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Abstract: Pathogenic pathogens invade the human body through various pathways, causing damage
to host cells, tissues, and their functions, ultimately leading to the development of diseases and posing
a threat to human health. The rapid and accurate detection of pathogenic pathogens in humans is
crucial and pressing. Nucleic acid detection offers advantages such as higher sensitivity, accuracy,
and specificity compared to antibody and antigen detection methods. However, conventional nucleic
acid testing is time-consuming, labor-intensive, and requires sophisticated equipment and specialized
medical personnel. Therefore, this review focuses on advanced nucleic acid testing systems that aim to
address the issues of testing time, portability, degree of automation, and cross-contamination. These
systems include extraction-free rapid nucleic acid testing, fully automated extraction, amplification,
and detection, as well as fully enclosed testing and commercial nucleic acid testing equipment.
Additionally, the biochemical methods used for extraction, amplification, and detection in nucleic
acid testing are briefly described. We hope that this review will inspire further research and the
development of more suitable extraction-free reagents and fully automated testing devices for rapid,
point-of-care diagnostics.

Keywords: pathogens; nucleic acid detection; noncontaminating; simple and rapid; POCT

1. Introduction

Pathogenic agents are microorganisms that can cause diseases, such as bacteria, viruses,
and fungi. These pathogens can either directly affect the host through their virulent ef-
fects or indirectly by triggering an immune response and inflammation. Some pathogens
produce substances such as cytotoxins, which can destroy host cells and tissues, or elicit
adverse reactions in the host’s immune system. Others invade host tissues, leading to
tissue necrosis. These pathogens have the potential to negatively impact human health.
Some common pathogenic agents include the hepatitis B virus [1], human cytomegalovirus,
Nipah virus, novel coronavirus, and various common household germs [2–5]. Chronic
infection with the hepatitis B virus can ultimately result in death due to cirrhosis or hepato-
cellular carcinoma [6,7]. Human cytomegalovirus is a beta herpesvirus that poses health
risks for immunocompromised individuals and may cause mononucleosis. It has also been
associated with the development of certain cancers and chronic inflammatory diseases,
such as cardiovascular diseases [8]. Nipah virus is an emerging zoonotic virus with multi-
ple outbreaks and high mortality rates. It can lead to encephalitis, systemic vasculitis, and
respiratory diseases [9]. The novel coronavirus is a new strain of coronavirus that had not
been previously identified in humans [10]. Mild symptoms include loss of taste and smell,
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gastrointestinal symptoms, and headaches. In severe cases, it can progress to acute respira-
tory distress syndrome, necessitating ventilatory support [11]. Clostridium difficile infection
(CDI) is a significant cause of nosocomial enteric disease, resulting in substantial morbidity
and mortality among hospitalized patients worldwide [12]. Streptococcus pneumoniae, also
known as “pneumococcus”, is a major cause of both morbidity and mortality globally. It
can lead to life-threatening conditions such as pneumonia, bacteremia, and meningitis, with
an annual mortality burden exceeding one million cases [13]. Both neocoronaviruses and
other pathogenic agents are highly contagious and can be transmitted from human to human.
The primary modes of transmission include airborne droplets and close contact. In order to
effectively control the development and spread of the epidemic, various detection methods
have been developed based on the characteristics of the pathogens. These methods involve
detecting antigens and antibodies on the surface of the pathogen, as well as nucleic acids.
Depending on the characteristics of the pathogens, different tests have been developed, such
as nucleic acid tests [14–16], antigen tests [17–19], antibody tests [20] and electrochemical
sensors [21–23], and other aspects [24–26]. Nucleic acid testing involves exponentially am-
plifying the nucleic acid sequence of the pathogen and then using probes or fluorescent
markers for detection. Antigen testing, on the other hand, detects the presence or absence
of the pathogen by detecting its proteins. Antibody testing involves collecting samples,
such as blood, to detect the presence of specific antibodies that bind to the pathogen, in-
dicating the presence of an infection. Although there are several methods for pathogen
detection, nucleic acid testing is currently considered the most effective method for detect-
ing novel coronavirus infections and is regarded as the “gold standard” for identifying such
infections [27]. However, this method often requires specialized equipment and trained
technicians to perform tests in a laboratory setting. Therefore, efforts have been made
to develop rapid, portable, and point-of-care devices that can provide nucleic acid test
results. Many researchers are currently focusing on developing all-in-one nucleic acid
testing devices that are faster, smaller, and more automated [28–33].

Nucleic acid testing consists of three main steps: nucleic acid extraction [34–44],
nucleic acid amplification [45–57], and detection methods [58–62]. The general procedure
for nucleic acid extraction involves collecting the sample to be tested (such as oropharyngeal
swabs, fingertip blood, or saliva) and then obtaining the nucleic acid through a process
of lysis, separation, precipitation, and purification [63–65]. Although direct extraction by
high-temperature lysis and lysis buffer can be used, the nucleic acids obtained through
this method may be impure and contain contaminants. To enhance the purity of nucleic
acid extraction, purification methods such as magnetic bead extraction [66] and centrifugal
column purification are employed. Additionally, a nucleic-acid-free extraction method
has been developed to reduce the overall testing time [67,68]. By using sample release
agents, the amount of nucleic acid extraction is reduced, simplifying the nucleic acid testing
process, shortening the testing time, improving detection rates, and making the procedure
simple and cost-effective.

