et al. reported a separation-detection integrated fluorescent immunosensor for pro-
filing exosomes using Wulff-type B-g-CN nanosheets (BCNNS) [162]. As displayed in
Figure 7C, modification of g-C3N4 with boronic acids decreased the fluorescence. The BC-
NNS could capture the glycoproteins (antibodies) under physiological conditions through
the formation of boronate ester bonds, resulting in fluorescence enhancement. After the
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capture of exosomes by antibodies, the exosome-loaded BCNNS were separated by slight
centrifugation and re-dispersed in buffer. Furthermore, the fluorescence signal of BCNNS
at 440 nm decreased again, realizing the integration of separation and detection without
damaging exosomes during ultracentrifugation.

3.2. Aggregation-Induced Quenching or Emission

Most fluorescent organic dyes and nanomaterials suffer from an intrinsic shortcoming
of aggregation-induced quenching (ACQ) at high concentrations or in the aggregate or
solid state. The cis-diol-containing biological-related substances can bind with plenty of
boronic acid-modified fluorescent probes, subsequently leading to the ACQ effect [163].
For example, glucose can induce the aggregation of boronic acid-modified carbon dots
(CDs), leading to fluorescence quenching [164–166]. Ye et al. reported an aggregated-
induced fluorescence “turn-off” bioassay of Gram-negative bacteria using Wulff-type
boronic acid-modified QDs [167]. As shown in Figure 8, Wulff-type L-cysteine (Cys)-
APBA consisting of an amine adjacent to the boronic acid group was used to modify QDs
(QDs/Cys-APBA), lowering the pKa value and stabilizing the boronic ester in neutral
pH medium. QDs/Cys-APBA could interact with LPS on the outer surface of bacteria
(Escherichia coli and P. aeruginosa) over a wide range of pH from 5.0 to 9.0. The aggregation
of QDs resulted in fluorescence quenching. Zhang et al. suggested that glycoprotein HRP
could induce the aggregation and fluorescence quenching of boronic acid-decorated carbon
nanodots (CNDs) [168]. However, the “turn-off” detection system may interfere with other
substances in the complicated matrix, leading to a “false positive” result.
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Since Tang’s group proposed the concept of aggregation-induced emission (AIE) in
2001, various molecules and nanomaterials with AIE properties have been intensively
used to develop boronate-affinity-based fluorescent biosensors [169,170]. For example,
Zhang et al. prepared boron-doped graphene QDs for glucose determination based on
the AIE effect [171]. Chen et al. developed boronic acid-containing CDs (BA-CDs) ar-
rays for sensitive identification of glycoproteins and cancer cells [172]. As illustrated in
Figure 9A, three types of BA-CDs were prepared with APBA as the boron doping source
and differentorganic acids as the variant precursors. The BA-CDs could bind to the cis-diols
of glycoproteins and form rigid structure aggregates, leading to the restriction of intramolec-
ular rotation and enhanced emission. The three BA-CDs exhibited distinct fluorescence
responses toward glycoproteins due to the difference in glycosylation content, molecular
weight, and other chemical compositions of glycoproteins. Thus, glycoproteins and cancer
cells with different glycoprotein compositions could be selectively identified. In addition,
the controlled assembly of AIE systems based on specific enzyme-substrate recognition
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and cis-diol/boronic acid conjugation can obviously enhance the fidelity and selectivity of
sensing systems. Huang et al. designed a cleancap-regulated copper nanoclusters (CuNCs)-
based AIE strategy for specific detection of ALP [173]. As illustrated in Figure 9B, CuNCs
with AIE property were prepared with MPBA as both reducing agent and stabilizing ligand.
Glucose could induce the aggregation of CuNCs via the interactions of boronic acid groups
on CuNCs and two cis-diols in glucose, leading to the red AIE emission. CuNCs were
modified with D-glucose 6-phosphate (P-Glu) as the capper and substrate. ALP induced
the cleavage of the phosphate group, and the exposed free 5,6-diol of glucose could react
with boronic acid groups on other CuNCs, resulting in the red AIE luminescence. This
method with dual-recognition properties (ALP/P-Glu and 5,6-diol/MPBA) was applied
for in situ imaging of ALP activity in cells.
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Due to the multiple boric moieties on the nanoparticle surface, boronic acid-modified
NPs have multiplebinding recognition sites for cis-diol-containing targets [174]. The sur-
face of bacterial cells has different types of abundant saccharides (e.g., peptidoglycan
and lipopolysaccharide). Thus, different bacteria have distinct binding affinity toward
boronic acid derivatives at various conditions [175]. Tsuchido et al. reported the rapid
discrimination of Gram-positive and Gram-negative bacteria using boronic acid-modified
poly(amidoamine) generation 4 (B-PAMAM(G4)) (Figure 10A) [176]. In this study, B-
PAMAM(G4) interacted with bacteria to form aggregates, leading to decreased turbidity.
The size of the aggregates was dependent on the type of bacteria and the solution pH. In
basic pH (9.0), both Gram-positive and Gram-negative bacteria promoted the formation
of visible aggregates, but at neutral pH, only Gram-positive bacteria allowed the forma-
tion of visible aggregates. The pH-dependence is involved in the difference in boronate
affinity between bacterial surface saccharide and the boronic acid moiety of B-PAMAM(G4)
dendrimer. They further investigated the mechanism of bacterial recognition by boronic
acid-modified dendrimers with different surface properties and found that boronic acid-
based nanoprobes can be engineered to exhibit diverse selectivity toward strains, species,
or a certain group of bacteria [177,178]. In addition, Yang et al. constructed a sensing array
for discriminating pathogenic bacteria based on the distinctive properties of Wulff-type
boronic acid-decorated g-C3N4nanosheets ((+)BA-g-CN) at various pH values [179]. As
shown in Figure 10B, bacterial cells could interact with (+)BA-g-CN through either elec-
trostatic or boronate interactions at various pH values. Furthermore, the sedimentation of
the bacteria-(+)BA-g-CN composites resulted in a decrease in the fluorescence intensity of
the supernatant.
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3.3. Sandwich Fluorescence Assays

