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Abstract: Viruses are widespread in the environment, and many of them are major pathogens of
serious plant, animal, and human diseases. The risk of pathogenicity, together with the capacity
for constant mutation, emphasizes the need for measures to rapidly detect viruses. The need for
highly sensitive bioanalytical methods to diagnose and monitor socially significant viral diseases
has increased in the past few years. This is due, on the one hand, to the increased incidence of viral
diseases in general (including the unprecedented spread of a new coronavirus infection, SARS-CoV-2),
and, on the other hand, to the need to overcome the limitations of modern biomedical diagnostic
methods. Phage display technology antibodies as nano-bio-engineered macromolecules can be
used for sensor-based virus detection. This review analyzes the commonly used virus detection
methods and approaches and shows the prospects for the use of antibodies prepared by phage display
technology as sensing elements for sensor-based virus detection.

Keywords: biosensors; viruses; detection methods; antibody phage display technology

1. Introduction

The concept of a virus often raises public concern about the spread of the new coro-
navirus infection, dengue fever, avian influenza virus, hepatitis, Ebola fever, acquired
immunodeficiency syndrome (AIDS), and other deadly diseases [1,2]. However, despite
their enormous harmfulness, many viral and virus-like particles have practical applica-
tions in bio(nano)medical technologies. In particular, they can be used in targeted drug
delivery, in the transfer of genetic material [3,4], in noninvasive imaging for the early
detection and treatment of human diseases [5], as biorecognition elements in biosensor
systems [6,7], and in the production of vaccines and antimicrobials [8]. Among other
things, viral particles can be used in bioelectronics to form certain functional surfaces
and materials [4,9], owing to their ability to genetically adapt to any changes from the
outside. For instance, icosahedral viral nanoparticles such as tobacco mosaic virus and
bacteriophage M13 have been used as nanotubes for batteries and nanowires, while rod-
shaped viral nanoparticles such as cowpea mosaic virus and cowpea chlorotic mottle virus
have been considered for use in biomedicine [5,10,11]. Additionally, it has been confirmed
that archaeal Sulfolobus islandicus rod-shaped virus 2 can be used in bioconjugation chem-
istry [12–14]. Such a useful side of viruses is an object of close research attention, allowing
new horizons for their possible applications.

Viruses and noninfectious virus-like particles exhibit the characteristics of ideal build-
ing blocks with perfect symmetry and with uniformity of size and shape, which is due to
the precise assembly of hundreds of molecules into highly organized scaffolds [15]. Of par-
ticular interest is the use of viral particles in the phage display preparation of recombinant
antibodies. Phage display is based on the expression of foreign peptides or proteins on the
surface of phage particles as part of a chimeric envelope protein [16–18]. George P. Smith
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created this technology in the middle of the 1980s after demonstrating that a foreign protein
could be expressed on the surface of bacteriophage M13 (filamentous bacteriophage). He
combined the pIII minor coat protein of M13 with the gene encoding the EcoRI restriction
endonuclease fragment in a single translation frame [19–22]. British biochemist Sir Gregory
Winter employed phage display to display antigen-binding immunoglobulin fragments
on the surface of bacteriophage fd in the 1990s [23]. A fresh combinatorial strategy for
preparing recombinant antibodies was thus developed.

The goal of antibody phage display is to create phage particles that show antibodies
or their fragments on the membrane with a high degree of specificity to the target antigen
or high-affinity phage antibodies. The three main steps of this technology are as follows:

- Making bacteriophages or choosing them from libraries of available phages;
- Biopanning (affinity-based enrichment of phage libraries);
- Phage-displayed antibodies go through a number of affinity selection procedures

before being utilized as specific biosensor receptors [24].

Since the beginning of the new millennium, viruses have considerably worsened
the global epidemiological situation. Examples include the spread of severe acute res-
piratory syndrome (SARS) in 2002–2004, the A/H1N1 swine flu pandemic in 2009, and
the Ebola outbreak in West Africa in 2014 [25]. In 2019, the world was shaken by the
coronavirus pandemic (COVID-19), which has reached unprecedented proportions and
has made substantial adjustments to everyone’s habitual way of life [26,27]. According
to the World Health Organization (WHO), 763,740,140 cases of COVID-19 infection and
6,908,554 deaths have been confirmed in 230 countries and territories worldwide (as of
20 April 2023) [28]. In addition, complications in the form of unregulated immunological
responses, metabolic dysfunction, and multiple organ failure have been reported in patients
with acute COVID-19 [29].

On 20 May 2022, WHO released a full report on global health statistics for 2020, the
first year of the COVID-19 pandemic that resulted in 4.5 million excess deaths. The statistics
show that the pandemic affected the health care system worldwide, in some cases severely
limiting access to life-saving resources. The pandemic has significantly slowed the global
progress in both life and healthy life expectancy that was achieved in the first 20 years
of the century. The report highlights that the global community has been unprepared
to recognize the central role of primary health care and to fully fund key elements of
health care, which has largely slowed the effectiveness of the response to the spread of the
SARS-CoV-2 virus [30].

On 12 August 2022, the United States Center for Disease Control and Prevention
reported two new human cases of the H3N2 influenza virus circulating in swine. The
outbreaks of influenza A subtype H3N2 among pigs in the United States indicate that the
risk of human infection with this virus and its further spread may now be higher than usual.
Since the monkeypox outbreak began and as of 3 January, 21,094 confirmed cases have
been reported in 29 countries. Five deaths were recorded during the spread of monkeypox:
three in Spain, one in Belgium, and one in the Czech Republic [31].

With increased population mobility and international travel, viruses spread rapidly
around the world, causing outbreaks of infectious diseases. The emergence of a new virus
on a pandemic scale threatens the health and lives of 8 billion people. A major reason
for the high prevalence of viral diseases is the lack of effective methods of their detection,
including preventive detection in the absence of visible disease symptoms. Therefore,
there is a growing need to develop highly sensitive and selective virus detection methods
that would be suitable for a wide range of applications, including disease diagnosis,
pharmaceutical research, agriculture, and preventive measures.

We describe the advantages of phage display technology in the production of virus-
specific antibodies, and we review what is known about virus detection with phage anti-
bodies used in standard and sensor-based methods.
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2. Methods of Virus Detection

Many methods are used to identify viruses and virus-like particles. The most com-
mon traditional virus detection methods are time-consuming, expensive, often difficult to
reproduce, and require special instrumentation and qualified personnel [32]. Virus detec-
tion methods facilitate the recognition of different virion components and fractions. Such
targets may include fragments of the viral genome, overexpressed antigens, enzymes, and
so on (Figure 1).
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Figure 1. Viral lifecycle in a eukaryotic cell (A), virus detection methods (B), and the overall scheme
of antibody phage display technology for sensor-based virus detection (C) [32] with modification.

