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Abstract: A photoelectrochemical (PEC) detection platform was built based on the branched ru-
tile/anatase titanium dioxide (RA-TiO2) electrode. Theoretical calculations proved that the type-II
band alignment of rutile and anatase could facilitate charge separation in the electrode. The self-
generated electric field at the interface of two phases can enhance the electron transfer efficiency of
the electrode. Carboxylated CdTe quantum dots (QDs) were applied as signal amplification factors.
Without the target DNA presence, the CdTe QDs were riveted to the surface of the electrode by
the hairpin probe DNA. The sensitization of CdTe QDs increased the photocurrent of the electrode
significantly. When the target DNA was present, the structural changes of the hairpin probe DNA
resulted in the failure of the sensitized structure. Benefiting from excellent electrode structure design
and CdTe QDs sensitization strategy, the PEC assays could achieve highly sensitive and specific
detection of target DNA in the range of 1 fM to 1 nM, with a detection limit of 0.23 fM. The electrode
construction method proposed in this article can open a new avenue for the preparation of more
efficient PEC sensing devices.

Keywords: PEC biosensor; branched titanium dioxide; anatase/rutile junction; CdTe-COOH QDs;
DFT calculation

1. Introduction

Photoelectrochemical (PEC) biosensors have been universally regarded as a reliable
tool for the analysis of various biomarkers, such as antigens [1–3], nucleic acids [4–9],
enzymes [10,11], and some other chemicals [12–14]. PEC biosensors uniquely possess the
advantages of low background signals, inherent miniaturization because of unique light
excitation, and current detection pattern [15]. As a catalytic and transducer element, the
photoactive electrode material plays an important role in the PEC biosensor. TiO2 is widely
researched for electrode materials because of its chemical stability, photocatalytic activity,
and biocompatibility [16–19]. However, electrodes prepared from TiO2 powder usually
suffer from structural defects and charge recombination [20].

Branched TiO2 grown in situ on a conductive substrate has been proven to be an excel-
lent photoanode for dye-sensitized solar cells [21,22] and PEC biosensing platforms [23–25].
For example, Yu et al. achieved ultra-sensitive photochemical DNA analysis using CdS/CdTe/
TCPP co-sensitization structure and G-tetrad/heme catalysis based on branched TiO2
electrodes. However, the branched TiO2 electrodes reported in these studies consisted of
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single-phase rutile TiO2. The biggest problem with these electrodes is that poor charge
separation in the single-phase rutile structure can seriously affect the signal collection
ability of the electrode. Many scholars believe that this problem can be avoided by building
a phase-structure electrode from different crystal forms of the same semiconductor. For
example, the electrode composed of rutile and anatase TiO2 shows better photoelectro-
chemical properties than a single phase [26–30]. Therefore, constructing a phase-structure
electrode may be an effective method for improving the performance of the PEC biosensor.

Although the phase-structure electrode can inhibit carrier recombination in the elec-
trode, the photoelectric conversion efficiency of the electrode is not satisfactory because
of the low light absorption in the visible range. This problem can be solved by using
semiconductor QDs (like CdS QDs, CdSe QDs, and CdTe QDs) as a sensitizer [31]. Cad-
mium telluride (CdTe) is a known semiconductor nanomaterial with a bandgap of 2.0 eV,
which is often used in PEC analysis systems as a signal amplification element. Combining
CdTe QDs with the TiO2 can construct a sensitized structure to realize the amplification
of electrode signals [32,33]. For example, Zhu et al. [31] achieved ultrasensitive PEC DNA
detection based on a TiO2/CdS:Mn hybrid structure co-sensitized with two different sizes
of CdTe QDs.

