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Abstract: Flexible and wearable biosensors have received tremendous attention over the past decade
owing to their great potential applications in the field of health and medicine. Wearable biosensors
serve as an ideal platform for real-time and continuous health monitoring, which exhibit unique
properties such as self-powered, lightweight, low cost, high flexibility, detection convenience, and
great conformability. This review introduces the recent research progress in wearable biosensors.
First of all, the biological fluids often detected by wearable biosensors are proposed. Then, the
existing micro-nanofabrication technologies and basic characteristics of wearable biosensors are
summarized. Then, their application manners and information processing are also highlighted in
the paper. Massive cutting-edge research examples are introduced such as wearable physiological
pressure sensors, wearable sweat sensors, and wearable self-powered biosensors. As a significant
content, the detection mechanism of these sensors was detailed with examples to help readers
understand this area. Finally, the current challenges and future perspectives are proposed to push
this research area forward and expand practical applications in the future.

Keywords: wearable sensors; E-skins; sweat sensors; self-powered biosensors

1. Introduction

Personal medicine, also named precise medicine, treats patients based on various
personal characteristics, which will be the next developing direction of health science and
modern medicine. Earlier diagnosis and timely monitoring are incredibly important meth-
ods to reduce patients’ suffering and mortality. Although centralized healthcare service
including hospitals is the primary choice for disease diagnosis, it is inconvenient and
time/cost-consuming for most people [1]. In recent years, flexible and wearable devices
were developed to monitor health status in real time, which provides a method to compen-
sate for some shortcomings of centralized healthcare services [1,2]. Wearable biosensors
can convert physiological signals to measurable electrical signals in real time such as cur-
rent, capacitance, and resistance that reflect specific health information [3,4]. Compared
with expensive and bulky equipment, wearable biosensors exhibited the characteristics of
convenient applications, timely display, portability, and low cost. Wearable biosensors have
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found applications in monitoring pulse beat [5,6], metabolites in body fluids [7,8], tem-
perature changes [9], cardio activities [10,11], etc. For example, a mechanically adaptable
capacitive hydrogel-based sensor was fabricated by Wu and co-workers using a bioinspired
mineral ionic hydrogel, which shows the characteristic of high sensitivity (0.17 kPa−1),
and it shows potential applications in the real-time detection of human motions, such as
finger touch and pulse beat [12]. In addition, multifunctional biosensors are desirable
to achieve multiple applications. In one case, Cho and co-workers reported a bimodal
wearable electronic device, which can achieve temperature/pressure detections in real time.
The sensor was fabricated by utilizing reduced graphene oxide (rGO) as a thermistor in the
capacitive pressure sensor, which has shown a sensitivity of 0.7 kPa−1 and 0.83% K−1 for
pressure and temperature, respectively [9].

Although a lot of progress has been achieved in recent years, the research on wearable
biosensors is still at the nascent stage. Sensitivity is still a general challenge for practical
applications due to small changes in physiological pressure or metabolite concentration
in body fluids. For example, the ejection of blood from the ventricle into arteries caused
vasodilation behaviors and small pressure changes, which reflects cardiovascular health
information [2,13]. The concentration of most metabolites such as uric acid, lactate, and
ions in sweat is as low as µM levels [1,12]. Thus, the detection of these low physiolog-
ical signals and metabolites requires sensors with high sensitivity. A series of methods
have been employed to increase the sensitivity of wearable sensors such as utilizing nano-
materials [14,15], using enzymatic reactions [16,17], fabricating micropatterns [5,18,19],
etc. For example, Park and co-workers employed a hybrid nanofibrous membrane of
Ti3C2Tx MXene and poly(vinyl alcohol) elastomer to fabricate wearable biosensors [20].
The effective contact surface and dielectric property of the capacitive pressure biosensors
were both enhanced owing to the utilization of ionic nanomaterials. The sensor exhibited
sensitivities of 5.5 kPa−1 and 1.5 kPa−1 in the ranges of 0–30 kPa and 30–250 kPa, respec-
tively. In addition, fabricating micropatterns is another important method to increase the
sensitivity of wearable biosensors. Meanwhile, various patterns with different sensing
functions can be integrated into one device. For example, Shen and co-workers prepared
an elastic micropattern array-based multiple functions sensor, which is capable of sensing
pressure and temperature [21]. The micropattern arrays were prepared with single-walled
carbon nanotubes/thermoplastic polyurethane film. The interlocked micropatterned ar-
rays can concentrate external pressure on the narrow arrays, which improved the sensing
performance. The wearable sensors exhibited a dual-sensing ability to detect pressure
and temperature, which show a high sensing sensitivity of 0.02 kPa−1 and 1.65% C−1 for
pressure and temperature, respectively.