One “gold standard” method for virus detection is the isolation of pathogens from
infected cell cultures [33,34]. Virus isolation can be a very reliable method, but it takes
several days to several weeks to produce results and requires trained personnel and
expensive equipment. Another “gold standard” method is the polymerase chain reaction
(PCR), used in the laboratory diagnosis of viral infections [35–39]. By amplifying the target
nucleic acid in the presence of intercalating fluorescent dyes such as SYBR Green or SYTO-
13, semi-quantitative detection results may be obtained in a few hours. However, PCR
requires a precise thermocycling regimen and, as a rule, special equipment.

Yet another “gold standard” method is the enzyme immunoassay (ELISA), which is
often used to detect infections caused by human immunodeficiency virus (HIV), dengue
virus (DENV), and other viruses [38,40,41]. The detection by ELISA of viral antigens
in clinical samples is limited by the insufficient sensitivity of the assay. Despite these
disadvantages, PCR and ELISA enable real-time detection of viruses.

In recent years, DNA microarray technology has been used to diagnose various viral
infections, particularly acute respiratory infections [42–44]. In addition, the lateral flow
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assay is very popular for virus diagnosis [45]. The use of immunochemical and serological
methods is also hampered by the high antigenic diversity of some virus groups. Table 1
compares the methods traditionally used to detect pathogenic viruses [26]. Owing to
these limitations, traditional methods do not allow simultaneous and sensitive detection
of viruses and virus-like particles in clinical samples. Figure 2 shows the main diagnostic
methods for COVID-19 [46].

Table 1. Comparison of methods traditionally used to detect pathogenic viruses [26].

Technique Principle Time Advantages Disadvantage

PCR nucleic acid hours
- well established
- small number of

samples

- ease to contamination
- time-consuming

ELISA viral protein hours highly specific
- low sensitivity
- high-quality sample

preparation

Cell culturing infectivity assay days to weeks

- suitable for virus
sub-typing recovery of
novel and divergent
strains

- inexpensive

- contamination
problems

- time-consuming and
labor intensive

- unavailable for
immediate patient care

Electron microscopy viral particles hours rapid method - well-trained personnel
- low specificity

Computed tomography chest scanning hours good basis for clinical
diagnosis and treatment

- technical expertise
- centralized facilities
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cation assays, (b) lateral flow immunoassay, and (c) biosensors [46].

One of the most promising tools for virus detection is biosensor-based analysis meth-
ods. Biosensors consist of a biologically sensitive element (receptor), a transducer, and a
working solution (Figure 3).
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Figure 3. General design scheme of biosensors [47].

The variety of biological materials and methods for their immobilization on the trans-
ducer surface has led to the development of three main categories of biosensors, depending
on the type of bioreceptor [48]:

- Enzymatic biosensors;
- Affinity biosensors;
- Cell/tissue biosensors.

One immunoanalytical method is affinity biosensors, which track the development of
an antigen-antibody combination [48,49]. The efficacy of biosensors depends on such factors
as the type of immobilization of recognition elements (biomolecules), with preservation
of their natural activity; the availability of the recognition element to the corresponding
analyte in solution; and the low nonspecific adsorption on a solid carrier. Therefore, high
requirements are imposed on the recognition molecules of biosensors. Specifically, the
ligand must be highly specific, chemically and physically stable, and economical to produce.
For this reason, antibody-based biosensors as sensitive detection elements are the most
common ones.

Kumar et al. [50] showed the prospects for the application of electrochemical sensors
in virus detection. Amperometric immunosensors, which combine the principles of voltam-
metry with immunological responses, are highly sensitive in detecting immune interactions.
Figure 4 shows the electrochemical techniques used for SARS-CoV-2 detection [50].

Zhang et al. [51] described an electrochemical method for the detection of H5N1
avian influenza virus. The method uses antibodies immobilized on magnetic nanoparticles
through a sandwich immunoassay. Through a sandwich immunoassay, antibodies are
fixed on magnetic nanoparticles in the procedure. By electrochemically producing protons
from water, the magnetic nanoparticles are transformed into an electroactive counterpart of
Prussian blue, releasing Fe3+. The reduction of deposited K3Fe(CN)6 and Fe3+ to K4Fe(CN)6
and Fe2+, respectively, in a subsequent electrochemical step at a lower potential, results in a
reaction that creates a Prussian blue analog). This method detects a much lower analyte
concentration than traditional methods.
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Another antibody-based electrochemical device was described by [52] (Figure 5).
The sensor system is based on measuring changes in conductivity by immobilization of a
monoclonal antibody to SARS-CoV-2 on screen-printed carbon electrodes. The performance
of both electrodes was measured by the interaction of the monoclonal antibody with the
specific spike protein of SARS-CoV-2. The limit of detection was 120 fM, whereas it was
90 fM with an in-house built biosensor device (eCovSens) in the case of spiked saliva
samples. The advantage of eCovSens is that it can detect the SARS-CoV-2 spike antigen
within 10–30 s.
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Figure 5. (A) Fabricated electrochemical eCovSens device; and (B) fabrication of an SPCE electrode,
in which nCovid-19 antibody (Ab) is immobilized onto the transducer of the SPCE. The transducer
detects changes in the electrical signal resulting from the antigen–antibody (Ag–Ab) interaction [52].

Białobrzeska et al. [53] described an immunosensor for the detection of SARS-CoV-2
N protein sequences on the basis of nucleocapsid antibodies against SARS-CoV-2. The
antibodies were prepared and purified in the laboratory and were tightly immobilized on
different surfaces (diamond/gold/glass carbon). The biosensor allowed rapid detection of
the SARS-CoV-2 virus (detection time, less than 10 min), with detection limits ranging from
0.227 ng/mL (glass carbon) to 0.334 ng/mL (diamond) and 0.362 ng/mL (gold).
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For all surfaces tested, a wide linear range of analyte concentrations was obtained (4.4
ng/mL–4.4 pg/mL). Figure 6 compares the developed method with the immunoassay, the
“gold standard” in virus detection.
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Figure 6. Clinical diagnostics with gold immunoassays. (A) Schematic comparison of the conven-
tional qRT−PCR detection methods and the point-of-care ultrafast immunoassay. (B) Impedimetric
spectra for the gold sensor were acquired when it was incubated with a mixture of positive samples
(saliva swabs containing SARS-CoV-2) and negative samples (saliva swabs missing SARS-CoV-2 but
carrying other pathogens (three samples) or from healthy individuals (two samples). (C) Evaluation
of the tested samples’ Ct and ∆Rct values. (D) Testing the antibody cross-reactivity with various
upper respiratory tract viruses, including human rhinovirus, influenza A virus, and respiratory
syncytial virus [53].