Nucleic acid amplification is performed exponentially in order to maximize the amount
of nucleic acid and achieve significant detection results. There are two types of nucleic acid
amplification: variable temperature amplification and isothermal amplification. Variable
temperature amplification, such as the PCR [69–72], consists of three steps: denaturation,
annealing, and extension, each carried out at a different temperature. Isothermal amplifica-
tion, on the other hand, involves adding primers, template, polymerase, and nucleotides to
the reaction at a constant temperature, eliminating the need for a thermal cycling system.
To facilitate the easy differentiation of the results, various detection methods are used,
either visually or indirectly through instruments such as portable fluorescence detectors.
Examples of detection methods include real-time fluorescence detection [73], lateral flow de-
tection [74–76], visual inspection [77,78], and CRISPR/Cas detection [79,80]. Fluorescence
detection involves exposing the fluorescent material in the system to a specific wavelength
of light, causing it to emit fluorescence. This fluorescence is then captured by a camera and
further analyzed using image processing techniques. Lateral flow assays use immunochro-
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matography principles to detect the presence of a target in a sample, providing qualitative
results within minutes. The test sample flows laterally through a matrix via capillary action,
allowing for the binding of the antigen to the antibody for detection and visualization
purposes. CRISPR/Cas assays, on the other hand, activate the nuclease activity of Cas
when a target gene is present in the reaction system. This allows for the degradation of the
labeled probe and enables the detection of the target nucleic acid. This assay enables the
rapid detection of minute quantities of RNA [81], including influenza virus, HIV virus, or
any other RNA viral sequence integrated into the CRISPR enzyme. It offers a fast, sensitive,
and straightforward means of RNA detection. The use of lateral flow detection and visual
inspection eliminates the need for specialized operators or equipment. When combined
with a smartphone, the false positive rate is mitigated to some extent. Artificial intelligence
helps scientists in gaining better insights into pathogen aspects, such as biology, genome
structure, and transmission pathways, by analyzing vast amounts of data. Machine learn-
ing algorithms can predict the spread trends of large-scale outbreaks of specific pathogens,
enabling prevention and control measures. Additionally, artificial intelligence coupled
with image processing facilitates the rapid and accurate diagnosis of pathogenic infections.
As pathogens exhibit variability, AI can identify specific variations and enable targeted
interventions. For instance, machine learning or deep learning models can be utilized
to enhance accuracy without the need for RNA extraction and pathogen amplification.
Smartphones are then incorporated to provide user-friendly interfaces for automated oper-
ation. Tripathy et al. developed hybridization reactions without the reverse-transcription
polymerase chain reaction, resulting in rapid detection within 30 min for the early diagnosis
of novel coronaviruses [82]. Artificial intelligence can enhance the diagnostic efficiency
through detailed imaging analysis [83,84]. Walsh et al. successfully employed gradient
boosting trees in machine learning to predict influenza a virus in wild birds, demonstrating
the high predictive power by detecting various features [85]. Karunakaran et al. devised a
label-free surface-enhanced Raman scattering screening method that could differentiate
between different coronavirus spike proteins, leveraging machine learning algorithms
for the efficient analysis of Raman spectroscopy data [86]. Kokabi et al. demonstrated
the ability of neural networks to predict DNA concentrations using raw impedance data,
employing a novel machine learning approach for accurate and high-throughput DNA
quantification [87]. The general flow of nucleic acid testing is illustrated in Figure 1.

In this review, we will primarily examine the current state of simple, rapid, all-in-one
nucleic acid detection systems. These include extraction-free rapid nucleic acid detection,
fully automated systems encompassing extraction, amplification, and detection, as well
as fully contained and commercially available nucleic acid detection devices. We will also
address the challenges associated with these rapid, integrated nucleic acid testing systems
and provide an outlook on their future.
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Figure 1. General process of nucleic acid testing: Integrated equipment for extraction, amplification,
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free nucleic acid testing equipment. (C) Reproduced with permission [90].

2. Extraction-Free Rapid Nucleic Acid Testing

Rapid extraction-free nucleic acid detection eliminates the need for nucleic acid extrac-
tion and relies on amplification reactions to achieve quick detection. These amplification
reactions can be categorized into two main types: thermal cycling, such as the PCR, and
isothermal amplification. Thermal cycling can further be classified into spatially based ther-
mal cycling and time-based thermal cycling [91]. Isothermal amplification utilizes various
enzymes to facilitate amplification. Both thermal cycling and isothermal amplification meth-
ods expedite nucleic acid amplification, enabling ultrafast nucleic acid detection. Current
nucleic acid assays for pathogens commonly seen in studies using the two amplification
methods described above are shown in Table 1.
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Table 1. The most commonly studied pathogens for nucleic acid testing.

Pathogens Genetic Material Principle of
Detection

Detection
Time(min) Detection Method Authenticity of

the Sample References

MERS RNA RT-RPA >30 Immunochromatography Simulated
samples [92]

EBOV RNA RT-LAMP 40 Immunochromatography Simulated
samples [93]

SARS-CoV-2 RNA RT-LAMP-
CRISPR 45 Fluorescence detection Clinical samples [94]

HIV RNA RT-LAMP 60 Fluorescence detection Simulated
samples [95]

H1N1 RNA RPA Amplification
time of 25 Fluorescence detection Clinical samples [96]

ZIKV RNA RT-LAMP 32 Fluorescence detection Simulated
samples [97]

HCV RNA RT-RAA 30 Immunochromatography Clinical samples [98]

NV RNA Biosensing 30 Colorimetric detection Simulated
samples [99]

HBV DNA CRISPR/Cas12a 50 Raman scattering Simulated
samples [100]

Pneumococcus DNA RT-PCR 45 Electrophoretic detection Clinical samples [101]

Salmonella DNA LAMP 40 Colorimetric detection Simulated
samples [102]

2.1. Thermal Cycling

Real-time fluorescence (RT-PCR) is considered the gold standard for nucleic acid
detection [103]. However, this method has limitations, such as the need for complex testing
equipment and specialized personnel to operate it. Additionally, its long detection time
makes it unsuitable for point-of-care applications. Therefore, the principles of PCR are
applied in microfluidic assays [104–107]. Thermal cycling can be achieved using two typical
methods: spatially based and time-based thermal cycling.

2.1.1. Spatial-Domain-Based Thermal Cycling

Spatial-domain-based thermal cycling involves heating the sample at various temper-
ature intervals to achieve the desired denaturation, annealing, and extension temperatures
essential for nucleic acid amplification. This technique includes several approaches such
as continuous-flow PCR [108–114], convective PCR [115–119], oscillatory PCR [120], and
spatial-conversion PCR.

Continuous-flow PCR is performed using an elongated channel that is pushed into
the reaction chamber at different temperatures through the action of an external pump.
This approach ensures reliable temperature control and prevents failure to reach the de-
sired temperature, which could lead to the failure of the entire amplification process. The
longer channel increases the surface-area-to-volume ratio, allowing for an efficient inter-
action between the sample enzymes and the desired temperature. Li et al. investigated
the impact of the cross-section, width-to-depth ratio, and length ratio of the three tem-
perature zones within the microchannel for detecting Dengue mimic spirochetes. They
discovered that the fluid flux was maximized when the width-to-height ratio was 1:1.
Based on this ratio, a portable automated system was designed [121]. However, some
continuous-flow PCR devices are bulky and not suitable for portability. Additionally,
they require costly external pumps for sample injection. To address these issues, Li et al.
developed a portable all-in-one microfluidic device that integrates the CF-PCR and an elec-
trophoresis biochip [122]. This innovative design eliminates the need for expensive external
pumps by implementing an automated sample injection directly into the reaction chamber,
enabling in situ pathogen detection in the field. Another noteworthy advancement by
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Wu et al. involved the development of a self-activating pumping mechanism [123]. They
utilized end-open impermeable quartz capillaries for passive delivery. Furthermore, Wang
et al. utilized 3D printing and magnetic silica beads for efficient target DNA extraction from
numerous bacterial samples. They combined this technique with microfluidic PCR to detect
bacteria [124], using a microfluidic chip shown in Figure 2A. The microfluidic chip used in
this study achieved a DNA extraction efficiency of over 90%, with a lower limit of detection
for Salmonella at 102 CFU/mL. Lin et al. explored continuous flow PCR for ultrafast DNA
amplification [125]. Their chip design featured a channel height of 56 µm and a thermal
cycle length of 4 cm, enabling the completion of 40 thermal cycles within 160 s. The chip
design is shown in Figure 2B. Shi et al. presented a handheld real-time fluorescent qPCR
system for the quantitative analysis of nucleic acid molecules using a PVC microreactor and
a real-time quantitative PCR assay system that can detect simulated H7N9 avian influenza
genomic DNA across a concentration range of four orders of magnitude [126].