Herein, a PEC DNA sensing platform was built based on an RA-TiO2 phase-structure
electrode (Scheme 1). A phase structure was formed by assembling anatase TiO2 nanosheets
onto rutile TiO2 nanorods. To detect target DNA sequences, the hairpin probe DNA was
immobilized to the electrode surface by the Au-S bond. The sensitized CdTe QDs were
connected to the head of hairpin DNA via the interaction of the -COOH and -NH2 groups.
Given that the probe DNA is a hairpin structure, CdTe QDs were riveted on the electrode
surface. The photocurrent response of the DNA sensor electrode was greatly enhanced
by the sensitizing effect of CdTe QDs. Once the probe DNA hybridized with the target
DNA, the probe DNA formed a rigid double-strand with the target DNA, forcing CdTe
QDs away from the phase-structure electrode surface and leading to rapid decay of the
electrode signals. As a result of the aid of the rutile/anatase phase-structure electrode, the
electrochemical signals in the detection process could enter the electrode more efficiently
and the target DNA could be sensitively detected.
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2. Materials and Methods
2.1. Materials, Reagents, Apparatus

All reagents were used directly without purification. Fluorine-doped tin oxide (FTO;
1 cm × 2 cm) thin film substrate was obtained from Opivit New Energy Technology Co., Ltd.
(Fushun, China). A glass cleaner was obtained from Shenzhen Run Ming Tong Technology
Co., Ltd. (Shenzhen, China). Hydrochloric acid (HCl), tetrabutyl titanate (TBOT), titanium
trichloride, ethanol, chloroauric acid (HAuCl4), cadmium chloride (CdCl2), sodium tellurite
(Na2TeO3), 3-mercaptopropionic acid (MPA), ascorbic acid (AA), and sodium borohydride
(NaBH4) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
1-Ethyl-3-(3-(dimethylaminopropyl) carbodiimide hydrochloride (EDC), N-hydroxysuccinimide
(NHS), Tris(2-carboxyethyl) phosphine hydrochloride (TCEP), and 6-mercapto-1-hexanol
(MCH) were supplied by Sigma-Aldrich. Tris-hydroxymethylamino methane-hydrochloride
(Tris) buffer solution was supplied by Shanghai Roche Pharma Co., Ltd. (Shanghai, China).
The sequences of oligonucleotides fabricated by Sangon Biotech Co., Ltd. (Shanghai, China)
are listed in Table 1.

Table 1. Specific oligonucleotide sequences.

Oligonucleotide Sequences (From 5′ to 3′)

Hairpin DNA 5′-H2N-(CH2)6-CTC GCT TGG AAT AGC TGT GAT CAT TGT
TAT TAG CGA GTT T-(CH2)6-SH-3′

Target DNA 5′-CTC GCT AAT AAC AAT GAT CAC AGC TAT TCC A-3′

Single-base mismatch 5′-CTC GCT AAT AAC AAT TAT CAC AGC TAT TCC A-3′

Noncomplementary 5′-TAT ATC TGA TCT GTC CCA ATT GTA CGA GTA T-3′

The morphology of the samples was characterized by field-emission scanning electron
microscopy (FESEM, Hitachi SU8010). Transmission electron microscopy (TEM) images
were obtained using TEM (JEOL JEM 2100). The XRD patterns of the as-prepared films were
recorded on a Philip X’pert X-ray diffractometer (PANalytical, Almelo, The Netherlands;
CuKa irradiation, λ = 0.15418 nm) from 5◦ to 80◦ at a scanning speed of 10◦/min. UV–vis
absorption spectra were obtained on a UV–vis absorption spectrophotometer (UV–vis,
Thermo Fisher Evolution 220). PL and TRPL measurements were made on an FL3-P-TCSPC
time-resolved fluorescence spectrometer (Horiba Jobin Yvon, Longjumeau, France). The
test was based on TiO2 NRs, with 425 nm as the emission wavelength. The highest ex-
citation wavelength (330 nm) was selected as the characteristic excitation wavelength,
and the emission spectrum in the wavelength range of 350–800 nm was recorded. PEC
tests were performed with a homemade PEC system. A xenon lamp (Wavelength range:
200–1000 nm, Beijing Ceaulight Technology Co., Ltd., Beijing, China) served as the irra-
diation source. Photocurrent was recorded on an electrochemical workstation (Chenhua
Technology Co., Ltd., Shanghai, China) by a three-electrode electrochemical system with
Ag/AgCl reference electrodes and 0.5 cm × 0.5 cm Pt foil as counter electrodes under an
off-on-off (10 s-10 s-10 s) switching light at 0.0 V in the electrolyte of 0.1 M PBS (contain-
ing 0.1 M AA, pH 7.4). Electrochemical impedance spectroscopy (EIS) was performed
on a Bio-Logic electrochemical workstation (France) in a 0.1 M KCl solution containing
5.0 mM K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) at an open circuit potential over a frequency range
of 10 mHz–100 kHz with 5 mV AC perturbation.