Using the detection of bacteriophage T7 as an example, Lesniewski et al. [54] proposed
a colorimetric immunosensor based on gold nanoparticles covalently bound to antibodies
specific to this bacteriophage. Owing to the formation of immune complexes of phage
particles with antibodies and gold nanoparticles, the immunosensor permitted fast, simple,
and selective detection of the virus. As a result, one can observe a solution color change
from red to purple with the naked eye. The authors conclude that this method can be used
to detect almost all viruses and virus-like particles.

While the first electrochemical devices were being developed, optical sensors, includ-
ing planar waveguide sensors, were also being developed at the same time [55]. Internal
and exterior optical fiber sensors can be split into two major categories. Thus, a feature
of internal sensors is that the external force that acts on the fiber can change not only the
transit time but also the intensity/polarization of the light propagating down the fiber.

The advantages of optical nanobiosensors include (1) high sensitivity along with an
ultralow limit of detection; (2) the ability to modify the analysis for a specific sample,
including when the signal is visualized directly with the naked eye for the rapid reading of
results and subsequent diagnosis; and (3) the relatively low cost of the portable laser and,
therefore, the biosensor itself (Figure 7) [26].
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Figure 7. Schematic diagram of optical nanobiosensors used to detect pathogenic viruses. These
biosensors are designed on the basis of quantum dots, upconversion nanoparticles, noble metal
nanoparticles, 2D nanoprobes based on fluorescent organic molecules, and chemiluminescence
immunoassay [26].

An optical immunosensor was developed to detect the NS1 antigen (nonstructural
protein 1) as a biomarker of dengue virus in clinical samples obtained early in infection. The
principle of operation is based on the detection of the NS1 antigen by immunofluorescence
by using fluorescein-5-isothiocyanate (FITC) conjugated to an IgG antibody. The probe was
highly reproducible (relative standard deviation, 2%) and sufficiently stable for 21 days at
4 ◦C, with a detection limit of 15 ng/mL−1 [56].

Guliy et al. [57] reported on the optical sensor-aided immunodetection of transmissible
gastroenteritis virus (TGEV). The analysis is based on the measurement of changes in
the electro-optical variables of the sensor before and after the addition of TGEV-specific
antibodies to the suspension being analyzed. The measuring process can be fully automated,
and it is possible to detect TGEV in the presence of foreign viral particles.

Owing to their excellent chemical stability, acoustic biosensors are most frequently
made with piezoelectric crystals such as quartz, lithium niobate, and lithium tantalate. An
attractive approach to creating a family of sensors characterized by high sensitivity, rapidity
of analysis, low cost, and tiny sizes is the excitation of acoustic waves in a piezoelectric ma-
terial. Some techniques rely on membranes or receptor antibodies placed on a piezoelectric
waveguide or the resonator surface [58]. For instance, immunosensors were developed
for the selective detection of the herpes virus in human blood [59] and in natural water
reservoirs (rivers, sewers, wastewaters) without the need for preprocessing of the analyzed
substrate [60]. These immunosensors immobilized the appropriate antiviral antibodies on
the surface of a piezoelectric resonator.

For example, bacteriophage M13 was identified in real-time by Tamarin et al. [61],
who used elastic Love waves with horizontal shear polarization in a layered medium.
First, phage-specific antibodies were permanently fixed on a silicon oxide substrate. The
multilayered structure that had developed on the waveguide surface was then examined
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after an immunoreaction between the bacteriophage and the immobilized antibodies was
induced. The formation of the structure led to a change in the velocity and attenuation of
the Love wave. The particles bound to the sensor surface antibodies (control for counting
the phage titer) were eluted, and the pH of the solution was changed. Plaque-forming units
(PFU) were counted by microbiological methods.

An electroacoustic sensor platform was used for the immunodetection of the trans-
missible gastroenteritis virus of swine (TGEV) [62]. Recently, colorimetric sensors [63] and
surface-enhanced Raman spectroscopy (SERS) [64] have been actively used for virus diagnosis.

Significantly, all immunochemical methods, including biosensor-based ones, depend
primarily on the quality of the specific antibodies used to make diagnostic systems. Anti-
body selection targets range from peptides and recombinant proteins to viral or virus-like
particles [65]. Virus-specific antibodies can be derived from libraries generated from dif-
ferent animal species, such as macaque [66] and chimpanzee [67] monkeys, llamas [68],
mice [69], chickens [70], and humans [71].

3. Phage Display Technology

Historically, the first source of antibodies was sera from immune animals and hu-
mans. The antibodies obtained contain a set of immunoglobulins of different classes and
subclasses that specifically recognize their antigen. Different serum antibodies recognize
several sites (epitopes) of the antigen. Antibody preparation was then aided by hybridoma
technology [72], which makes it possible to obtain antibodies that are produced by a
single-cell clone, recognize a single epitope, and retain their properties in many hybrid-cell
generations. The advantages of monoclonal antibodies include their high specificity and the
possibility to prepare large quantities of antibodies with a given specificity. However, the
technology for preparing monoclonal antibodies was developed for mouse and rat studies
and is difficult to apply in the case of human antibodies, whereas for therapeutic purposes,
human immunoglobulins are required. Difficulties also arise when immunization of ani-
mals, for whatever reason, is impossible or the lack of immunogenicity of potential antigens
cannot be overcome. Finally, monoclonal antibodies cannot be used with traditional and
popular immunological methods based on the precipitation reaction.

To resolve these problems, methods for the molecular cloning of antibody gene frag-
ments have been put forward. One such method is antibody phage display, proposed
by [23]. The antigen-binding fragments (scFv, Fab) presented on the surface of a filamen-
tous bacteriophage can be selected on an immobilized antigen. The main idea behind the
method is to design a combinatorial library in which the variable regions of the light and
heavy chains of immunoglobulins are combined randomly and are presented on the surface
of the bacteriophage. Every bacteriophage, such as a B lymphocyte, expresses antibodies of
certain specificity. If the size of a library is large enough, the repertoire of variable regions
will be comparable to that of antibodies in the body. The advantages of the method are
as follows:

- Antibodies can be selected in vitro, and animal immunization can be omitted;
- No need to use laboratory animals or maintain long-term cultures of eukaryotic cells;
- The preparation of individual clone producers of miniantibodies takes 10–14 days,

against the several months that hybridoma technology takes;
- Antibodies are relatively easy to prepare, and their cost is low;
- It is possible to make hybrid molecules with marker proteins (e.g., tag peptide) in a

short time;
- It is possible to prepare antibodies to autoantigens, weakly immunogenic compounds,

and toxins;
- The method can be used in immunotherapy.