Biosensors based on the simple boronic acid molecule show relatively poor selectivity
toward cis-diol substances due to the interference effect ofother cis-diols. Thus, sandwich
boronate-affinity biosensors are attractive for selectively detecting cis-diol targets [180,181].
Recently, boronate-affinity-based surface MIPs have been used to develop sandwich fluo-
rescence assays of glycoproteins [182]. For example, Lu et al. developed a fluorescence
“turn-on” MIP biosensor for the detection of glycoprotein HRP [183]. As shown in Figure 11,
an ultra-thin boronate-affinity-based MIP film was formed on the surface of magnetic NPs
(MNPs). The self-assembled tetra(4-carboxyphenyl) porphyrin (TCPP) NPs were modified
with APBA (BA-TCPP NPs) to act as the signal tags. HRP captured by the imprinted MNPs
was recognized by BA-TCPP NPs. After magnetic separation, the adsorbed TCPP NPs led to
the release of a large number of TCPP molecules under treatment with an alkaline solution,
generating an amplified fluorescence signal.

Nanomaterials with a large surface area can be used as carriers to load fluorescent
dyes as signal labels for sandwich assays. Yu et al. reported a MIP-coated MNP-based
biosensor for the detection of glycoproteins using boronic acid-modified carbon nanotubes
to load FITC molecules [184]. Bai et al. developed a fluorescent sandwich biosensor for
the detection of HRP and CEA [185]. As shown in Figure 12, boronic acid-modified FITC-
loaded GO nanocomposites were used as the labels for signal amplification. FITC molecules
were released by the mixture of methanol and H2O, producing a strong fluorescence signal.
The proposed sandwich biosensor showed a detection limit of 23 fg/mL or 1.2 fg/mL for
HRP or CEA, respectively.

The distance (typically in the range of 2–10 nm) between the donor-acceptor pair can
significantly influence the efficiency of Förster resonance energy transfer (FRET). The spe-
cific interaction between boronic acid derivatives and cis-diol biomolecules can modulate
the distance, leading to a change in fluorescence intensity. Since the traditional dye-dye
FRET pairs are always susceptible to environmental factors, various nanomaterials with dif-
ferent optical properties have been explored as FRET donors or acceptors [186–188]. Wang
et al. reported a FRET biosensor for the detection of cis-diol biomolecules using poly(m-
aminophenylboronic acid) nanoparticles (poly-(mAPBA) NPs) and 5′-monophosphate
modified GO (AMP-GO) as the donor and acceptor, respectively [189]. As illustrated in
Figure 13, poly-(mAPBA) NPs with stable fluorescence properties and appropriate resis-
tance to environmental factors were conjugated with AMP-GO via the interactions between
boronic acid moieties and the cis-diol groups. The fluorescence of poly-(mAPBA) NPs
was quenched by AMP-GO through the FRET process. However, glucose and transferrin
could competitively interact with poly-(mAPBA) NPs, inhibiting the FRET process and
recovering the fluorescence. In addition, Chang et al. reported the fluorescent bioassay of
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glycoprotein based on the FRET between QDs and AuNPs [190]. In this study, glycoprotein
decomposed the interaction between the boronic acid moiety on AuNPs and glucosamine
on the surface of QDs, leading to fluorescence recovery.
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Table 2. Analytical performances of boronic acid-based fluorescence biosensorsfor the detection of
glycoproteins, bacteria, andexosomes.