2.2. Synthesis of the R-TiO2 NR Electrode

Rutile TiO2 NRs were grown in-situ on FTO glass substrate according to the literature
with slight modification [3]. About 400 µL of tetrabutyl titanate was mixed with diluted
HCl aqueous solution, which contained 10 mL of H2O and the same volume of concentrated
HCl (37%). The mixture was stirred until clear and poured into a Teflon liner. The FTO
substrates were cleaned ultrasonically with cleaning agent and settled vertically in a Teflon
liner. The liner was placed in a stainless-steel autoclave and heated in an oven at 150 ◦C
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for 4 h. R-TiO2 NR electrodes were obtained by annealing the substrate at 450 ◦C in
air atmosphere.

2.3. Fabrication of RA-TiO2 Phase-Structure Electrodes

RA-TiO2 phase-structure electrodes were fabricated by a sequential hydrothermal
process [28]. In a typical experiment, 0.25 mL of TiCl3 was added dropwise to a mixed
solution prepared from 0.25 mL of concentrated HCl and 20 mL of deionized water. The
R-TiO2 NR electrodes were placed into the Teflon liner. After the mixed solution was
poured in, the Teflon liner was placed in an autoclave and heated at 80 ◦C for 1 h. RA-TiO2
phase-structure electrodes were obtained after the substrates were removed and annealed
at 300 ◦C for 3 h in a muffle furnace.

2.4. Synthesis of Carboxylated CdTe QDs

Typically, 120 mL of DI water was poured into a three-necked flask. After the solution
was deoxygenated with N2, 0.6 mmol CdCl2 and 1.02 mmol MPA were dissolved into the
aqueous solution. Subsequently, 0.1 M NaOH was added to the mixture until the pH was
11.8. About 120 mg of NaBH4 and 20 mg of Na2TeO3 were successively dissolved into the
deoxygenated alkaline mixture. The mixture solution was refluxed under N2 protection for
6 h at 100 ◦C to prepare a carboxylated CdTe QD solution.

2.5. PEC Assay Procedure

The FTO/TiO2/Au electrodes were prepared by dipping RA-TiO2 phase-structure
electrodes into 0.01% HAuCl4 (pH 4.5) for 30 min. After pretreatment with TCEP (100 mM)
for 1 h, probe DNA (20 µL, 1 µM) was incubated with the FTO/TiO2/Au electrodes at
4 ◦C in the fridge overnight. The prepared electrode was rinsed in TE (Tris-EDTA buffer)
buffer to remove unbound probe DNA. CdTe QDs were activated by 200 µL of 20 mg/mL
EDC and 10 mg/mL NHS solution for 0.5 h. The electrodes were incubated with 20 µL
of carboxylated CdTe QD solution for 1 h at 37 ◦C. To block non-specific binding sites,
20 µL of 1 mM MCH was incubated with the prepared electrode for 1 h. The electrode
was incubated with 20 µL of different concentrations of the target DNA at 37 ◦C for 1 h for
further PEC tests.