Convective PCR is achieved by inducing thermal convection within the capillary. It is
a phenomenon in which the temperature of the upper and lower surfaces is maintained
constantly in an enclosed space, resulting in the upward movement of hot fluid and the
downward movement of cold fluid. This technique is applied to nucleic acid amplification,
allowing spatially separated denaturation, annealing, and extension processes to occur
due to temperature gradients. Multiple bacteria DNA targets can be quantified quickly
and sensitively by single-nucleotide discrimination in the annular convection chamber
by Khodakov et al. [127]. The annular PCR system takes 15 min to reach Ct = 25, which
is three times faster than conventional qPCR instruments (45 min), and therefore offers
the advantage of a portable device for the rapid and highly multiplexed detection of
nucleic acids in immediate diagnostics. A stand-alone convective PCR (cPCR) device
connected to a smartphone was developed by Rajendran et al. [128] using a customized
heat block controlled by Bluetooth wireless communication to amplify multiple DNA
samples simultaneously, allowing target nucleic acids to be amplified in less than 30 min.
Chou et al. used capillary convection PCR (CCPR) to heat the bottom of the capillary at
95 ◦C to allow samples to pass through for CCPCR amplification [129]. The end result
was the successful amplification of DNA sequences from three different viral genomes
within 30 min. The principle of how device-convective PCR works is shown in Figure 2C.
A microfluidic chip for automated nucleic acid extraction and a handheld real-time CPCR
system for rapid amplification were developed by Xu et al. [130]. The amplification time has
been significantly reduced to 30 min using CPCR compared to the conventional PCR. This
demonstrates that reasonable concentrations down to 1.0 TCID50/mL of simian influenza A
(H1N1) virus can be successfully detected by microfluidic systems, as shown in Figure 2D.

Oscillatory-flow PCR combines the advantages of static PCR and flow-through PCR by
allowing sample reaction droplets to move back and forth between different temperature
zones. Kopparthy et al. developed a versatile system based on the oscillatory-flow method
used in thermal gradient systems for nucleic acid analysis [131]. They simply sandwiched
double-sided adhesive Kapton tape and polydimethylsiloxane spacers between glass mi-
croscope slides using rapid prototyping to fabricate the microfluidic device. This system
was used for the detection of simulated viral phage DNA. A direct comparison between
the oscillatory-flow system and commercial PCR instruments showed complete agreement
in PCR data and reduced sample-to-result times.

Spatial-conversion PCR utilizes a rotary/spiral drive to achieve rapid temperature rise
and fall, as well as temperature cycling, in fluorescent PCR technology. It fixes the desired
temperature module and rotates the microfluidic chip carrying the sample to be tested to
the desired temperature, thereby amplifying it. For instance, Jung et al. proposed a rotating
PCR gene analyzer [132] that combined a heat block and resistance temperature detector
(RTD) for thermal cycling control. They also used a disposable PCR microchip and a
stepper motor for the highly sensitive and rapid identification of viral RNA. They achieved
this with high sensitivity and speed in identifying influenza virus RNA, mimicking H3N2,
H5N1, and H1N1. Alternatively, Bartsch et al. proposed a rotating zone thermal cycler,
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which is a novel wheel-based device [133]. It has the capability to cycle up to four different
fixed temperature blocks in contact with a fixed 4 µL capillary-bound sample, achieving a
second conversion of 1–3 steady-state heater powers of less than 10 W. The test sample in
this case is a plasmid with a specific sequence. A diagram showing the operation of the
rotary PCR is depicted in Figure 2E. The system has a nominal warming rate of up to 44
◦C/s and an average time required for cyclic amplification of 21 min. Furthermore, Li et al.
developed a fully automated whole-blood hepatitis B virus rapid assay system based on
a dual rotary axis centrifugal microfluidic platform (DRA-CMP) [134]. They successfully
performed a sample-to-answer assay for HBV using a 500 µL whole-blood sample. The
total time from sample to result for the entire assay was approximately 48 min.
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2.1.2. Time-Domain-Based Thermal Cycling

Time-domain thermal cycling involves keeping the sample stationary during tempera-
ture changes. It includes contact heating [135–141], as well as noncontact heating methods
such as infrared heating [142], laser heating [143] and microwave heating [144].

Contact heating is achieved by using a copper or aluminum block with high thermal
conductivity. This block is poured with PDMS to create a channel, and the two layers
are sealed using oxygen plasma. The copper block is then embedded in the recess of
a cover sheet. The sample undergoes three stages of heating using an external heater,
and the temperature is adjusted using a heating block. Nucleic acid amplification is
achieved through this process. Additionally, a heating module, membrane heater, and
fan-forced air are used for heating and cooling purposes. Qiu et al. developed a bedside
diagnostic system [145] that utilizes a double-sided heater. This system ensures that the
temperature of the liquid in the reaction chamber closely tracks the set point temperature
with ±0.1 ◦C accuracy, minimizing the transition time between temperatures. This system
was used for detecting mimic phage DNA. Xiang et al. designed a low-cost miniature
PCR device [146] consisting of a disposable reactor chip and a miniature thermal cycler.
The thermal cycler features a membrane heater for heating and a fan for rapid cooling. It
enables combined detection with real-time fluorescence for specific DNA sequences. Neuzil
et al. designed, fabricated, and tested a thermal cycler capable of completing a thermal
cycle in just 8.5 s [147]. Lim et al. developed a portable PCR system [148] using a Pt film
heater and dual cooling fans for low-power operation. They incorporated a film-based
PCR chip, reducing the thermal mass and increasing heat transfer area, thereby improving
the heat transfer efficiency. The thermal cycler design is shown in Figure 3A. Furthermore,
heat transfer efficiency is enhanced by utilizing a sandwich structure with a double-heater
chip on the upper and lower parts of the PCR chip. This system was used for detecting
simulated viruses and E. coli.