Signal Probes Target Linear Range LOD Ref.

APBA-CuNCs Ovalbumin 5–220 nM 2.6 nM [141]
UiO-66-

NH2@B(OH)2
SA 0.05–2.5 mM 0.025 mM [142]

MPBA-QDs TRF 0.1–10 µM 5.69 nM [156]
BA-QDs HRP and TRF 0.3–0.7 µM and 0.4–0.9 µM 0.144 nM and 0.336 nM [157]

BA-g-C3N4 IgG 6.7–67 nM 2.2 nM [161]
BA-g-C3N4 Exosome 8 × 103–1 × 105 particles/mL 2484 particles/mL [162]

APBA-QDs Escherichia coli and
P. aeruginosa 1.12 × 103–1.12 × 108 CFU/mL 58 and 97 CFU/mL [167]

BA-CNDs HRP 3.3–333.3 µg/mL 0.52 µg/mL [168]
P-Glu/CuNCs ALP 0.56–30 U/L 0.17 U/L [173]

BA-QDs HCG 0.24–62.5 mIU/mL 0.19 mIU/mL [181]
BA-TCPPs HRP 0.1 µg/L–10 mg/L 0.042 µg/L [183]

BA-FITC-CNTs HER2 31 fg/mL–5 µg/mL 14 fg/mL [184]

BA-FITC-GO HRP and CEA 1 × 10−7 pg/mL–5 µg/mL
and 2.4 × 10−6–10 ng/mL

23 and 1.2 fg/mL [185]

Abbreviation: BA, boronic acid; g-C3N4, graphitic carbon nitride; IgG, immunoglobulin G; SA, sialic acid; APBA,
3-aminophenylboronic acid; CuNCs, copper nanoclusters; QDs, quantum dots; HRP, horseradish peroxidase;
TRF, transferrin; HCG, human chorionic gonadotropin; MPBA, 4-mercaptophenylboronic acid; CNDs, carbon
nanodots; HRP, horseradish peroxidase; P-Glu, D-glucose 6-phosphate; FITC, fluorescein isothiocyanate; GO,
graphene oxide; CNTs, carbon nanotubes; HER2, human epidermal growth factor receptor-2; TCPPs, tetra(4-
carboxyphenyl) porphyrin.
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3.4. Fluorescent Imaging

Effective techniques and methods for in situ analysis of glycans on living cell surfaces
are of great importance for clinical diagnostics and therapeutics. The abnormal expression
of sialic acid is closely related to various diseases such as cardiovascular diseases, neu-
rological diseases, and cancers. Fluorescein isothiocyanate (FITC)-doped phenylboronic
acid (PBA)-modified SiO2 NPs and PBA-tagged polydiacetylene-liposomes were employed
for the in situ imaging of sialic acid-terminated glycans on living cell surfaces, respec-
tively [191,192]. To improve the selectivity toward sialic acid and cancer cells, Liu et al.
reported the imaging of target cancer cells by integration of boronate-affinity MIPs with
fluorescent conjugated polymer nanoparticles (CPNPs) [193]. As presented in Figure 14A,
the sialic acid-imprinted CPNPs prepared by fluorescent conjugated polymers with PBA
side chains showed a stronger fluorescence than the unmodified nanoparticles. The im-
printed NPs could selectively bind to the sialic acid-overexpressed cancer cells, successfully
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discriminating between the two types of cells with and without sialic acid groups. How-
ever, such a one-photon excited fluorescence imaging method involves the excitation of
ultraviolet-visible light, which may be harmful to cells. To minimize the cell damage and
improve the imaging performance, Li et al. reported in-situ two-photon imaging of cells
and photodynamic therapy (PDT) using self-assembled nanorods of PBA-functionalized
pyrene (Py-PBA) [194]. As illustrated in Figure 14B, Py-PBA with a hydrophilic tail and a
hydrophobic head was used as the building block to prepare hydrophilic nanorods (Py-PBA
NRs) through the self-assembly technique by the π-π stacking interaction and hydrophobic
effect. The self-assembled Py-PBA NRs showed high specificity toward the sialic acid by
the multivalent interaction, realizing the in-situ two-photonimaging of sialic acid on the
living cell surface. Moreover, under two-photon irradiation, the bound Py-PBA NRs could
produce 1O2 to cause the necrosis of cells for PDT.
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mechanism of their selectivity toward cancer cells [193]. Copyright 2017, American Chemical Society.
(B) Schematic illustration of Py-PBA NRs for two-photon imaging of cell surface SAs and PDT [194].
Copyright 2017, American Chemical Society. (C) Schematic illustration of QD conjugation and the
use of QD probes for specific labeling of SA on living cells [195]. Copyright 2011, American Chemical
Society. (D) Schematic illustration of (a) the synthetic procedure for CD-MB with BA groups on
the surface and (b) its ER-targeting ability via a two-stage cascade ER recognition process in living
cells [196]. Copyright 2022, American Chemical Society.