Temperate filamentous phages (M13, f1, fd, etc.) are most commonly used in phage
displays. Their virion contains circular single-chain DNA, whose genetic organization and
sequence are known by many members of this phage group. The genome size is about
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6000 nucleotides. The five structural proteins that make up the capsid of a viral particle are
organized similarly in all members of the group [23].

Human phage display libraries or libraries from other species are used to make
antibodies. These libraries will be utilized for the in vitro selection (biopanning) of
the target molecule. The following actions are part of the process of choosing phage
library components:

- The immobilized antigen is incubated with library clones;
- Particles of the phage that have not yet attached to the antigen are washed away;
- The bound phage particles are eluted;
- The selected clones are infected with bacterial cells (E. coli);
- The affinity clones are amplified and isolated.

The immunogenicity of the antigens, how they are immobilized, and the quantity of
biopanning rounds all affect how long it takes to create an antibody. That is why the process
can take a few hours or several days. After biopanning, the monoclonal phage antibodies
are analyzed by various immunochemical assays, in particular, ELISA. Subsequently,
the genes of the selected antibody fragments can be isolated from the phage particles for
subsequent cloning and expression. Figure 8 illustrates the antibody generation process [65].
The availability of the antibody library for screening is the primary prerequisite for antibody
phage display. Antibody libraries, depending on how they are constructed, fall into four
main categories—naïve, immune, semisynthetic, and synthetic.
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The following is the general process for creating a combinatorial phage library:

- The genes of scFv, Fab, or other fragments are cloned from immune or undamaged humans,
mice, rabbits, chickens, pigs, dogs, monkeys, sheep, or cows’ B lymphocyte mRNA;

- These genes, along with the gene coding for the capsid protein (typically p3), are
introduced into the phagemid in a single translation frame;

- Phagemid genes are expressed, and virions are put together in infected E. coli cells by
using the generated phagemid repertoire.

Foreign antibody fragments will be exposed as part of the capsid proteins of the
virions. Depending on the chosen vector system, this step takes place with or without the
use of helper phages.

In this way, a population of bacteriophages is prepared, each exhibiting a specific
antigen-binding domain on its surface [73,74]. The application of phage antibodies in
bioreceptors is particularly promising. Phage antibodies themselves are faster and less
labor-intensive to prepare than those prepared by hybridoma technology. Phage antibodies
have a number of benefits over their natural counterparts, including the following:

- Owing to the Fc region of the intact antibody, the tiny size of the antibody fragments
is typically accompanied by reduced nonspecific binding;

- The biosensor can immobilize phage antibodies more densely;
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- Phage antibodies, as opposed to full-length antibodies, are produced by E. coli cells,
which significantly lowers production costs because no specialized equipment is
needed for the culture of hybridoma cells [75].

4. Phage Antibodies for Virus Detection/Identification

Phage display technology antibodies as nano-bio-engineered macromolecules can be
used for sensor-based virus detection. In order to recognize lethal viruses such as Zika,
Ebola, Hendra, Nipah, Hanta, Middle East respiratory disease (MERS), and SARS, phage
display has been utilized to create new diagnostic tools [76,77]. In the current situation of
the COVID-19 pandemic, researchers actively search for neutralizing antibodies against
SARS-CoV-2 for therapeutic use. Because phage display is an important antibody selection
method, the prospects for the use of phage display, with special emphasis on its use in the
diagnosis and therapy of coronavirus diseases, were shown by Anand et al. [77].

By now, a huge pool of antibodies against various viruses has been obtained by phage
display, by using naïve or immune libraries. From naïve antibody gene libraries, antibodies
against human pathogenic viruses such as SARS coronavirus, dengue virus, influenza virus,
Venezuelan equine encephalitis virus, norovirus, and hepatitis C virus have been developed
by using recombinant viral proteins or complete viral particles [78,79]. Other antibodies
have been chosen from immune antibody gene libraries that target the influenza virus, HIV,
SARS coronavirus, yellow fever virus, and Western equine encephalitis virus [79]. Even
semisynthetic libraries have been utilized to prepare antibodies specific to the influenza
virus [80]. In the past, libraries from several species have been used to successfully isolate
virus-specific antibodies.

By using phage display, potential therapeutic agents are being developed for other
human coronaviruses, such as SARS [81] and MERS [82], and for animal coronaviruses,
such as infectious bronchitis virus, TGEV, and porcine epidemic diarrhea virus. High-
affinity/small-molecule antibodies have been identified for the E, N, and S proteins of SARS-
CoV [77]. For example, Ubah and Palliyil [83] described the advantages of phage antibodies
and the prospects for their use against various viral targets. Other VHH segments produced
via phage display and animal immunization include those that bind to Rotavirus gp6, H5
hemagglutinin to inhibit H5N1 influenza virus replication, and VHH that recognizes the
tail of infectious phage in Lactococcus bacteria.

Examples of the use of phage antibodies for virus detection using classical methods
are presented in Table 2.

Table 2. Examples of using recombinant antibodies for virus detection.

Virus Phage Ab Target
Type of
Phage

Library

Format of
Phage Abs

Application of
Phage Abs Reference

Australian bat lyssavirus (ABLV) glycoprotein G naïve Fab, IgG ELISA, in vitro
neutralization [84]

Avian influenza virus
H7N2 (AIV) complete virus immune VHH ELISA [85]

Bluetongue virus (BTV) complete virus semi-
synthetic scFv, scFv-Fc ELISA [86]

Bovine immunodeficiency virus (BIV) capsid (CA) protein semi-
synthetic scFv ELISA, WB [87]
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Table 2. Cont.