Contact heating, which involves direct contact with the PCR reaction chamber, requires
the entire system to be heated and cooled during thermal cycling. This significantly
increases the heat capacity of the reaction system, limiting the rate at which thermal
cycling can occur. To overcome this limitation, noncontact heating methods, such as
infrared, laser, and microwave, have been employed. Chip-based quantitative real-time
PCR (qRT-PCR) was implemented by R. Prakash et al. using an electrically driven DMF-
based technology in combination with appropriately tailored resistive microheaters and
temperature sensors. The device uses in vitro synthesized viral RNA fragments to detect
and quantify the presence of influenza A and C virus nucleic acids [149]. Roperd et al. have
developed a completely noncontact temperature system [150] for the detection of bacteria.
An infrared (IR)-sensitive pyrometer was calibrated against a thermocouple inserted into
the PCR chamber and used to monitor the temperature of the glass surface above the PCR
chamber during heating and cooling caused by a tungsten lamp and convective air source,
respectively. Ouyang et al. first demonstrated thermal cycling in a PeT microchip on an
IR-PCR system [151]. A spatial filter in the form of an aluminum foil mask was used to
eliminate the undesired IR absorption of the black-toner-bonded layer and successfully
amplify the mock λ phage genome fragment. Tanaka et al. used a diode laser for the
photothermal temperature control of enzyme-catalyzed reactions in microchips [152]. The
temperature in the microchannel could be locally increased by 5–7 ◦C in a short time due to
the heat released by the target, demonstrating that a direct solvent heating method using
infrared radiation could control the reaction in the microchannel. Easley et al. investigated
fiberoptic nonintrinsic Fabry–Perot interference (EFPI) as a noncontact temperature sensor
and used it for the temperature regulation of small volumes of solution on microchips for
the detection of simulated phages [153]. In addition, Slyadnev et al.’s miniaturized device
with the infrared laser heating of the solvent based on the photothermal effect enables the
rapid and local control of enzymatic reactions on microchips under flow conditions [154].
The device operates at ultrafast heating and cooling rates of 67 and 53 ◦C/s, respectively,
which is 30 times faster than conventional systems. Liu et al. designed a novel PCR
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platform [155] for human tumor virus (HPV) detection. Forty cycles were completed in
90 min. Christian Fermér et al. demonstrated a PCR reaction using focused microwave
irradiation as a heat source [156]. It could be determined that continuous microwave
heating did not terminate the enzymatic function of the polymerase and the results showed
that the total reaction time could be reduced. Yoshimura et al. studied the application
of microwave heating to RCA and noted the factors contributing to the selective heating
effect of microwaves [157]. This is shown in Figure 3B. Parker et al. have developed a
combination of microfluidic and laser-induced fluorescence (LIF) assays to detect RT-LAMP
products [158], with the optics and hardware shown in Figure 3C. Ko et al. designed a
noncontact temperature-control system for integrating conventional PCR onto an LOD [159].
Experimental results showed stable PCR amplification in a single PCR-LOD, providing a
one-stop-shop Salmonella detection capability. A noncontact thermal control system using
an infrared thermometer and laser module as PCR amplification is shown in Figure 3D. Seo
et al. have designed a fully automated CD-ROM laboratory for cell lysis and amplification
on a single DNA sample CD-ROM [160], using infrared (IR) to show the temperature
distribution in the amplification chamber and a laser module to keep the temperature
stable. The temperature control system is shown in Figure 3E. Although the overall reaction
temperature was the same, microwave heating accelerated the isothermal amplification of
DNA due to the different heating mechanisms of the microwave on the temperature of the
reaction components.

Biosensors 2023, 13, x FOR PEER REVIEW 9 of 28 
 

novel PCR platform [155] for human tumor virus (HPV) detection. Forty cycles were com-
pleted in 90 min. Christian Fermér et al. demonstrated a PCR reaction using focused mi-
crowave irradiation as a heat source [156]. It could be determined that continuous micro-
wave heating did not terminate the enzymatic function of the polymerase and the results 
showed that the total reaction time could be reduced. Yoshimura et al. studied the appli-
cation of microwave heating to RCA and noted the factors contributing to the selective 
heating effect of microwaves [157]. This is shown in Figure 3B. Parker et al. have devel-
oped a combination of microfluidic and laser-induced fluorescence (LIF) assays to detect 
RT-LAMP products [158], with the optics and hardware shown in Figure 3C. Ko et al. 
designed a noncontact temperature-control system for integrating conventional PCR onto 
an LOD [159]. Experimental results showed stable PCR amplification in a single PCR-
LOD, providing a one-stop-shop Salmonella detection capability. A noncontact thermal 
control system using an infrared thermometer and laser module as PCR amplification is 
shown in Figure 3D. Seo et al. have designed a fully automated CD-ROM laboratory for 
cell lysis and amplification on a single DNA sample CD-ROM [160], using infrared (IR) to 
show the temperature distribution in the amplification chamber and a laser module to 
keep the temperature stable. The temperature control system is shown in Figure 3E. Alt-
hough the overall reaction temperature was the same, microwave heating accelerated the 
isothermal amplification of DNA due to the different heating mechanisms of the micro-
wave on the temperature of the reaction components. 

 
Figure 3. Time-domain thermal cycling: (A) Contact heating. Reproduced with permission [148]; (B) 
Microwave heating. Reproduced with permission [157]; (C) Microwave heating. Reproduced with 
permission [158]; (D) Infrared laser heating. Reproduced with permission [159]; (E) Infrared laser 
heating. Reproduced with permission [160]. 

  

Figure 3. Time-domain thermal cycling: (A) Contact heating. Reproduced with permission [148];
(B) Microwave heating. Reproduced with permission [157]; (C) Microwave heating. Reproduced
with permission [158]; (D) Infrared laser heating. Reproduced with permission [159]; (E) Infrared
laser heating. Reproduced with permission [160].
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2.2. Isothermal Amplification

Isothermal amplification is a simplified and faster alternative to PCR, as it does not require
denaturation, annealing, and extension steps. The method of detection of the isothermal
temperature can be done using turbidimetry [161], fluorescence detection [162–164], gel
electrophoresis [165–168], and visual color change chromogenesis [169–172].

Loop-mediated isothermal amplification (LAMP) is a method for amplifying nucleic
acids at 60–65 ◦C, using DNA polymerase with a high strand-substitution activity. Wang
et al. developed a visual LAMP assay [173] for the detection of African swine fever virus.
The device was tested using DNA or cDNA from pseudotropic AIDS virus (PRV), porcine
circovirus type 2 (pcv2), classical swine fever virus (CSFV), and porcine reproductive
and respiratory syndrome virus (PRRS). Chen et al. used LAMP in combination with
magnesium pyrophosphate precipitation to detect EHP and found that the device had good
performance [174].

Strand Displacement Amplification (SDA) involves two enzymes: a restriction en-
donuclease and a DNA polymerase with strand displacement activity. The enzymes used in
this method are thermally stable and can reach reaction temperatures of around 54 ◦C. SDA
amplification is efficient, with short reaction times and high specificity. However, some
single- and double-stranded products are generated in the cycle. Gong et al. developed
an SDA-assisted CRISPR-Cas12a method [175] to achieve the sensitive detection of HBV
DNA. Lee et al. determined S1 nuclease activity by using exponential strand displacement
amplification (eSDA) inhibition [176].