The outstanding capabilities of wearable biosensors have been illuminated in several
recent reviews including non-invasive [22,23], multiple metabolites analysis [24,25], on-
line monitoring [26,27], etc. However, this paper covers the aspects of detection objects,
preparation methods, application manners, signal processing, and practical applications.
It differs from others with the contents of advanced micro-nanofabrication technologies,
piezoelectric sensors, and self-powered sensors that are rarely mentioned in previous
reviews. Firstly, the common bio-fluids that can provide target analytes in wearable sensors
and various types of structures suitable for human wearing are pointed out. Then, the
main preparation methods of wearable sensors are introduced to explain the relationship
between sensor structures and sensing functions. Then, various wearable biosensors based
on their applications will be discussed including wearable physiological pressure sensors,
wearable sweat sensors, and wearable self-powered biosensors. In addition, the sensing
mechanism will be introduced along with these recently published examples. Finally, future
perspectives and challenges in this field will be proposed to guide future research in this
area. We hope this review can familiarize readers with the most cutting-edge achievements
and encourage more researchers to devote more efforts to push forward the development
of wearable biosensors.
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2. Detection Objects
2.1. Saliva

Saliva is secreted by the parotid glands composed of mucosal exudates, gastric reflux,
and gingival crevicular fluid. Massive important biomarkers are found in saliva including
drug metabolites, microorganisms, proteins, hormones, etc. [28]. Due to the exchange
between salivary glands and blood, saliva analysis can be used to substitute blood analysis
due to the merits of convenient collection and non-invasive manner [29]. A series of
biosensors have been demonstrated to monitor pH, glucose, electrolytes, sulfuret, salivarius,
etc. [30–34]. In addition, saliva analysis is well-known for COVID-19 detection [35].

2.2. Sweat

Sweat is an important biological fluid secreted by sweat glands distributed throughout
the whole body. The sweat composition is related to blood with a much lower concentra-
tion. It has been reported that sweat contains abundant biomarkers such as glucose [36],
cortisol [37], electrolytes [38], uric acid [39], etc. As such, sweat is one of the most widely
studied analysis objects for wearable sensors [40–42].

2.3. Tears

Tears are composed of water, proteins, electrolytes, sugars, organic acids, etc. [43].
Variations in tear components can reflect the health condition of the eyes, which is incredibly
important for the diagnosis and treatment of eye diseases [44]. For example, the reduction
in mucin or lactoferrin concentration in tears has been used to diagnose dry eyes [45].

2.4. Interstitial Fluids (ISFs)

ISF results from the permeation of blood plasma from capillaries, which serves as
a complementary biological fluid. The capillaries can dynamically exchange signaling
molecules and metabolites with surrounding tissues, which leads to various biomarkers in
ISF [46]. Since the ISF is located under the skin, a microneedle structure is generally required
to conduct sample collection and complete detection [47–49]. Here, a wearable biosensor
was fabricated to detect β-hydroxybutyrate (HB) and glucose in ISF for monitoring diabetic
ketoacidosis conditions. β-hydroxybutyrate dehydrogenase and glucose oxidase were
immobilized on the surface of microneedles, which can sense HB and glucose through an
enzymatic reaction by piercing skins [50].

2.5. Respiration

It has been reported that exhalation contains as many as 870 kinds of volatile organic
compounds (VOCs) [51]. These VOCs are produced by various biochemical processes,
which are capable of providing important information about metabolic disorders or dys-
function [52]. Methanol and chloroform are recognized as the disease markers usually
released due to the central nervous system, liver, lungs, and kidneys. A chemical sensor
was prepared with graphene and metal–organic frameworks, which have a high sensitivity
and selectivity for sensing chloroform and methanol [53].

2.6. Physiological Pressure

Physiological pressure is another important physiological signal resulting from activi-
ties, which can reflect the health levels of the human body. For example, blood pressure
is an important method to evaluate cardiovascular diseases [54]. Intraocular pressure is a
key index to monitor the risk and condition of glaucoma patients [55]. Wearable sensors
have been used as a non-invasive way to monitor physiological pressures [56]. Various
sensing mechanisms have been utilized to convert physiological pressures into bioelectric
signals such as capacitive, resistive, triboelectric, and piezoelectric to realize the purpose
of health monitoring [57]. Physiological pressure spans a very large range dependent on
body parts and specific activities. In general, intraocular and intracranial pressures are less
than 10 Pa, while blood pressure and vocal cord vibration belong to the medium pressure
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range (10–10 kPa) [58]. Therefore, the sensing pressure range is an important factor for
wearable pressure sensors to use in the real world. High sensitivity in a wide range is
another important factor to evaluate the performance of wearable pressure sensors. Much
effort has been devoted to obtaining high sensitivity in a broad range [59,60]. For example,
a flexible pressure sensor was constructed with fiber microspheres [59]. The fiber structure
enables the sensor to have the capability of withstanding high pressure, which yields a
high sensitivity in an ultra-wide linear range. The sensor has been used to detect various
physiological signals including pulse, vocalization, and joint torque in a full range.