Virus Phage Ab Target
Type of
Phage

Library

Format of
Phage Abs

Application of
Phage Abs Reference

Bovine viral diarrhea virus (BVDV)

envelope 2 (E2) protein immune VHH
ELISA, qRT-PCR,

in vitro
neutralization

[88]

nonstructural protein 5
(NS5B) immune VHH ELISA [89]

Broad bean mottle virus (BBMV) complete virus immune VHH ELISA, in vitro
neutralization [90]

Canine parvovirus type 2 (CPV2)
complete virus semi-

synthetic scFv ELISA [91]

virus-like particles (VLP) immune scFv ELISA, ICA, virus
suppression assay [92]

Chikungunya virus (CHIKV) VLP immune VHH
ELISA, MagPlex,

in vitro
neutralization

[93]

Cucumber mosaic virus (CMV) complete virus semi-
synthetic scFv ELISA, WB [94]

Dengue virus (DENV)

non-structural protein 3
(NS3) naïve Fab ELISA, in vitro

neutralization [95]

nonstructural protein 1
(NS1) immune VHH MagPlex assay [96]

RNA-dependent RNA
polymerase (RdRp) in the

viral non-structural
protein 5 (NS5)

naïve scFv ELISA, WB, in vitro
inhibition [97]

Duck hepatitis A virus (DHAV)
VP3 protein immune scFv ELISA, in vivo

neutralization [98]

VP1 protein immune VHH ELISA, IF, dot-blot [99]

Ebola virus

nucleoprotein synthetic scFv, IgG ELISA, WB [100]

viable Zaire ebolavirus,
viral matrix protein VP40,
viral nucleoprotein (NP)

immune scFv, IgNAR V ELISA, WB [101]

multifunctional viral
protein (VP35)

semi-
synthetic scFv ELISA, WB [102]

glycoprotein (GP) immune scFv, scFv-Fc
ELISA, in vitro
neutralization,

in vivo protection
[103,104]

Ectromelia virus (ECTV) epitope p35 immune scFv ELISA, in vitro
neutralization, WB [105]

Enterovirus 71 (EV71)

inactivated EV71 virions immune Fab ELISA, WB, in vitro
neutralization [106]

virion protein 2 (VP2) naïve scFv ELISA, WB [107]

internal capsid protein
(VP4) naïve scFv

ELISA, WB, IF,
in vitro

neutralization
[108]

Epstein–Barr virus (EBV) latent membrane protein 1
(LMP1) naïve Fab

ELISA, WB, IF,
FACS,

in vitro inhibition
[109]
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Table 2. Cont.

Virus Phage Ab Target
Type of
Phage

Library

Format of
Phage Abs

Application of
Phage Abs Reference

Foot-and-mouth disease virus (FMDV)

recombinant
non-structural protein

(NSP) 3ABC
immune scFv ELISA, WB [110]

VLP immune VHH ELISA, IF [111]

intact (146S) FMDV immune VHH ELISA [112]

VP2 capsid protein immune scFv ELISA [113]

Grapevine leafroll-associated virus 3
(GLRaV-3) coat protein immune scFv ELISA [114]

Grapevine virus B (GVB) virus particles semi-
synthetic scFv ELISA [115]

Hantaviruses
virus particles immune Fab ELISA, IF, WB [116]

nucleoprotein immune VHH ELISA, WB [117]

Hendra virus (NiV) and Nipah virus (HeV) attachment envelope
glycoprotein G naïve Fab, IgG

ELISA, immunopre-
cipitation, WB,

in vitro
neutralization, IF,

in vivo
neutralization

[118]

Hepatitis A (HAV) HAV capsid immune Fab, IgG ELISA, in vitro
neutralization [119]

Hepatitis B virus (HBV) hepatitis B virus surface
antigen (HBsAg) immune Fab, scFv ELISA, IF [120]

Hepatitis C virus (HCV)

core protein immune Fab ELISA [121]

E2 glycoprotein immune Fab ELISA, in vitro
neutralization [122]

non-structural
protein-3/4A (NS3/4A) naïve scFv ELISA, IF, in vitro

neutralization [123]

non-structural protein-5A
(NS5A) naïve scFv

ELISA, WB, IF,
in vitro

neutralization
[124]

Hepatitis E virus (HEV) ORF2 protein immune Fab ELISA, WB, in vitro
neutralization [125]

Herpes simplex virus (HSV-1, HSV-2) glycoproteins gD and gB immune Fab

ELISA, immuno
precipitation, WB,

in vitro
neutralization

[126]

Human cytomegalovirus (HCMV)

gycoprotein B (gB) and H
(gH) immune scFv ELISA, in vitro

neutralization [127]

glycoprotein 55 (gp55) immune scFv ELISA, in vitro
neutralization [128]



Biosensors 2023, 13, 640 14 of 30

Table 2. Cont.

Virus Phage Ab Target
Type of
Phage

Library

Format of
Phage Abs

Application of
Phage Abs Reference

Human immunodeficiency viruses (HIV)

transmembrane
glycoprotein gp41 synthetic Fab WB, in vitro

neutralization [129]

integrase
(IN) protein immune scFv

ELISA, WB, IF,
in vitro

neutralization
[130]

p24 immune scFv ELISA [131]

envelope glycoprotein
gp140 immune VHH ELISA, in vitro

neutralization [132]

CD4bs region of subtype
C immune scFv ELISA, in vitro

neutralization [133]

Envelope glycoprotein
gp120 immune Fab ELISA, in vitro

neutralization, IF [134]

Human metapneumovirus (HMPV) F protein immune Fab
ELISA, IF, in vitro
neutralization, in
vivo protection

[135]

Influenza A

H1N1 hemagglutinin protein
(HA) immune scFv ELISA [136]

H2N2 hemagglutinin protein
HA (stem region) immune Fab ELISA, in vitro

neutralization [137]

H3N2 HA protein and its
variants

semi-
synthetic scFv ELISA [138]

non-structural protein-1
(NS1) naïve scFv ELISA, WB, in vitro

neutralization, IF [139]

nucleoprotein (NP) immune scFv ELISA, WB, in vitro
inhibition [140]

hemagglutinin protein
(HA)

semi-
synthetic scFv ELISA [141]

complete inactivated virus immune VHH ELISA [142]

Influenza A M2 protein (cytoplasmatic
domain) naïve scFv, scFv-Fc WB, IHC [143]

Influenza B
whole virus immune Fab

ELISA, WB, IF,
in vitro

neutralization
[144]

hemagglutinin protein
(HA) immune VHH ELISA [145]

Japanese encephalitis virus (JEV)

purified virion immune Fab
ELISA, immunopre-

cipitation,
in vitroneutralization

[146]

domains I, II, III of
envelope protein immune Fab, IgG

ELISA, WB, im-
munoprecipitation,

in vitro
neutralization,

in vivo protection

[67]

Marburg virus

nucleoprotein immune sdAbs ELISA [147]

transmembrane
glycoprotein (GP) immune scFv, scFv-Fc

WB, in vitro
neutralization,

in vivo protection
[148]

VP35 protein synthetic Fab ELISA [149]



Biosensors 2023, 13, 640 15 of 30

Table 2. Cont.