The optimal reaction temperature for recombinase polymerase amplification (RPA) is
around 37 ◦C [177]. RPA is a fast reaction and is suitable for POCT. However, the need for
longer primer lengths also limits the detection of short sequences of nucleic acids. Deng
et al. used the basic RPA method for performance testing on schistosome-infected nail snails
and mouse models [178]. RPA was used by Lacharoje et al. to detect feline leukemia virus
(FeLV) DNA provirus [179]. Mei et al. detected the SARS-CoV-2 virus and Helicobacter
pylori based on RPA at a lower temperature for 30 min [180].

Rolling-loop nucleic acid amplification (RCA) technology performs nucleic acid ampli-
fication at 30 ◦C or room temperature [181]. A loop-locking probe, DNA ligase, and Phi29
DNA polymerase are required. The technique allows for a single-molecule detection level
and the detection of RNA without reverse transcription, but requires loop-DNA templates.

The nucleic-acid-sequence-dependent amplification technique (NASBA) performs
reactions at 42 ◦C using AMV reverse transcriptase, T7RNA polymutase, and nuclease H.
NASBA combines the reverse transcription process directly into the amplification reaction,
shortening the reaction time. However, the reaction components are more complex. For
example, Ju et al. built an ultrasensitive version using NASBA integration [182], with the
successful detection of respiratory syncytial virus A genomic RNA (GRNA).

Some other isothermal amplification techniques, such as cross-primed amplification
(CPA), use Bst DNA polymerase with strand-substitution properties and betaine to perform
the reaction at around 63 ◦C. This technique requires fewer enzymes, but the primers
are more complex. The decapping-enzyme-dependent amplification (HDA) technique
utilizes decapping enzymes, single-stranded DNA binding proteins, etc. Compared to
other thermostatic amplification techniques, this technique resembles a thermostatic version
of the PCR. A comparison of the various aspects of isothermal amplification is shown in
Table 2.
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Table 2. Comparison of the characteristics of common isothermal amplifications.

Classification Temperature(◦C) Number of
Primers

Number of
Enzymes Advantages Disadvantages

LAMP 60–65 4–6 1 Short reaction time, higher specificity Primer complexity

RPA 30–42 4 3 Rapid reaction time, 5–30 min to reach
detection level Long primers and probes

RCA 37 1 or more 1 High efficiency, single molecule detection
levels can be achieved

Requires circular DNA
template

SDA 37 4 2
High amplification efficiency, short reaction

time, high specificity, no special
equipment required

Heterogeneous products

CPA 63 5–6 1 Fewer enzymes involved, high sensitivity
and specificity Primers are more complex

HAD 37 2 2 Simple primers Suitable for amplifying short
sequences

NASBA 42 2 3 Reverse transcription is incorporated into the
amplification, reducing reaction time

Reaction components are more
complex

3. Extraction, Amplification, and Detection Fully Automated, Fully Closed Detection

Nucleic acid testing encompasses semiautomated equipment for amplification and
detection, as well as fully automated equipment for extraction, amplification, and detection.
Fully automated testing equipment must be free from contamination and possess speedy
detection capabilities [183–185]. Portable fully automated nucleic acid testing devices can
be employed in hospitals, customs facilities, community clinics, and other locations where
technicians do not require extensive specialization but possess basic knowledge to operate
the device using the accompanying manual. In remote areas with limited medical resources,
portable fully automated nucleic acid testing equipment can be utilized to reach every
household due to its compact size. The extraction, amplification, and detection processes
are entirely automated and enclosed, incorporating cassettes and microfluidic chips.

3.1. Microfluidic Chips

For microfluidic chips [186,187], the functions of the entire laboratory are completely
integrated on a micron-sized chip, where external forces pass through tiny and long
channels to complete the extraction, amplification, and detection of nucleic acids [188–191].
In order to move the sample through the intended space, an external force is required
to drive it [192–194]. The drives used include centrifugal drives, electromagnetic drives,
external drives (syringes), capillary drives, and other drivers [195–197]. Due to the small
volume of sample to be tested using the microfluidic chip, the testing speed is already
fast and the entire process can be made even faster by designing a suitable microfluidic
path [198–200].

A device capable of performing lysis, extraction, amplification, and detection in a
single unit using an electromagnetically driven microfluidic chip was designed by Tsai
et al. [201]. This system utilizes electromagnets to control the movement of magnets,
micropumps, and microvalves, facilitating the transfer of samples. The device has been
designed for the detection of simian Severe Acute Respiratory Syndrome Coronavirus 2
(SAS-CoV-2). The operation begins with the first solenoid being electromagnetically driven
to allow the sample to enter, followed by opening of the second solenoid to create suction
with the micropump, enabling a rapid sample flow into the microchannel. Subsequently,
the sample enters the chamber containing the lysis buffer to be lysed and heated to 95 ◦C
using a thermoelectric cooler. Next, a third electromagnet is activated to divide the sample
equally into three portions, each directed to a chamber containing magnetic beads for
nucleic acid extraction. This process occurs at a temperature of 45 ◦C for 10 min. The
extracted nucleic acid is collected using an electromagnet and delivered to the chamber
containing the RT-LAMP solution for amplification at 60 ◦C. Finally, a fluorescence de-
tection allows for quantitative analysis. To improve the experiment accuracy, positive
and negative controls are included in the microarray. Accurate temperature control is
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necessary for the lysis, extraction, and mixing steps. Therefore, a temperature control
module is placed underneath the microfluidic chip to achieve precise temperature control
in the microchannel. Figure 4A illustrates the design of the microfluidic chip used in this
system, which features a removable magnetic structure layer that can be reused through
activation with an electromagnet. Voltage optimization was carried out to determine the
most effective voltage level for electromagnetic actuation. It was found that applying a
voltage of 10V delivered the best results. To enhance the sensitivity and specificity of the
system, a comparative study using different primers was conducted. The results indi-
cated that the LAMP with two or more primers demonstrated better specificity than the
PCR. Additionally, successful detection of viral RNA was achieved by diluting samples
at different multiplications. A microfluidic system for rapid nucleic acid analysis based
on real-time convective PCR was developed by Xu et al. [130]. The system incorporates a
microfluidic chip that efficiently extracts nucleic acids while utilizing convective PCR for
rapid nucleic acid amplification. The microfluidic chip integrates a prestorage chamber,
lysis and washing chamber, elution chamber, and waste chamber, as depicted in Figure 4B.
Amplification reactions are performed using capillaries. This system has the capability
to detect a wide range of viruses and necessitates the utilization of multiple handheld
real-time CPCR devices. The microfluidic system successfully detects simulated influenza
A (H1N1) virus concentrations as low as 1.0 TCID50/mL.