2.6. Theoretical Calculations

First-principles calculations were performed using the Vienna ab initio simulation
package (VASP) within the density functional theory (DFT) framework. The generalized
gradient approximation was performed on the models with the Perdew–Burke–Ernzerhof
exchange-correlation potential and the projector-augmented wave method to calculate the
exchange-correlation energy functional. The structural and electronic properties of bulk
rutile and anatase were calculated on a 2 × 2 × 1 k-point mesh with a cutoff energy of
500 eV. As for the rutile (110)/anatase (101) heterojunction, the K points of 2 × 2 × 1 were
set for geometry optimization and the cutoff energy was set to 500 eV for a plane wave
basis. The thickness of vacuum layers was set to 20 Å along the surfaces of all the models
to avoid influences of neighboring slabs. Maximum residual forces of the models were
relaxed until there was less than 0.01 eV/Å on each atom.

3. Results
3.1. Composition and Morphology Characterization of the Electrodes

The composition of the electrodes was investigated by X-ray diffraction (XRD). As
shown in Figure 1, the FTO glass showed peaks at 26.3◦, 37.6◦, 51.3◦, 52.9◦, and 59.9◦, which
were consistent with SnO2 (JCPDS No.41-1445). The hydrothermally grown electrode
showed new diffraction peaks located at 36.2◦, which were assigned to the rutile TiO2 (101)
diffraction peaks in accordance with JCPDS No.21-1276, indicating that the crystalline form
of the NRs was rutile TiO2. The same diffraction patterns of rutile TiO2 and SnO2 were
found in the branched RA-TiO2 phase-structure electrode. In addition, new characteristic
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peaks at 25.5◦ were found in the XRD patterns, indicating that the crystalline form of
nanosheets was anatase TiO2, which was in accordance with JCPDS No. 21-1272. In
conclusion, the XRD results show that the electrodes are composed of rutile and anatase.
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structure electrodes. 

The surface morphology of the sequential hydrothermal synthesized electrodes is 
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trode; the substrate was covered with uniform rod-like nanostructures. High-resolution 
FESEM images of the TiO2 NRs are presented in Figure 2B. These TiO2 NRs were columnar 
cuboids topped by a square with a width of ~100 nm and were tightly grown on the sub-
strate. Figure 2C presents the top view of the sequential hydrothermal synthesized elec-
trode. Numerous small nanosheets had grown on the top of the NRs to form branched 
nanostructures after sequential hydrothermal synthesis. As we can see from the high-res-
olution FESEM image of the branched RA-TiO2, the TiO2 NRs and nanosheets formed the 
trunks and leaves of the tree-like nanostructures (Figure 2D). 
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structure electrodes.

The surface morphology of the sequential hydrothermal synthesized electrodes is
displayed in Figure 2. Figure 2A shows the top view of the hydrothermally grown electrode;
the substrate was covered with uniform rod-like nanostructures. High-resolution FESEM
images of the TiO2 NRs are presented in Figure 2B. These TiO2 NRs were columnar cuboids
topped by a square with a width of ~100 nm and were tightly grown on the substrate.
Figure 2C presents the top view of the sequential hydrothermal synthesized electrode.
Numerous small nanosheets had grown on the top of the NRs to form branched nanos-
tructures after sequential hydrothermal synthesis. As we can see from the high-resolution
FESEM image of the branched RA-TiO2, the TiO2 NRs and nanosheets formed the trunks
and leaves of the tree-like nanostructures (Figure 2D).
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images and (D) high-resolution FESEM image of the branched RA-TiO2 phase-structure electrode.