Virus Phage Ab Target
Type of
Phage

Library

Format of
Phage Abs

Application of
Phage Abs Reference

Middle East respiratory syndrome-related
coronavirus (MERS-CoV)

S2 subunit of the
MERS-CoV spike protein

(MERS-S2P)
synthetic Fab, IgG

ELISA, IF, in vitro
neutralization,

ACCEL ELISA™
[150]

nucleoprotein (NP) naïve scFv ELISA [151]

Norovirus

VLP semi-
synthetic scFv ELISA, WB [152]

VLP with major capsid
protein VP1 and a minor

structural protein VP2
immune VHH ELISA, WB, in vitro

inhibition, IF [153]

P-domain of the GI.1
(VLP) major capsid

protein

semi-
synthetic scFv

ELISA, dot-blot,
surface plasmon
resonance (SPR)

[154]

Paramyxovirus
glycoproteins F (fusion

protein) and HN
(attachment protein)

synthetic Fab, sAb
ELISA, in vitro

neutralization, im-
munoprecipitation

[155]

Plum pox virus (PPV) NIa protease semi-
synthetic scFv WB, dot-blot [156]

Poliovirus capsid proteins VP1 and
VP3 immune Fab, IgG

ELISA, in vitro
neutralization,

in vivo protection
[157]

Polyomavirus major capsid viral protein
1 (VP1) synthetic Fab, IgG ELISA [158]

Porcine circovirus type-2 (PCV2)
complete virus immune sdAbs Western blot,

ELISA, and SPR [159]

cap protein immune VHH ELISA [160]

Porcine epidemic diarrhea virus (PEDV)

membrane protein of
PEDV immune

sdAb fragments
(sdAb-

Mc19/29/30/37)
ELISA [161]

S1 domain of spike
protein immune VHH ELISA, in vitro

neutralization [162]

nucleocapsid (N) protein immune VHH ELISA [163]

S1 region of the spike
protein immune scFv ELISA, IF, in vivo

protection [164]

Porcine reproductive and respiratory
syndrome virus (PRRSV)

non-structural protein 9
(Nsp9) immune VHH ELISA, IF, immuno-

precipitation [165]

non-structural protein 4
(Nsp4) immune VHH ELISA, immunopre-

cipitation [166]

Rabies lyssavirus

glycoprotein (antigenic
site II) immune Fab, IgG ELISA, IF, in vitro

neutralization [167]

glycoprotein G naïve VHH
ELISA, in vitro
neutralization,

in vivo protection
[168]

Respiratory syncytial virus (RSV) glycoprotein F synthetic Fab, IgG ELISA, in vitro
neutralization [169]
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Table 2. Cont.

Virus Phage Ab Target
Type of
Phage

Library

Format of
Phage Abs

Application of
Phage Abs Reference

Rotavirus

non-structural protein
Nsp4

semi-
synthetic scFv ELISA, WB [170]

VP8* fraction of rotaviral
VP4 outer capsid

semi-
synthetic scFv ELISA, WB, in vitro

inhibition [171]

Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)

S protein (RBD)

synthetic VH ELISA, in vitro
neutralization [172]

immune scFv, scFv-Fc,
IgG

ELISA,
in vitro inhibition,

in vitro
neutralization,

in vivo protection

[173]

naïve scFv

ELISA, in vitro
neutralization,

in vitro inhibition,
in vivo protection

[174]

synthetic Fab, biospecific
Fab+VH

in vitro
neutralization [175]

immune VHH, VHH-Fc
ELISA,
in vitro

neutralization
[176]

RBD

immune VHH
ELISA, in vitro

inhibition, in vitro
neutralization

[177]

semi-
synthetic Fab ELISA, in vitro

neutralization [178]

immune Fab, IgG
ELISA, in vitro

neutralization assay,
in vivo protection

[179]

nucleocapsid protein (NP) immune scFv, scFv-Fc
ELISA, WB,

dot-blot, lateral
flow strip assay

[180]

Sin Nombre orthohantavirus (SNV)
Sin Nombre Virus

nucleocapsid protein
(SNV-N)

naïve scFv ELISA, WB,
dot-blot [78]

Simian immunodeficiency virus (SIV)

trimeric (gp140) and
monomeric (gp120) forms

of the SIVmac239
envelope glycoprotein

immune scFv, scFv-Fc ELISA, WB, in vitro
neutralization [181]

Swine influenza virus (SIV) SIV nucleoprotein
(SIV-NP) immune VHH ELISA, WB [182]

Transmissible gastroenteritis virus (TGEV) whole virus immune scFv
ELISA, in vitro
neutralization,

IF, WB
[183]

Usutu virus (USUV) domain III (DIII) of the
USUV E protein immune scFv ELISA, WB, in vitro

neutralization [184]

Vaccinia virus (VACV) virus particles immune scFv, IgG
inhibition ELISA,

in vitro
neutralization

[185]

Venezuelan equine encephalitis viruses
(VEEV) viral E1 envelope protein immune scFv, scFv-Fc

ELISA, WB, in vitro
neutralization,

in vivo protection
[66]
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Table 2. Cont.

Virus Phage Ab Target
Type of
Phage

Library

Format of
Phage Abs

Application of
Phage Abs Reference

White spot syndrome virus (WSSV) virus particles immune scFv ELISA, in vitro
neutralization [186]

West Nile virus (WNV)

domain IIII of WNV
envelope (E) protein immune Fab

ELISA, IF, in vitro
neutralization,

in vivo protection
[187]

envelope (E) protein naïve scFv, scFv-Fc ELISA, WB, in vitro
neutralization [188]

Western equine encephalitis viruses (WEEV)

virus immune scFv
Enzyme-linked
immunosorbent
assays (ELISAs)

[189]

virus particles immune scFv, scFv-Fc
in vitro

neutralization,
in vivo protection

[190]

E2/E3E2 envelope
proteins immune VHH ELISA (MagPlex

assay) [191]

Yellow fever virus (YFV) domain II of envelope
protein immune scFv, IgG

in vitro
neutralization,

in vivo protection
[192]

Zika virus (ZIKV)

envelope (E) protein immune scFv ELISA, WB, FACS,
in vitro inhibition [193]

nonstructural protein 1
(NS1) immune VHH ELISA [194]

Undoubtedly, phage antibodies are an excellent alternative to classical antibodies
as sensing elements in virus diagnostics by biosensors (Table 3). For example, Kim
et al. [180] developed a COVID-19 biosensor based on the lateral flow immunoassay
(LFIA). They used three rounds of biopanning to generate phage antibodies (from a naïve
chicken phage library) with a single-chain variable fragment (scFv) and crystallizable
fragment (Fc) combination, which was specific for SARS-CoV-2 nucleocapsid protein. The
scFv–Fc antibodies bound specifically and with high affinity to the nucleocapsid protein of
SARS-CoV-2 but not to those other coronaviruses. The detection limit for this virus was
2 ng of antigenic protein. The biosensor could selectively detect SARS-CoV-2 virus within
20 min without detecting SARS-CoV or MERS-CoV virus. In addition, the assay was made
more accurate with a portable LFIA reader. When the LFIA biosensor was mounted onto
a portable reader, the obtained image was analyzed automatically with LED and CMOS
sensors [180].