The detection of biomarkers in various biological fluids with wearable sensors has
attracted extensive attention from researchers [61–64]. Up to now, blood is still the most
important biological fluid for health diagnosis, but research attention starts to shift to non-
invasive fluids, such as sweat, tears, saliva, and ISF. These biological fluids have similar
components to blood, which can be acquired in a non-invasive manner, thus avoiding the
risk of infection. However, the various relationships between biomarkers in these biological
fluids and health conditions are still not clear, which limits the clinical and commercial
applications of wearable sensors. The analysis of biomarkers by gold standards is essential
to obtaining reliable clinical disease diagnosis standards, which can further advance the
development of wearable sensors.

3. Preparation Methods
3.1. Surface Processing

Surface processing provides an effective way of modifying bulk materials and elec-
trodes to improve sensing performance such as sensitivity, limit of detection (LOD), selec-
tivity, etc. Many attempts have been made to obtain a functional bulk matrix for sensing
and biosensing, such as dip coating, drop casting [65], spray coating [66], electrochemical
deposition [67,68], and printing [69]. Dip coating is a general strategy with the assistance
of surface pre-treatment to obtain functional surfaces. A series of conductive coatings have
been deposited onto commercial porous insulated substrates (e.g., foam [70], sponge [71,72],
textile [73]) by dip coating, which provides a route to prepare electronic sensors. Template
methods are an important method that can be used to prepare patterns on both rigid and
flexible substrates [74]. For example, a flexible rectangular pyramids Au electrode on poly-
dimethylsiloxane (PDMS) film was prepared using a commercial silicon microneedle array,
as shown in Figure 1a. Firstly, the mixture of PDMS precursors was cast on commercial
silicon microneedle arrays. After completely being cured, the PDMS film with concave
microstructures was peeled off and used as a template. Then, uncured PDMS was cast
on the template and cured to obtain the rectangular pyramid structure. Finally, an Au
nanofilm was deposited on the film to fabricate conductive electrodes with the rectangular
pyramid structure [75]. In addition, some plant leaves have unique microstructures (e.g.,
lotus leaves, natural mimosa leaves), which have been used as templates to form these
microstructures on electrodes (Figure 1b) [76]. Another method has been reported to create
a random microstructure using some soluble powers such as sugar and salt powders and so
on [77–79]. A pre-spinning PDMS solution was mixed with salt granules and agglomerated
instant sugar powder. Once the salt granules and sugar particles were dissolved, a mi-
cropattern formed throughout the PDMS layer (Figure 1c) [77]. Although the controllability
of the patterning microstructure is imprecise, this work provides a quite easy, efficient, and
low-cost method.

In addition to physical processing, chemical modification is robust, which can be well
designed according to the analytes of interest. Some functional groups can be immobilized
on the surfaces of sensing materials via chemical processing, such as hydroxyl, carbonyl,
carboxylic acid, and so on [80–82]. These functional groups were used as reactive sites
to bind with a variety of receptors that can selectively capture the analytes for sensing.
For example, Neethirajan and co-workers prepared an rGO embedded wearable screen-
printed electrode for the detection of cortisol and lactate in human fluids such as sweat
and saliva [82]. The fabrication process is composed of the following two steps: firstly, the
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rGO was deposited on screen-printed electrodes by chemical processing. Then, the cortisol
and lactate antibodies were bioconjugated to rGO on the surface of the screen-printed
electrodes using covalent carbodiimide chemistry. The sensor can quantitatively detect
cortisol and lactate using the electrochemical chronoamperometric method, which exhibited
the detection limitations of 0.1 ng mL−1 and 0.1 mM for cortisol and lactate, respectively.
Meanwhile, this method also improved the surface wettability and changed the surficial
morphology, both of which increased the sites for binding analytes and thus improved the
sensing performance.
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3.2. Micromanufacturing Technologies