Nanomaterials with outstanding optical properties can also be used in fluorescent
bioimaging. Liu et al. prepared QDs with PBA tags for specific and efficient labeling
of sialic acid on living cells (Figure 14C) [195]. The PBA-functionalized QDs could label
and continuously track the sialic acid moieties on the cell surface in one step without any
pretreatment. The QDs-labeled sialic acids were quickly internalized via endocytosis and
eventually distributed in the perinuclear region. However, the inherent biotoxicity and the
time-consuming multiple steps greatly limit the application of QDs for in vivo imaging
of cancer cells. Recently, Wu et al. used fluorescent carbon dots (CDs) with boronic acid
groups for dynamic visualization of endoplasmic reticulum (ER) stress in living cells [196].
As shown in Figure 14D, the fluorescent CD with a boronic acid group (CD-MB) was
prepared with 4-MPBA and ethylenediamine as the precursors through a facile one-pot
hydrothermal method without additional modification. The positively charged, lipophilic
CD-MB could rapidly cross multiple membrane barriers and accumulate in the ER. Next, it
specifically labeled the ER via the interaction between boronic acid and the o-dihydroxy
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group of mannoses in the ER lumen. The exterior stimuli-induced ER stress could be
visualized by monitoring the change in fluorescence intensity and distribution of CD-MB
due to the dynamic transfer of mannose induced by autophagy.

4. SERS Biosensors

SERS spectroscopy can offer fingerprint vibrational information of surface species,
which exhibits ultrahigh sensitivity due to electromagnetic and chemical enhancement.
Such a technique shows the remarkable advantages of less susceptibility to sample envi-
ronment, rapid readout speed, and possibility for on-site and non-invasive measurement
within an acceptable range ofsafety and patient tolerability [197,198]. Therefore, SERS spec-
troscopy has been widely used in the field of chemical and biological analysis. Label-free
SERS detection of cis-diol-containing species can be realized by collecting the Raman signal
from targets. However, sensitivity and selectivity are always poor due to the inherently
small Raman scattering cross section of analytes. Furthermore, the complex chemical
structures of proteins make the spectra complicated and the identification difficult. It is an
effective strategy to modify the SERS-active substrate with the self-assembled monolayer
(SAM) showing Raman-active and recognition-active abilities, which can act as the receptor
and reporter to simultaneously capture the target and provide a Raman signal for SERS
measurement [199]. For example, Sun et al. reported a SERS method for fructose detection
using MPBA-modified gold surfaces [200]. As illustrated in Figure 15A, a quasi-three-
dimensional plasmonic nanostructure array was modified with an MPBA SAM via the
thiol-gold interaction. In addition to target recognition, the benzene ring of MPBA could
amplify the SERS signal with extra chemical enhancement, leading to the shielding of the
background noise of complex media. The binding between fructose and boronic acid could
result in the symmetric breaking of MPBA and the change of area ratio between totally
symmetric 8a ring mode and non-totally symmetric 8b ring mode, achieving the sensitive
detection of fructose.