A sandwiched phage-based enzyme-linked chemiluminescence immunoassay was
created by Liu et al. [195] by using the discovered phage expressing a particular peptide as
a bifunctional probe. The probe was capable of recognizing the SARS-CoV-2 S1 antigen and
amplifying the signal. The method is useful for the detection of SARS-CoV-2 pseudovirus
in saliva.

Table 3. Examples of biosensor systems using recombinant antibodies as a receptor element for
detecting viruses.

Type of Sensory System
Phage

Antibody
Format

Virus Target Detection Limit Analysis
Time Reference

Biosensor based on the
lateral flow immunoassay

(LFIA)
scFv–Fc SARS-CoV-2 nucleocapsid protein (NP)

2 ng of antigenic protein
2.5 × 104 pfu cultured

virus
20 min [180]
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Table 3. Cont.

Type of Sensory System
Phage

Antibody
Format

Virus Target Detection Limit Analysis
Time Reference

Sandwiched phage-based
enzyme-linked

chemiluminescence
immunoassay (ELCLIA)

n.i. SARS-CoV-2 S1 domain of the spike
glycoprotein

78 pg/mL of antigenic
protein n.i. [195]

Quench-based fluorescent
immunosensor
(Quenchbodies)

Fab, Ig SARS-CoV-2 S1 domain of the spike
glycoprotein

0.1 nM of S protein trimer
105 copies/mL of virus 2 min [196]

Nanobody-functionalized
nanoparticles for rapid,

electronic detection
(Nano2RED)

n.i.
SARS-CoV-2 spike protein receptor

binding domain (RBD)
40 pg/mL

1.3 pM
5–20 min

[197]

Ebola virus secreted glycoprotein
(sGP)

10 pg/mL
0.13 pM

Electro-acoustic sensor Ig bacteriophage
FAl-SR65 whole virus particles 106 phages/mL 5 min [198]

After three rounds of biopanning, Yang et al.’s [199] screening of a phage library
for affinity to the SARS-CoV-2 spike protein produced five SARS-CoV-2-specific phage
miniantibodies. The resulting antibodies were used to develop a rapid and cost-effective
test for the detection of the SARS-CoV-2 virus. With the aid of a handy fluorometer,
phage antibodies were successfully transformed into fluorescent immunosensors that
allowed quick detection of the SARS-CoV-2 viral antigen [196]. From a combinatorial
library, high-affinity synthetic antibodies were isolated by phage display and tagged with
gold nanoparticles [197]. These antibodies were successful in identifying the SARS-CoV-2
spike-protein receptor-binding domain and the glycoprotein released by the Ebola virus.

A human combinatorial scFv antibody library was used to retrieve a panel of recom-
binant single-chain antibodies (scFvs) against structural proteins of tomato spotted wilt
virus via phage display [200]. Using phage display to create recombinant antibodies, Dong
et al. [201] investigated the specificity of clone binding to the CS protein and hemagglutinin
of the H5N1 avian influenza virus. It has been shown that the antibodies identified only
epitopes distinct from those seen in other influenza subtypes, enabling quick identifica-
tion of the H5N1 virus. In order to quickly and accurately detect the H5N1 virus, these
recombinant Fab fragments can be employed as a receptor component of sensor systems.

To distinguish avian influenza virus (H5N1) from seasonal influenza viruses (H1N1
and H3N2) (whose nucleoproteins are 90–94% similar in amino acid sequence), Yu et al. [202]
developed a phage display-based methodology for obtaining antibodies as affinity reagents
against closely related influenza virus nucleoprotein subtypes.

The HBsAg of the hepatitis B virus was demonstrated by ELISA to have a high affinity
for the generated phage scFvs, which allowed them to bind to the antigen on the membrane
of the infected cells. One of the clones was capable of being internalized into HepG2.2.15
cells that were HBsAg positive, according to indirect fluorescent labeling examination. The
ability to internalize phage antibodies to deliver medications to cells that are infected with
the hepatitis B virus may be highly promising [120].

By using phage display, methods have been developed to generate specific single-
chain variable fragments (scFvs) against dengue fever virus [203] and infectious bursal
disease virus (IBDV) [204]. The prepared miniantibodies were used in ELISA to detect
viruses in the sera of infected people.

Phage antibody-based ELISA versions have been created for the detection of human
disease-causing viruses such as HIV, herpes simplex virus, poliovirus, polyomavirus, rabies
virus, respiratory syncytial virus, rotavirus, Sin Nombre virus, Usutu virus, West Nile
virus, yellow fever virus, Zika virus, human metapneumovirus, Japanese encephalitis
virus, MERS, norovirus, paramyxovirus, chikungunya virus, Ebola virus, enterovirus 71,
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Epstein-Barr virus, hantavirus, human cytomegalovirus, Hendra virus, Nipah virus, and
hepatitis A, C, and E viruses [65].

A useful natural resource for investigating polyvalent interactions with particular
antibodies is bacterial viruses. Such research is very useful in the real world and has
been used to create improved virus detection methods. For example, Guliy et al. [198]
showed the possibility of bacteriophage FAI-Sp59b detection in the presence of foreign
viral particles.

The possibility of using phage display antibodies in veterinary medicine was demon-
strated in [74]. The great selection potential of phage display antibodies allowed mouse
scFvs to recognize the avian influenza virus with excellent sensitivity and specificity [140].
It should be noted that the IBDV virus seriously harms the chicken industry. Owing to
the diversity of IBDV strains, it has long been challenging to distinguish between the very
virulent classical variation of IBDV (vvIBDV) and the vaccine strain. A single-chain variable
fragment that effectively identified the highly conformational epitope of the VP2 protein
of vvIBDV was obtained by Sapats et al. [205]. These phage antibodies are perfect for
diagnostic techniques such as ELISA since they successfully distinguish vvIBDV from other
strains [205,206]. Phage antibodies and an immunoassay were used in related research to
find duck hepatitis A virus (DHAV) [99].