Li et al. developed a CRISPR-based microfluidic chip system for nucleic acid detec-
tion [202], which integrates isothermal amplification, lysis, and sidestream detection into
one system to achieve contamination-free, visualized detection throughout the process, as
well as the successful detection of clinical samples. In general, sidestream detection alone
does not guarantee a contamination-free process, as the sample is exposed to air when
added to the spiked wells and the purity of the sample cannot be guaranteed. This system,
however, has a 3D-printed housing that envelops the entire reaction, so that the reagents of
the reaction do not come into contact with the outside world, ensuring no contamination.
The process uses CRISPR reagents lyophilized in a CRISPR reaction chamber, with the
desired solution pre-existing in an air bubble, which is pressed to bring the sample into the
reaction chamber. A constant temperature is required during the amplification period and
the appropriate heat is provided by a hand-warming bag, eliminating the need for complex
heaters. The RT-RPA mixture is then added to the reaction chamber and the solution in
the RPA reaction chamber is transferred to the CRISPR reaction chamber by pressing on
the bubble with the finger through the hand warmer for a period of time, allowing the
lyophilized reagent in this chamber to hydrate and activate the CRISPR-Cas12a nonspecific
probe, followed by a period of heating to transfer the buffer from the buffer bubble to
the CRISPR solution in the reaction chamber. Finally, the mixed solution is touched to
the end of the sidestream assay and the result is finally displayed in the test strip. The
design structure is shown in Figure 4C. The optimal temperature of the enzyme used in the
reaction chamber needed to be determined when using the hand warmer as a heater, so
the appropriate temperature was selected by amplification at different temperatures and
the hand-warmer-powered heater was found to be suitable for the system. To verify the
clinical usefulness of the system, 17 positive and 7 negative samples were selected and the
results of the assay were compared to the fluorescence images, and the results were found
to be consistent with the fluorescence signal of the PT-PCR fluorescence images, indicating
that the system also has good clinical diagnostic potential.

Malic et al. designed an integrated sample-to-answer system that allows for the
detection of SARS-CoV-2 from NP swabs with a high sensitivity in an RT-LAMP-based
manner [203]. This automated detection system is able to differentiate between positive
or negative samples within 60 min with 100% agreement with the results obtained by the
RT-qPCR. The system uses a pneumatically driven centrifugation platform to automate the
lysis, extraction of nucleic acids, and isothermal amplification of samples on the slides. This
isothermal amplification is combined with a colorimetric assay for real-time visualization
without the need for complex detection equipment. The integrated microfluidic chip is
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set up in an enclosed space to minimize possible external contamination. The platform
is equipped with a pump and pressure system to control sample entry and exit, and the
centrifugal rotating platform has a heating module to complete the required heating and
cooling. The designed microfluidic chip was used to validate the system on clinical patients.
Seven positive and three negative patient samples were extracted and placed on the chip
for testing, and a comparison of the resulting images revealed a strong correlation between
the linear images. As the system uses lyophilized beads, which can be used when no
relevant equipment under cryopreservation is available, it was found that the use of the
RT-LAMP-lyophilized beads was successful in detecting positive samples and was perfectly
compatible with field testing, allowing nucleic acid detection without the need for specialist
personnel. Nguyen et al. designed an advanced IoT-based POC device [89], where liquid
samples are After addition to the integrated microfluidic chip, a series of sample lysis,
nucleic acid amplification, and fluorescence signals are automatically monitored in real
time, and the results are transmitted to a mobile phone for display. The microfluidic
chip architecture is shown in Figure 4D. Cross-contamination tests, detection limit tests,
and clinical tests on the device demonstrate the practicality of the platform in the field.
Four clinical respiratory virus samples (SAR-CoV-2, influenza A, antiretroviral A, and
antiretroviral B) were obtained from four patients and tested on them.

The microfluidic chip can also be combined with a cassette to make the process fully
automated and further improve the speed of detection. A combined chip and cassette
device was designed by Li et al. that uses the RT-LAMP for nucleic acid amplification and
multiplex detection by placing several primers on the chip [204]. The cassette consists of
six chambers in which the solvent for nucleic acid extraction by magnetic beads, including
lysate, binding solution, first and second wash solution, eluent, and RT-LAMP solution, is
placed. The nucleic acid extraction and amplification reactions with the RT-LAMP solution
are completed by combining a syringe with a rotary valve into the corresponding chamber,
and the mixture is finally injected into the chip to complete the multiplex assay. The
structure is shown in Figure 4E. In order to optimize the extraction time, each part of the
extraction process is optimized to speed up the detection of nucleic acids. To improve the
specificity of the overall system, each of the eight primers was chosen to be placed in the
microarray, and the fluorescence curve revealed that the N gene took less time to amplify to
detectable levels than the ORF1ab gene. Nucleic acid testing using this analyzer to simulate
new coronaviruses can be automated in less than 80 min.

An automated NAAT-based test platform was created by Lin et al. [205]. Figure 4F
shows the structure of the microfluidic chip assay. Droplet transfer, aliquoting, combin-
ing, mixing, and heating were performed by using a swarm of individually addressable
millimeter-sized magnets as mobile robotic agents. Using this automated technique to
detect the SARS-CoV-2 virus in clinical samples, the test results were fully consistent with
those obtained from the off-chip. You-Ru Jhou developed an integrated microfluidic plat-
form [206] for the detection and quantification of SARS-CoV-2 using RT-LAMP technology.
The device automated virus lysis, RNA extraction, RT LAMP, and real-time detection.
The microfluidic chip is divided into five parallel microchambers for the simultaneous
detection of three genes of the new coronavirus, a positive control and a negative control.
The specificity and sensitivity analysis of the device revealed by agarose gel electrophoresis
that only the genes of the SARS-CoV-2 virus could be successfully amplified. The E, N, and
RdRp genes of SARS-CoV-2 could be rapidly detected within 90 min for all three genes. The
limit of detection for each gene was determined using three samples including synthetic
RNA, inactive virus, and RNA extracted from a clinical sample infected with SAS-COV-2.
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3.2. Cassettes

In addition to the microfluidic chip, another integrated device is the cartridge, which
is more widely used because it can be used alone, but is more commonly combined with
the chip [95]. Ganguli et al. designed a system that uses a cartridge based on RT-LAMP
amplification in combination with a mobile phone for detection [207], which is suitable
for use at the sample collection site. The collected swab is placed into a viral transport
medium (VTM), the sample with the VTM is lysed, the lysed sample and RT-LAMP reagent
are loaded into separate syringes of different volumes and connected to a microfluidic
chip, and the fluorescence signal generated during amplification is monitored in real time
via a smartphone at 65 ◦C. A schematic diagram of the device is shown in Figure 5A.
The RT-LAMP reagent and sample need to be manually injected through the syringe into
the microchannel during sample detection. The POC system was tested using 10 clinical
samples and was able to detect SARS-CoV-2 from these clinical samples by differentiating
positive samples from negative samples after 30 min. Infection with foodborne pathogens
can have a number of undesirable consequences [208,209]; therefore, Liu et al. devised a
LAMP assay that combines staining and image-processing to detect color changes in LM
by smartphone, thus providing a new idea for the simple and sensitive detection of this
type of pathogen [210].