Generally, SERS nanotags are composed of plasmonic metallic NPs and organic Raman
reporter molecules. The characteristic Raman signal from nanotags can be changedafter
interaction with targets [201]. For example, Liang et al. reported a SERS nanosensor
for in-situ monitoring the levels of sialoglycan and its dynamic expression process in
different types of cellsby using SERS nanotag MPBA-AgNPs (Figure 15B) [202]. In this
work, the interaction between MPBA and sialogycan resulted in a change in the molecular
vibrational mode of MPBA, which could be readily monitored by SERS. However, the
complex composition of cells may cause matrix interference in the SERS fingerprint region.
SERS reporters with chemical groups (e.g., alkyne, cyano, and azide) can produce a distinct
and strong Raman band in the cellular silent region. For this consideration, He et al.
prepared a background-free SERS probe with a cyano group for the detection of sialic acid
on the cell surface [203].

Unlike label-free SERS detection, sandwich assays with receptor-modified substrates
or SERS nanotags exhibit high sensitivity and selectivity [204]. Bi et al. reported a sand-
wich method for glucose detection based on in situ-generated Raman reporters [205]. As
presented in Figure 16A, a smooth gold-coated slide was coated with a SAM of MPBA for
glucose capture. AgNPs were modified with both MPBA and p-aminothiophenol (PATP)
as SERS nanotags. After the formation of sandwich complex, PATP molecules were in-situ
converted into the Raman reporter of 4,4′-dimercaptoazo-benzene (DMAB) under 785 nm
laser irradiation during the measurement. Moreover, the SERS technique can be combined
with the traditional ELISA method for the construction of efficient and sensitive biosensors
with SERS nanotags [206]. Typically, Ma et al. reported an immunosensor for the deter-
mination of glycoprotein based on azobenzene derivative-modified gold superparticles
(AuSPs) (Figure 16B) [207]. AuSPs were prepared with APBA as the reducing agent, and
the oxidation product of poly(3-aminophenylboronic acid) (PAPBA) was used as the cap-
ping agent. The PAPBA-capped AuNPs could self-assemble into AuSPs through the π-π
stacking of PAPBA. AuSPs were further functionalized with bis [4,4′-(dithiodiphenylazo)-
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1-(N,N′-dimethylamino)-3-phenylboronic acid] (DTDPA-DMAPBA). The Raman signal of
DTDPA-DMAPBA was greatly enhanced by the high-density hot spots on AuSPs due to
the sharp tips and nanogaps.
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Figure 16. (A) Schematic illustration of a glucose sandwich assay using a PMBA-modified self-
assembled monolayer on a smooth gold-coated silicon wafer and SERS tags of AgNPs modified with
PATP and PMBA [205]. Copyright 2015, American Chemical Society. (B) Schematic illustration of
an immunosensor for determination of glycoprotein based on SERS nanotags DTDPA-DMAPBA-
modified AuSPs [207]. Copyright 2017, American Chemical Society.

The combination of MIPs with boronic acid-modified SERS substrates or nanotags
without the use of biometric components is an attractive approach for the design of biosen-
sors [208,209]. Ye et al. developed a boronate-affinity sandwich method for the detection
of glycoproteins in complex samples [210]. As shown in Figure 17A, the macroporous
boronate-affinity MIPs were used as the artificial receptors to specifically capture glycopro-
teins. After other species were washed away, boronic acid-modified AgNPs were added to
label the captured targets and act as Raman reporters to provide a strong signal. To further
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improve the sensitivity, Muhammad et al. reported a sandwich plasmonic immunoassay
for glycoprotein detection using boronate-affinity MIPs with plasmon-enhanced Raman
scattering (Figure 17B) [211]. In this work, the glass slide substrate was decorated with the
SAM of AuNPs and then modified with boronate-affinity MIPs. The plasmonic gold SAM
greatly enhanced the Raman signals of AgNPs-based SERS nanotags.
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Magnetic micro/nanocomposites have been widely used as effective substrates to
promote the isolation of targets from complex samples because of their facile separation and
function. They can significantly improve the sensitivity, reliability, and anti-interference abil-
ity of SERS methods. After the capture and magnetic separation of cis-diol-containing sub-
stances by receptor-modified magneticmicro/nanocomposites, boronic acid-functionalized
SERS nanotags can specifically recognize the targets through the boronate-affinity inter-
actions [212,213]. For example, Usta et al. developed a boronate-affinity-based sandwich
assay for the determination of glycated hemoglobin with MPBA-modified SERS nanotags as
the reporters [214]. As illustrated in Figure 18A, magnetic polymethacrylate microspheres
were coated with Ag shells and further functionalized with MPBA (MPBA-Ag@MagPMMS).
After the formation of sandwich complexes and magnetic separation, DMAB was in-situ
generated on the surface of PATP and MPBA-modified AgNPs under the illumination
of a laser. To enhance the signal intensity of nanotags, Au-reporter@Ag nanotags were
synthesized by embedding the Raman reporter molecule between the gold core and silver
shell. However, it is prone to being disturbed in complex samples. To overcome this
shortcoming, Hu et al. reported a boronite-affinity-based surface-imprinted magnetic plat-
form for the detection of glycoproteins [215]. As shown in Figure 18B, MNPs were coated
with the boronate-affinity MIP polymers. After the capture of glycoproteins, MNPs were
magnetically separated from the complex matrix. Furthermore, Au-MPBA@Ag nanotags
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were introduced to identify the captured targets, and the SERS signals were recorded by a
portable Raman meter.
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Figure 18. (A) Schematic illustration of a boronate-affinity-based sandwich assay for determination
of glycated hemoglobin by using an MPBA-modified SERS nanotag [214]. Copyright 2016, American
Chemical Society. (B) Schematic illustration of (a) the preparation procedure of boronate-affinity
MMIPs, (b) the preparation procedure of boronic acid functionalized SERS probes, and (c) the
schematic of sandwich assay construction and detection of target glycoproteins [215]. Copyright
2022, Elsevier.