The crystallographic information of the rutile TiO2 NRs and the branched RA-TiO2
phase-structure are shown in Figure 3. The TEM image of rutile TiO2 NR in Figure 3A
shows a typical rod-like structure. The inset of Figure 3A shows the selected-area electron
diffraction patterns (SAED) of rutile TiO2 NRs. The bright and periodic spots in SAED
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indicate the single-crystalline feature of the rutile TiO2 nanorods. The HRTEM images of
rutile TiO2 NR in Figure 3B showed clear crystalline lattice fringes. The lattice spacings of
the NRs were 0.32 and 0.29 nm, corresponding to {110} and {001} of rutile, respectively [34].
The results of electron diffraction patterns and lattice fringes indicate that the growth
direction of rutile nanorods is [001]. The TEM image of the branched RA-TiO2 nanostructure
is presented in Figure 3C, showing a large number of nanosheets grown around the rutile
TiO2 NRs. The HRTEM images in Figure 3D of the branched RA-TiO2 show a lattice spacing
of 0.35 nm, corresponding to the {101} of anatase TiO2. In brief, the (101) facet of anatase
nanosheets was in contact with the (110) facet of rutile NRs. Given that anatase crystals
have higher photocatalytic activity than rutile crystals, branched RA-TiO2 nanostructures
with anatase as the external layer can multiply the photocatalytic active sites [35].
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3.2. PEC Analysis of the Electrode

To prove that a branched RA-TiO2 phase structure can inhibit the recombination of
photogenerated charges, a series of photoluminescence (PL) tests was carried out to reveal
the efficiency of electron–hole recombination. Four obvious peaks at 408, 436, 468, and
482 nm are shown in Figure 4A, which were equivalent to energies of 3.04, 2.84, 2.64, and
2.57 eV, respectively. The characteristic peak at 408 nm (blue oval), the energy of which
was nearly equal to 3.0 eV, was attributed to the interband photoluminescence of rutile
TiO2 [27]. Compared with the R-TiO2 NR electrode, the emission intensity of the branched
RA-TiO2 phase-structure electrodes in the range of 400–500 nm decreased significantly,
indicating that the branched RA-TiO2 phase structure could inhibit the recombination of
photogenerated charges. Notably, an obvious characteristic peak (red oval) of anatase TiO2
at 387 nm, the energy of which was nearly equal to 3.2 eV, indicated that the nanosheets
were anatase phase [27].
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of TiO2 NRs electrode and branched RA-TiO2 phase-structure electrode.

Time-resolved photoluminescence spectroscopy (TRPL) was performed to investigate
the lifetime of the photogenerated electrons in the R-TiO2 NR electrode and the branched
RA-TiO2 phase-structure electrode. The corresponding electron–hole pair lifetimes were
calculated by fitting the data with a biexponential decay function. As shown in Figure 4B,
the average lifetime (τave) values for the TiO2 NRs and RA-TiO2 samples were 1.51 ns and
8.02 ns, respectively. The fitted parameters are listed in Table 2. The results of the TRPL
indicated that the branched RA-TiO2 phase structure could prolong the photogenerated
carrier’s lifetime, which would greatly strengthen the catalytic ability of the electrode.

Table 2. Decay parameters and average lifetime according to a biexponential fitting model of the PL
decay curves obtained from the samples.