Li et al. combined the qRT-PCR assay with an automated integration system for nucleic
acid extraction and amplification, resulting in an automated integrated gene detection
system for SARS-CoV-2 [211] in which the cartridge consisted of a lysis zone, wash zone
1, wash zone 2, and PCR amplification zone; finally, the amplification curve is displayed
on the screen in real time. This is shown in Figure 5B. The detection system is a dual
channel: a FAM-labeled coronavirus detection probe and a ROX-labeled internal reference
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detection probe. Clinical performances of the AIGS assay were assessed in 266 suspected
COVID-19 clinical respiratory tract samples tested in parallel with a commercial kit. Trick
et al. developed a portable magnetic fluidic cartridge platform for automated polymerase
chain reaction testing in <30 min [88] for the identification of variant mutations or screening
for influenza A, B, and SARS-CoV-2 in clinical samples. Magnetic beads are used to capture,
purify, and transfer analytes for amplification or detection purposes through the movement
of discrete reagent droplets. The design in the cartridge is as follows: With the spacer
strip in place, silicone oil, wash buffer, and PCR buffer are dispensed directly into the
thermoformed wells. The top layer has laser-patterned Teflon tape and laser-cut sample
ports. The cartridge design process is shown in Figure 5C. The device uses a small heater,
and therefore greatly reduces the energy requirement for rapid thermal cycling. Nguyen
et al. present the first detailed fabrication and clinical validation of an amplified response
on isothermal polymer cartridges for the rapid, in situ detection of SARS-CoV-2 using the
real-time reverse transcription conversion of a point-of-care device [212]. The robustness of
the system was confirmed by the analysis of 398 clinical samples initially examined in two
Danish hospitals.

Yang et al. developed a portable microfluidic-based integrated assay analysis system
for the detection of SARS-CoV-2 directly from saliva samples [213], where saliva cartridges
are independent and evaluated using multiplex real-time quantitative polymerase chain
reaction with different primer sets and mock SARS-CoV-2 internal controls. Miao et al.
designed a capillary tube with FTA membranes to facilitate CPCR [214]. The lysed sample
or wash buffer is centrifuged through a membrane filter and the capillary is heated for
amplification using a removable resistance heater, while the reaction fluorescence signal
is monitored in situ using a smartphone camera. The overall construction of one of the
cartridges is shown in Figure 5D. The results show that the influenza A virus can be
successfully detected within 45 min at reasonable concentrations.

Fang et al. developed a two-channel temperature controller for a portable nucleic
acid detection system [183], based on the principle of nucleic acid detection by magnetic
nanoparticles, which can operate in different modes, including high-precision heating con-
trol for nucleic acid extraction, fast thermal cycling control for PCR, and adjustable constant
heating/cooling control. In order to test the performance of the device, a comparison is
made by means of water and mineral oil, where the mineral oil prevents the evaporation
of water due to high temperatures and where the actual control does not allow the direct
measurement of the liquid temperature. Therefore, a linear fit was made to the relationship
between the set temperature and the liquid temperature in order to achieve an accurate
target value for the liquid temperature. The rapid detection of C. difficile can be achieved
with this device. Tang et al. developed a rapid integrated RPA (I-RPA) system to detect
nucleic acids in clinical samples [177]. This device has successfully detected SARS-CoV-2.
The cartridge operation flow is shown in Figure 5E. The system does not require an addi-
tional nucleic acid extraction process and takes approximately 30 min for the sample to
enter and exit.

Yoo et al. developed a nucleic-acid-based diagnostic tool to directly detect dengue
virus in whole blood [215] using a combination of microbead-assisted and LAMP. The
entire assay process includes sample loading, agitation, heating, and LAMP amplifica-
tion. The corresponding cassette is divided into three sections, including a microfluidic
channel section, a sample preparation chamber section, and a LAMP chamber section.
In comparison with commercial instruments, the device was found to be successful in
detecting dengue virus at lower concentrations. This method can also be applied directly
to the detection of Gram-positive/negative bacteria, influenza A, etc. An all-in-one nucleic
acid detection system based on DMF technology was designed by Hu et al. [216], which
integrates automated nucleic acid extraction, rapid nucleic acid amplification, and real-time
amplification product detection in one system. The architecture of the all-in-one system
is shown in Figure 5F. Real-time LAMP reactions on discovery tablets from a selection of
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positive standards from commercial kits yielded almost identical test results to those of
commercial machines. The successful detection of SARS-CoV-2 and E. coli. is mimicked.
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The fully automated and enclosed nature of the extraction, amplification, and de-
tection processes significantly reduces testing time and improves testing efficiency. This
automation eliminates the need for specialized personnel to perform the assay, enabling
nonprofessionals to carry out the testing procedures. Nonlaboratory testing is particularly
susceptible to contamination, and to mitigate this risk, the use of fully enclosed environ-
ments, such as microfluidic chips or cassettes, becomes essential for achieving ultrafast,
automated testing. In the future, locations such as community clinics, customs facilities,
hospitals, and remote areas will be able to conduct rapid, portable, and fully automated
nucleic acid testing. This will alleviate the burden on healthcare professionals and reduce
waiting times for individuals undergoing testing.

4. Commercial Nucleic Acid Testing Equipment

Commercial nucleic acid testing devices for detection [217–220].Such as the instrument-
free, disposable PCR testing kit developed by Visby Medical Inc, which allows for on-
demand testing with rapid results [221]. Although currently authorized for laboratory
testing, their device simplifies the testing process by collecting a sample and placing it
in the sample port with the push of three buttons. The sample is sealed upon entering
the inlet port to prevent cross-contamination. While the platform is simple to operate, it
is still primarily used in laboratory environments. Future improvements are expected to
further reduce the testing time and facilitate field testing. Mesa Biotech has developed the
New Crown assay, which utilizes an asymmetric PCR to generate single-stranded products
for hybridization with nucleic acids [222]. The test is automated, involving placing the
collected sample into a self-contained tube and transferring it to the test card via a dropper.
After a 30 min waiting period, test results are obtained. The entire process is enclosed, and
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the device has received emergency-use authorization. The system features a reusable base
and disposable test cards, reducing the risk of cross-contamination. However, home testing
is not yet available. Ltd. has developed an integrated field-level nucleic acid extraction and
quantitative PCR system that uses ultrasonic vibration and magnetic bead adsorption for
nucleic acid extraction. The collected swab is folded and added to the spiking hole of the
chip, the chip is pressed to press the reagent into the tube, the instrument is started, and the
fluorescence test results are automatically obtained after approximately 40 min. Currently
in the development stage, this system not only offers ease of operation, but also enables
the transmission of test results via wireless communication modules such as Bluetooth,
enhancing the accessibility and understanding of the nucleic acid test results.