5. Boronate-Affinity-Based Colorimetric Assays

Owing to their high simplicity, easy operation, and rapid on-site detection, colorimetric
assays have proven to be the most convenient methods for quantitative or semi-quantitative
analysis. Boronic acid groups can serve as specific binding sites for conjugated dyes. The
target recognition by boronic acid can result in achromogenic reaction and achange in
absorbance for signal readout that can be monitored by the naked eye or ultraviolet-visible
spectrophotometry [216]. Meanwhile, a series of boronic acid-based sensors or arrays have
been reported for quantitative sugar analysis, in which the pH change induced by the for-
mation of boronic esters can be measured by pH indicators [217–219]. The research progress
of boronic acid-based molecular probes for colorimetric detection of small molecules (e.g.,
glucose, H2O2, F−, and dopamine) has been summarized in several reviews [220,221]. In
this section, we primarily focused on colorimetric assays for biomacromolecules using
boronic acid-modified molecules and nanomaterials as signal labels.

5.1. Boronic Acid-Based Plasmonic Colorimetric Biosensors

The traditional ELISA methods usually require the use of enzymes to catalyze chro-
mogenic reactions for signal readout. However, the enzyme-linked colorimetric assays
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show poor sensitivity due to the low extinction coefficient of organic chromogens and the
interior stability of enzymes. To enhance the sensitivity of colorimetric assays, various
metal nanomaterials, including AuNPs, AgNPs, and Au nanorods, have been exploited as
substrates to construct plasmonic colorimetric biosensors. The aggregation of AuNPs can
result in electromagnetic coupling among the localized surface plasmon resonance (LSPR)
of nearby nanoparticles and the color change of solution from red through purple to blue
with a red-shifted and broadened LSPR peak [222,223]. Based on the target-responsive
property of boronic acid groups, different AuNPs or AgNPs have been utilized in colori-
metric bioassays of cis-diol-containing species in which boronic acid molecules served as
the capping regents or inducers. Boronic acid derivatives with a thiol or amino group
can be used to functionalize AuNPs via the gold-thiol interaction or amidation reaction.
The resulting boronic acid-modified AuNPs exhibited aspecific cis-diol-responsive ability.
Targets with multiple cis-diol groups can react with boronic acid groups on the surface of
AuNPs and induce their aggregation, resulting in the color change [224–228]. For example,
it has been demonstrated that glucose and sialic acid could act as a cross-linker to induce
the aggregation of APBA-functionalized AuNPs [229,230]. Ascorbic acid (AA) with two
pairs of diol groups can interact with boronic acid-modified metal NPs and induce their
aggregation. For this view, Zhang reported a colorimetric and SERS dual-mode method
for the assay of ALP activity based on AA-induced aggregation of MPBA-modified Ag-
coated AuNPs (MPBA-Au@AgNPs) [231]. As presented in Figure 19, ALP promoted the
conversion of ascorbic acid 2-phosphate (AAP) into AA. The produced AA could induce
the aggregation of MPBA-Au@AgNPs, leading to a change in solution color from bright
orange to dark gray. Meanwhile, the formed Raman hotspots in the aggregates greatly
amplified the SERS signal.
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Figure 19. Schematic illustration of a dual-readout strategy for assaying ALP activity based on
AA-induced aggregation of MPBA-Au@Ag NPs via its two cis-diolinteracting groups to BA moieties
on the surface of Au@Ag NPs [231]. Copyright 2017, Elesiver.