Samples τ1 τ2 A1 A2 τave

R-TiO2 0.48 3.63 428.13 27.36 1.51
RA-TiO2 0.63 13.76 680.45 40.17 8.02

3.3. Theoretical Calculation

DFT calculations were performed to study the band structure of the rutile and anatase
phases and charge distribution within the branched RA-TiO2 phase-structure electrode. In
Figure 5A,B, the conduction band bottom of the rutile phase was lower than that of the
anatase phase by ~0.5 eV, whereas the valence band top was similar. The band arrangement
of the electrodes showed the characteristic of II-type heterojunction. To demonstrate the
role of the branched RA-TiO2 phase-structure electrode in signal collection, the differential
charge density at the interface between rutile (110) and anatase (101) was simulated. As
shown in Figure 5C, the calculation models were built by cutting rutile TiO2 crystal along
with rutile TiO2 (110) and anatase TiO2 (101). The results of differential charge density of
the model demonstrated that electrons gathered at the anatase (101) surface, whereas holes
gathered at the rutile (110) surface and brought them together. The self-built electric field
was established at the interface to provide a driving force for the collection of electrode
signals. Therefore, as shown in the electron transfer diagram in Figure 5D, when there
was no target in the detection system, the hairpin probe DNA riveted CdTe QDs on the
surface of the electrode. The TEM images presented in Figure S1 reveal that the CdTe QDs
were regular spherical structures with diameters of about 2–5 nm and the SEAD diffraction
pattern indicates that the CdTe QDs were polycrystalline powders. The photoexcited
electrons from the CdTe QD conduction band entered the conduction band of anatase TiO2
and were then received by the FTO electrode through the rutile NRs. The formation of the
rutile/anatase/CdTe-sensitized structure significantly improved the photoelectric response
of the electrode. However, the hairpin probe DNA hybridized with the target DNA to form
a hard-to-bend double-stranded structure, forcing CdTe QDs off the electrode surface and
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resulting in a significant decrease in electrode photocurrent. With the aid of the branched
RA-TiO2 phase-structure electrode, the electrochemical signals in the detection process
could enter the electrode more smoothly and efficiently.
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3.4. Characterization of the PEC Biosensor

The stepwise assembly process in the PEC biosensor was studied by electrochemical
impedance spectroscopy (EIS) and photoresponse current–time tests. The EIS spectrum of
the electrode shown in Figure 6A was composed of a semicircular component and a linear
component, which were ascribed to the electron transfer-limited process and diffusion-
limited process, respectively [36]. A small semicircle diameter represents low resistance to
electron transfer. The R-TiO2 NR electrode showed a large impedance semicircle (curve a,
Ret = 329 Ω). When anatase nanosheets were grown on the rutile NR array, the electrode
impedance was further reduced (curve b, Ret = 246 Ω). The internal electric field accelerated
electron transfer, which resulted in the decrease in electrode impedance. The impedance of
the electrode was greatly reduced when the AuNPs with good conductivity were deposited
(curve c, Ret = 115 Ω). Ret increased after incubation with probe DNA, CdTe QDs, and
mercaptohexanol (MCH) (curve d, Ret = 139 Ω; curve e, Ret = 171 Ω, curve f, Ret = 221 Ω)
because of the electrostatic repulsion among the [Fe(CN)6]−3/−4 group to the phosphate
group on DNA, the carboxylic acid group on the CdTe QD surface, and the hydroxyl group
on mercaptohexanol. The introduction of target DNA led to the further increase in Ret
(curve g, Ret = 243 Ω), which was ascribed to the formation of double strands, resulting
in a decrease in the conductivity of the nucleic acid strand and indicating the successful
hybridization of the probe and the target DNA.
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The photoelectric current responses at different stages of the electrode are recorded
in Figure 6B. The photocurrent of the R-TiO2 NR electrode was ~18 µA (curve a). When
anatase nanosheets were grown on the R-TiO2 NR electrode, the photocurrent value of
the electrode further increased (curve b, I = 24 µA). After Au deposition, the photocurrent
increased slightly (curve c, I = 26 µA) due to the surface plasmon resonance effect of Au
NPs [37]. The photocurrent decreased slightly (curve d, I = 23 µA) after hairpin probe DNA
immobilization, which was ascribed to the poor conductivity of the nucleotide chain. The
photocurrent increased sharply after incubation with CdTe QDs (curve e, I = 36 µA) due
to the sensitization effect of the rutile/anatase/CdTe QD structure. A slight decrease was
noted in the photoelectric response current of the electrode when the end-capping agent
MCH was loaded onto the electrode surface (curve f, I = 33 µA), which was attributed to
the poor conductivity of MCH. The photocurrent of the electrode decreased after incuba-
tion with the target DNA (curve g, I = 25 µA), indicating successful hybridization of the
probe with the target DNA. Combining the results of EIS and photocurrent response, the
successful fabrication of the PEC platform was confirmed.