One of the most destructive viral illnesses in the dairy and meat sectors is foot-and-
mouth disease (FMD). It is known that there are seven FMD serotypes: O, A, C, Asia1,
SAT1, SAT2, and SAT3. Therefore, a quick and precise way of differentiating between
vaccinated and infected animals is essential to the effectiveness of diagnosis and vaccination.
Recombinant chicken scFvs against the FMD 3ABC protein have been produced and
demonstrated to be effective for separating infected from vaccine-exposed animals via
phage display [110,207]. Additionally, mouse scFvs directed against the VP2 protein of the
FMD virus showed a diagnostic capability for a number of serotypes of this virus [113]. For
the serological detection of bovine immunodeficiency virus in cattle, recombinant mouse
scFv antibodies were utilized in an ELISA with competitive inhibition [87].

The promise of phage antibodies as an experimental tool has been demonstrated to
visualize [159] and diagnose [161,208] porcine epidemic diarrhea virus, to diagnose canine
parvovirus type 2 (CPV2) [91], and to detect Western and Venezuelan equine encephalitis
viruses [189,209].

Possibilities have been shown to detect plant viruses (broad bean mottle virus, grapevine
leafroll–associated virus 3, cucumber mosaic cucumovirus, plum pox virus, and grapevine
virus B) and zoonotic viruses (Australian bat lyssavirus, bovine viral diarrhea virus, blue-
tongue virus, classical swine fever virus, canine parvovirus, hematopoietic necrosis virus,
ectromelia virus, porcine circovirus, Newcastle disease virus, simian immunodeficiency
virus, porcine reproductive and respiratory syndrome virus, transmissible gastroenteritis
virus, swine influenza virus, white spot syndrome virus, and vaccinia virus) with phage
antibodies and ELISA [65,74].

Norovirus, Maedi-visna, SARS-CoV, Sin Nombre, and duck hepatitis A viruses have
been identified with the help of dot-blot immunoassay and phage antibodies [65,74]. Phage
antibodies are employed in immunochromatographic assay techniques to diagnose infec-
tions brought on by the avian influenza virus, SARS-CoV-2, and dengue virus [65,74].

Note that surface plasmon resonance (SPR) sensors for the detection of chemical and
biological species are often the “gold standard” [210–212]. SPR biosensors are also used for
virus detection. Phage antibodies were used as part of the SPR biosensor for the detection of
norovirus [154], porcine circovirus [159], cowpea mosaic virus [213], SARS-CoV-2 [214], etc.

As can be observed from the data displayed, biosensors enable a large decrease in
the analysis time owing to the relative simplicity of the procedures, are quite sensitive,
and require little pretreatment of the material under examination. The instrumental imple-
mentation of these methods should ensure high accuracy of measurements, and in turn,
measurements should be made automatically by moderately skilled personnel. When
biosensors are designed for the detection of viruses and virus-like particles, the following
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criteria should be taken into account: property of being all-purpose, ability to be used with
various objects, rapidity of detection, specificity, sensitivity, portability, simplicity, ability to
use small sample volumes, and low cost [215].

5. Discussion and Prospects

The selection of antibody fragments from phage display libraries thus offers the poten-
tial to access very large numbers of molecules with different binding specificities quickly
and cheaply, avoiding the need for animal immunizations. The scFv can be genetically
engineered to produce tailored constructs as described above. Such phage antibodies can
be coated directly onto metal, plastic, silica or carbon surfaces by simple adsorption, which,
as discussed above, is adequate for biosensor-based assays.

Viruses are pervasive life forms that need a host to reproduce. From bacteria to plants
and animals to viruses, a wide variety of organisms may become infected. The genome,
which is represented by double- or single-stranded DNA or RNA, and the capsid are the
two primary structural parts of viruses. A small number of proteins encoded by the viral
genome are present in numerous copies to create the extremely symmetrical capsid [216].
Methods for virus detection are employed in contemporary virological research for a
variety of applications. They can be used in epidemiology to track and manage pandemic
outbreaks of illnesses caused by viruses, including swine flu, SARS-CoV-2, and many others.
Diagnostic virus detection methods are central in controlling the spread of viruses and
help contain viral infections. Despite its drawbacks, the use of PCR to identify particular
viral genomic sequences while an infection is still active is still regarded as the best virus
detection technique. However, sensor technologies using phage antibodies as sensitive
elements are very promising because antibodies generated by phage display are an excellent
alternative to classical antibodies. Since its development in 1985, phage display has been
a crucial and successful molecular biology technique that has remained essential for the
scientific community. A phage library may include millions, or perhaps billions, of distinct
and distinctive mapping peptide ligands because a huge number of nucleotide fragments
can be cloned into the phage genome. The epitope mapping and antigen presentation on
the bacteriophage surface, which constitute the basis for phage display, have been exploited
in affinity selection-based biopanning to screen for potential novel vaccine candidates [77].

Phage display is a powerful tool for target ligand selection owing to its being simple,
highly effective, rapid, and cheap. Efficient biopanning selection leads to the isolation
of ligands with unique, specific, and desired functional characteristics. Phage antibody
display offers multiple platforms for the use of antigen-binding; however, the diversity and
stability of the library still need to be improved.

In the past few years, the need for highly sensitive bioanalytical methods to diagnose
and monitor socially significant diseases has increased. This is due, on the one hand,
to the growth of the disease in general, including the unprecedented spread of the new
coronavirus infection, SARS-CoV-2, and, on the other hand, to the need to overcome the
limitations of current biomedical diagnostic methods. For example, because of puncture
invasiveness, a tissue biopsy cannot always be performed, and the results of a single
biopsy often cannot provide sufficient information in real-time to diagnose the disease.
PCR is currently one of the most popular tools for the rapid detection of viral infections.
Nucleic acid-based virus detection usually provides high sensitivity but may require trained
personnel and be time-consuming and expensive. The use of isothermal amplification
systems may reduce equipment costs, making these systems indispensable when high-
performance and rapid cycling testing are required. Alternatives to PCR are immunoassays,
which offer reliability and cost-effectiveness. In addition, some immunoassays can be
modified with lateral flow technology, which greatly speeds up the generation of results.
However, immunoassays are usually inferior in sensitivity to PCR. Along with these
methods, the use of next-generation sequencing can provide promising results. In addition,
the ability to sequence a large number of viral genomes will provide researchers with
expanded information about them and will help in tracing infections.
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Characteristics such as high throughput, ease of use, and short running time play an
important part, especially in viral outbreaks, in addition to the general requirement for the
accuracy, validity, and specificity of viral assays. This strategy enables simple, cheap, rapid,
and sensitive detection of specific pathogens, which shows great potential in virus analysis
in situ.

The growing advances in phage display and the use of antibodies in the diagnosis
of viral diseases suggest this technology will be improved further. This progress will
gradually drive innovation to understand the mechanisms involved in infection and to
design post-exposure therapies for SARS-CoV-2 and other viral infections.
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