On the contrary, boronic acid groups can react with each other to form planar 6-
membered boroxine rings via self-dehydration condensation under mild reaction con-
ditions [232]. Thus, MPBA with a thiol groupand a boronic acid moiety can act as an
inducer to trigger the aggregation of AuNPs based on the boroxine ring-forming reaction
and the gold-thiol interaction [233,234]. The cis-diol-containing targets, such as adenosine
triphosphate and dihydronicotinamide adenine dinucleotide, can competitively prefer to
react with the boronic acid group and inhibit the self-dehydration condensation reaction,
leading to the anti-aggregation of AuNPs [235,236]. Bacteria contain rich carbohydrate
species on their surfaces that can capture plenty of PBA-functionalized materials [237].
Therefore, Zheng et al. reported a colorimetric bioassay for monitoring bacteria based on
the inhibition of MPBA-induced aggregation of AgNPs [238]. As illustrated in Figure 20,
Gram-negative bacteria such as E. coli could bind with MPBA-functionalized AgNPs via
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the interactions between the cis-diol groups in saccharides on the bacteria cells and the
boronic acid groups on AgNPs. This would reduce the number of free AgNPs in solution
and thus limit MPBA-induced aggregation of AgNPs. E. coli was detected in a dynamic
range from 5 × 104 cfu/mL to 1 × 107 cfu/mL, with a detection limit of 0.9 × 104 cfu/mL.
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Figure 20. Schematic illustration of (left) the mechanism of colorimetric assay of bacteria based on
the inhibition of the aggregation of MPBA-AgNPs and (right) signal detection methods based on the
naked eye, UV-vis spectrometer, and smartphone [238]. Copyright 2018, Elsevier.

Inducer-mediated aggregation of NPs can also be coupled with an enzymatic reaction
for bioassays, in which the concentration or structure of the inducer is modulated by
an enzymatic reaction. For example, Yang et al. reported a plasmonic immunoassay
for colorimetric detection of rabbit IgG and human PSA based on the H2O2-inhibited
aggregation of citrate-capped AuNPs [239]. As shown in Figure 21, benzene-1,4-diboronic
acid (BDBA) could induce the aggregation of citrate-capped AuNPs through the interaction
between the α-hydroxycarboxylate of citrate and the boronic acidgroup of BDBA [240].
H2O2 could oxidize the boronic acid into phenol and inhibit the BDBA-induced aggregation
of AuNPs. In combination with a glucose oxidase (GOx)-based ELISA immunosensor, the
enzymatically generated H2O2 was proportional to the concentration of the target protein.
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Figure 21. Schematic illustration of Naked-eye readout of plasmonic immunoassays. Detection
of target protein via the combination of sandwich immunoassay, avidin-biotin interaction, GOx-
mediated oxidation of glucose, H2O2-induced oxidation of BDBA, and BDBA-triggered aggregation
of citrate-capped AuNPs [239]. Copyright 2016, American Chemical Society.

5.2. Boronic Acid-Based Lateral Flow Immunoassays

Lateral flow immunoassay (LFIA) platforms have been considered ideal diagnostic
tests because of their merits of less time consumption, easy operation, durable stability,
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and low cost [241–243]. Boronic acid-functionalized AuNPs can be used as plasmonic
nanoprobes for effective labeling of cis-diol-containing targets in LFIA. Wu et al. reported
a LFIA platform for the rapid detection of pathogens using MPBA-AuNP nanocrabs as
universal bacterial catchers [244]. As illustrated in Figure 22, MPBA-AuNP nanocrabs
could recognize and capture Gram-negative and Gram-positive bacteria through covalent
binding. The formed MPBA-AuNPs-bacteria complexes were added to the sample pad
and then trapped by the antibody-modified test line (T-line), thus generating a red band.
This immunosensor exhibited a linear range of 103~107 cfu/mL by taking Escherichia coli
O157:H7 as an example.
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6. Others