3.5. Analysis Performance of PEC Biosensor

To explore the impact of the concentration of CdTe QDs and incubation time on our
detection performance, we performed a parameter adjustment experiment. The results
are presented in Figure S2. The optimal concentration of CdTe QDs was 5 mg/mL and
the incubation time was 60 min. In Figure 7A, as the sensitization effect vanished due
to target DNA hybridization, the photocurrent decreased with the increase in the target
DNA concentration. The relationship of photocurrent versus logarithm of target DNA
concentration in the range of 1 fM–10 nM is presented in Figure 7B. The linear regression
equation was I = 28.25–1.19 log c (R2 = 0.9951). The limit of detection (LOD) for the target
DNA concentration was calculated as 23 fM (S/N = 3). To reflect the sensitivity of the PEC
sensing platform, we compared the biosensing performance of the PEC platform with other
DNA detection methods. As shown in Table 3, the platform we proposed provides a low
LOD in a wide detection range.

To verify the stability of the electrode, the photocurrent was tested with 10 µM target
DNA under 10 on/off illumination cycles. No significant change was observed during the
test cycles (Figure 7C, calculated relative standard deviation RSD = 5.64%), which indicated
the good reproducibility of this electrode. Additionally, the selectivity was investigated
by testing the photocurrent of the electrode with 10 µM target DNA, 10 µM single-base
mismatch DNA, 10 µM noncomplementary DNA, and a blank sample (Figure 7D). The
photocurrent of the electrode with 10 µM target DNA (column a, I = 25.84 µA) decreased
significantly more than the photocurrent of the blank sample (column d, I = 37.69 µA),
whereas the single-base mismatch (column b, I = 35.62 µA) and noncomplementary DNA
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(column c, I = 37.12 µA) were very close to the blank sample. These results showed that
the proposed DNA sensing electrode could offer satisfactory specificity. To evaluate the
applicability of the electrode, recovery was analyzed by adding different amounts of target
DNA (1.0, 10, and 100 pM) to human serum samples (Table S1). The recovery of target
DNA in the serum samples was in the range of 95.18–100.64% and the RSD was less than
3.9%, indicating potential applications of the biosensing electrode in complex samples.
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Figure 7. (A) Photocurrent signals of the sensing platform with different concentrations of target
DNA, (B) relationship of photocurrent versus logarithm of target DNA concentration, (C) stability
test of the electrode with 10 µM target DNA, and (D) selectivity test of the electrodes.

Table 3. Comparison of different sensors for the detection of target DNA.

Biosensors Dynamic Range Detection Limit References

FL 1 0.01 pM–10 nM 3 pM [38]
DPV 2 10 fM–0.1 µM 0.31 fM [39]
ECL 3 50 fg/mL–500 ng/mL 32 fg/mL [40]
EC 4 0.01 pM–10 nM 3.5 fM [41]
PEC 10 fM–0.1 µM 3 fM [42]
PEC 1 fM–1 nM 0.23 fM This work

1 fluorescence; 2 differential pulse voltammetry; 3 electroluminescence; 4 electrochemistry.

4. Conclusions

In summary, a PEC sensing platform was fabricated based on branched rutile/anatase
TiO2 phase-structure electrodes. As expected, compared with the single-phase TiO2 NR
electrode, the proposed sensor possessed a higher photoelectric response, a lower carrier
recombination rate, and a longer carrier lifetime. The proposed PEC sensing electrode
could offer an LOD of 0.23 fM in a wide linear range between 1 fM and 1 nM. These high
PEC performances are related to the improved separation ability of the photogenerated
charges due to the branched RA-TiO2 phase structure, a self-built electric field caused by
the interface design between the two phases, and a reasonable signal amplification strategy
based on CdTe QD sensitization.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios13070714/s1, Figure S1: TEM image and SEAD of CdTe QDs;
Figure S2: Effect of concentration of CdTe QDs and incubation time with target DNA on the pho-
tocurrent response; Table S1: Analytical results of target DNA in human serum samples using the
proposed method.
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