MicroGEM US Inc, a UK molecular biology company, performs saliva sampling cou-
pled with a mobile PCR cart to extract nucleic acids using an enzymatic method, yielding
results in 27 min [223]. Detect, Inc, a Connecticut-based health technology company, uses
nasal swab sampling, a nucleic acid test strip detection technique based on the RT-LAMP
method, with a detection time of 1 h. An all-in-one self-service SARS-CoV-2 nucleic acid
detection kit developed by Tsinghua University using a colloidal gold test strip with an
optimized lysis process and back-end amplification reagents and nested isothermal ampli-
fication (ITA) technology. The test can be completed by pushing the two pushers up and
down, and the test takes 30 min. The Hong Kong Polytechnic University has developed a
portable nucleic acid test based on the RT-LAMP and gold nanoparticles, with a test time
of 25–40 min and results recognizable to the naked eye. Shanghai Speedy Diagnostics has
developed the fully automated thermostatic nucleic acid amplification analyzer MA3000, a
microfluidic-based fully automated thermostatic nucleic acid amplification analysis system
with a test time of 30–45 min. Atas Genetics uses asymmetric PCR and electrochemical
detection, as well as a microfluidic chip for the detection of sexually transmitted diseases,
and it takes about 30 min to get the results [224]. The Cobas Liat PCR system uses PCR
quantitative analysis, microfluidic (squeeze), a test tube, and a chip to detect influenza virus,
Streptococcus, and Clostridium difficile; one target takes 20 min to detect influenza [225].
GeneXpert develops a PCR quantitative analysis, reagent lyophilized powder storage, mi-
crofluidic technology, and a cassette detection system for the detection of routine infectious
diseases and cancer genes. Five targets take 60 min [226]. Filmarray utilizes a nested
PCR and multiplex PCR, reagent lyophilized powder storage, microfluidic technology,
microarrays for the early and rapid screening of sexual diseases; twenty-four targets take
60 min [227]. The above equipment utilizes PCR or isothermal amplification to speed up
the detection times, with results typically obtained within 30–60 min. Cross-contamination
is minimized due to its hermetic seal. The sample to be tested is placed in the test air and
the start button is pressed to automatically perform the nucleic acid test and obtain the
results. Currently, there are few home nucleic acid testing devices available, and some
commercial instruments are not suitable for home testing. Also, the test time is still longer
compared to general antigen testing, but the sensitivity of the test is still reliable.

Paper-based microfluidics combined with other isothermal amplification techniques
are commonly employed for visualizing nucleic acid detection results [228]. For instance,
a diagnostic card for early stage pancreatic cancer has been developed, featuring dual
amplification capability on a paper chip. This card utilizes quantum dots and multicolor
fluorescent labeling instead of a gold enhancement step, allowing for the accurate quantifi-
cation of miRNA-21 and hepatitis C virus, while reducing the reaction time to one-third of
the original time. A comparison of various commercial instruments is shown in Table 3.
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Table 3. Nucleic acid testing equipment for commercial instruments.

Company Time (min) Amplification Method Study Content Automation

Visby Medical Inc. ≥30 Continuous flow PCR for detection of
neocoronavirus Fully automated

Mesa Biotech ≥30 Asymmetric PCR for detection of
neocoronavirus Fully automated

Beijing Zhongke Biotech ≥40 PCR for detection of
neocoronavirus Fully automated

MicroGEM US Inc. ≥27 PCR for detection of
neocoronavirus Fully automated

Detect, Inc. ≥60 RT-LAMP for detection of
neocoronavirus Fully automated

Tsinghua University ≥30 data ITA for detection of
neocoronavirus Fully automated

Hong Kong Polytechnic
University 25–40 RT-LAMP for detection of

neocoronavirus Fully automated

Atas Genetics io 30 Asymmetric PCR for STI detection Fully automated

GeneXpert targets/60 min PCR for routine infectious
diseases Fully automated

Filmarray 24 targets/60 min Nested PCR +
multiplex PCR

for early stage sexually
transmitted diseases Fully automated

Cobas Liat PCR system 1 target/20 min PCR for influenza virus Fully automated

5. Conclusions

Some common nucleic acid testing methods require bulky equipment, specialized tech-
nicians, and laboratory settings. However, in order to alleviate the burden on professionals
and facilitate testing in remote and resource-limited locations, point-of-care nucleic acid
testing has gained prominence. As a result, current trends in nucleic acid testing equipment
are focused on improving the three main components of testing: nucleic acid extraction,
amplification, and detection. Nucleic acid extraction is a crucial step that can be broadly
divided into three stages: fragmentation, extraction, and purification. Advancements in
these processes have led to faster and more portable tests. Some testing devices have
even eliminated the need for nucleic acid extraction altogether. In order to meet the high
demand for testing and expedite results, it is essential to choose the most suitable methods
for each step. There are various approaches available, and the key lies in selecting the
right method that ensures speed and efficiency. Nucleic acid amplification techniques,
including variable temperature amplification and isothermal amplification, require precise
temperature control. Improving the rate of temperature increase is crucial for overall
speed, while considering the temperature variations that can impact the functionality of
the amplification enzymes. Maintaining an optimal temperature range ensures successful
amplification. In terms of testing methods, visual or instrument-based results are sought for
rapid point-of-care testing. Steps involved in nucleic acid testing often require specialized
expertise, but for broader accessibility, automated operation is more desirable. Cartridges
and chips simplify the process by allowing the collected sample to be placed into the
test port, and results can be obtained by pressing a button after a specific waiting period.
Visual inspection determines negative or positive results. Automated testing significantly
reduces the testing time, and the enclosed space of the system minimizes contamination
and interference. While larger sample sizes are typically required for reliable testing, using
smaller sample sizes can expedite the process. Microfluidic channels are employed for
detection, where the sample passes through a small and elongated channel, undergoes
nucleic acid extraction, and then undergoes amplification under different temperature
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control. Integrating microfluidic chips into the overall nucleic acid assay system makes
the device more compact and portable, utilizing smaller sample volumes for qualitative or
quantitative analysis.

Currently, there is room for improvement in some assay equipment used for nucleic
acid testing. Although automated testing systems have made significant progress in
detecting disease-causing viruses, there are still instances of false-positive results, and
efforts are underway to enhance the accuracy of these devices in the future. Another area
that requires attention is the time taken to obtain test results, which needs improvement
to achieve faster testing. There is also a need to integrate testing modules and make the
devices more compact and efficient. Furthermore, the development of home-testing devices
for nucleic acid testing is relatively limited, and there is a demand for more user-friendly
devices that can enable rapid self-testing at home, catering to specific needs. Additionally,
CRISPR-based technology shows promise in detecting small amounts of RNA without
the need for amplification. However, there are currently few commercially available
instruments based on CRISPR technology, and further research could be conducted to
explore the potential of this detection technology. In order to address these challenges, the
focus of future developments will be on creating simple, rapid, noncontaminating, and
point-of-care devices. These advancements aim to provide improved testing environments
and systems for the early detection of pathogenic viruses.
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