Dynamic light scattering (DLS) is a popularly used technique for characterizing the
size distribution of particles by monitoring the variation of scattering light intensity in-
duced by the Brownian motion of particles in solution. Recently, such a technique has
been used to develop sensing platforms based on the boronic acid derivative-modulated
aggregation/disaggregation of particles [245–248]. For example, Xiong’s group hasreported
boronate-affinity DLS immunoassays for point-of-care (POC) detection of glycoproteins
using boronic acid-modified materials as the cross-linking amplifiers [249,250]. One of
the examples is the magnetic-assisted DLS immunoassay of glycoprotein in complex sam-
ples [251]. As illustrated in Figure 23, antibody-coated magnetic nanoparticles (MNP@mAb)
were employed to selectively capture and concentrate the targets. Boronic acid-modified
polyethylene glycol was used as the cross-linker to induce the aggregation of the target-
captured MNP@mAb by the boronate-affinity interaction, resulting in a significant enhance-
ment in the average hydrodynamic diameter. However, the work did not take into account
that antibodies, as glycoproteins, can also bind with boronic acids [95].
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Due to the collective oscillation of electrons at the interface of metal/dielectric, surface
plasmon resonance (SPR) can sensitively monitor the refractive index change around the
metal surface. Boronic acid-modified AuNPs have been used as the signal labels to improve
the sensitivity due to the high mass of AuNPs and the coupling between the LSPR of AuNPs
and the SPR of gold thin film [252]. Qian et al. developed a fiber-optic SPR sensing system
for the detection of miRNAs with PBA-AuNPs for signal output and amplification [253].
As presented in Figure 24, after the hybridization of capture DNA and target miRNA, the
boronic acid groups on PBA-AuNPs specifically reacted with cis-diol groups in the ribose
backbones of miRNAs, producing an amplified SPR signal.
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7. Conclusions

Boronate-affinity materials have attracted substantial attention in recent years. A broad
variety of boronic acid-based molecules and nanomaterials have been successfully prepared
and used to develop various detection platforms, including electrochemistry, fluorescence,
SERS, colorimetry, and others. The dissociation constant of the complex between a single
boronic acid molecule and a cis-diol group changes from 10−1 to 10−4 M, which is lower
than the immunoaffinity interaction (Kd < 10−7 M). The relatively low affinity may limit
the applications of boronic acid molecules in real-sample assays. However, when boronic
acid derivatives were loaded on nanomaterials, their binding strength toward cis-diol-
containing species was significantly enhanced (Kd = 10−5–10−10 M) [254]. In addition,
thanks to the reversible and selective sugar-responsive property of boronic acid, boronate-
affinity materials have been used for in vivo labeling of cis-diol-containing species with
physiological and pathological functions.

Despite the successful applications of boronate-affinity materials so far, there are
still several challenges to be addressed. First, the influence of the geometric morphology
and functional groups of nanomaterials on the pKa, affinity, and selectivity of boronic
acid-based biosensors should be systematically investigated for theirpractical applications
in real-time targeting glycoproteins and glycans on cancer cells or receptors. Although
boronate-affinity MIPs have been successfully employed as receptors, the combination of
other porous materials (MOFs and COFs) with boronic acid molecules may further enhance
the properties of boronate-affinity materials and improve the detection performance of
biosensors. Second, the synthesis of some boronate-affinity materials is always complex
and time-consuming, which may limit their applications in the determination of cis-diol-
containing biomolecules. It would be more attractive to synthesize such materials using
a “one-step” method. For example, boronic acid derivatives could be used as precursors
to synthesize fluorescent QDs by self-assembly or as ligands to prepare MOFs. Third, the
integration of boronic acid-based biosensors with wearable and non-invasive devices may
show promising applications in continuous metabolite monitoring in biofluids such as
tears, saliva, breath, and sweat. The translation of such wearable and intelligent devices
into industry and medicine may meet the need to significantly improve the quality of life of
patients. Fourth, although well-developed biosensors with boronate-affinity materials have
been widely used to detect cis-diol-containing species in laboratories, none of them can be
translated to single-used bioreactors for in-line, at-line, or off-line bioprocess monitoring
because of their low selectivity and stability. Therefore, more devices or technologies
should be combined with boronic acid-based biosensors, especially special sterile adaptor
technologies and appropriate sampling devices. We believe that this review will inspire
others to design more practical biosensors based on boronate-affinity interactions.
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