Several micromanufacturing technologies have been proposed to fabricate flexible and
wearable biosensors, such as laser-cutting technology [83–85], photolithography technol-
ogy [8,86], ink-jet printing technology [87–89], and vapor deposition [90–93]. Laser-cutting
technology is a highly accurate material-processing technology, which uses high-density
energy generated by laser focusing to etch materials for desirable patterns [94,95]. With
laser-cutting technology, multifunctional biosensors can be prepared by integrating dif-
ferent sensor components into one device. For example, Deng and coworkers prepared
a pressure/temperature bimodal tactile sensor array employing all organic functional
materials by laser-cutting technology and screen printing (Figure 2a) [83]. The sensor array
is composed of a pressure sensor and a temperature sensor. Laser cutting was utilized to
rapidly and precisely punch the poly(vinylidene fluoride-co-trifluoroethylene) (p(VDF-co-
TrFE)) piezoelectric film, which makes the p(VDF-co-TrFE) piezoelectric film with space
hole pattern for further integrating thermoelectric pillars for sensing temperature. The
temperature-sensing element is mainly made from five P–N couples, where the P leg is a
polyaniline-based composite pillar and the N leg is an Ag paste pillar. Screen printing was
utilized to connect Ag electrodes to the sensor array. The sensor array can convert pressure
and temperature stimuli into two independent electric signals without interference based
on the thermoelectric effect of polyaniline and the piezoelectric effect of p(VDF-co-TrFE),
respectively. The sensor shows a high temperature-sensing sensitivity of 109.4 µV K−1 and
a pressure-sensing sensitivity of 640 mV kPa−1, respectively.
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Photolithography technology uses the principle of optic-chemical reaction to imprint
patterns on the surface of a medium and achieves desired patterns with specific functions.
It has been widely used to produce various patterns and microstructures with the charac-
teristics of ease manipulation, high resolution, and precision [96]. It enables fabricating
multifunctional biosensors by integrating various sensor units on a plate. For example,
Wang and co-workers reported a skin-inspired highly stretchable, and conformable human
somatosensory system by photolithography technology (Figure 2b) [86]. The specific sen-
sor patterns and elements are sputtered on the substrate by photolithography to achieve
multifunctional sensing networks, which can sense temperature, in-plane strain, humidity,
light, magnetic field, pressure, and proximity. Javey and co-workers prepared a wearable
microfluidic tactile diaphragm pressure sensor for real-time health monitoring, which is
composed of embedded Galinstan microchannels and PDMS substrate [97]. The Galinstan-
based equivalent Wheatstone bridge circuit was embedded in the PDMS substrate using
photolithography technology, which improved the sensing performance. The sensor exhib-
ited a sensitivity of 0.0835 kPa−1, low detection limits of <100 Pa, and a response time of
90 ms. It exhibited a potential application in health monitoring.

Ink-jet printing can be used to achieve a circuit design image on wearable devices by
propelling ink droplets on flexible substrates, which minimizes materials waste and simpli-
fies the processing procedure [98,99]. Kim and co-workers utilized an all-solution-based
ink-jet printing technology to fabricate a wearable rubber pressure sensor by introducing
pores into conventional pressure-sensitive rubbers (PSRs) (Figure 2c) [89]. The porous
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structure can increase the sensitivity of the sensor, which allows the sensor applications
as human–machine interfaces for wirelessly controlling machines. The ink-jet printing
technology also has been used to prepare flexible electrodes with the characteristics of
low-cost, large-scale manufacturing, and good repeatability. A highly integrated hybrid
stretchable electronic was fabricated by ink-jet printing with the two main features of
double-side strain isolation and double-side electrical conduction [100]. The stretchable
electrodes and rigid islands pattern were ink-printed on a PDMS soft substrate, which
minimized the strain imposed on the chips.

Vapor deposition can be used to deposit thin films with a thickness of several to
hundreds of nanometers that have been widely used in preparing wearable sensors and
bioelectrodes for health monitoring [90–93]. Interdigital electrodes can be prepared by
vapor deposition, which was used to fabricate field-effect transistors [90]. The air between
the interdigital electrode and gate electrodes was used as a dielectric layer. When the
pressure was applied to the gate electrode, the distance between the interdigital electrode
and gate electrodes will decrease. The sensor exhibited a wide pressure sensing range
(250 Pa to ~3 MPa) and high sensitivity (2.05 × 10−4 kPa−1), as shown in Figure 2d [90]. In
another case, a high-performance MoS2 field-effect transistor on paper was fabricated using
vapor deposition technology, which was used as a flexible and environmentally wearable
electronic sensor [92]. The MoS2 pattern was deposited on sapphire substrates, which were
then transferred to polystyrene substrates. In addition, vapor deposition is also widely
utilized to pattern the electrodes for achieving the circuit of integrated flexible sensor arrays.
For example, Gao and co-workers prepared fully integrated wearable sensor arrays by
patterning the Au-based flexible electrodes on the skin temperature substrate using vapor
deposition [8]. Thus, the sensor array exhibited the high-performance of electrochemically
detecting the sweat metabolites (such as glucose and lactate), electrolytes (such as sodium
and potassium ions), and skin temperature.

The advance in manufacturing technologies pushed the development of wearable
sensors forward in the last decade. However, there are still some limitations in the view
of both the technical side and theory research. The resolution on the nanoscale is still
hard to manipulate and massively produce during sensor fabrication. The relationship
between sensor performance and surface morphologies should be further investigated to
provide more concepts for designing new sensors in the future. The development of new
manufacturing technologies is indispensable to solve the aforementioned issues.

4. Application Manners

Wearable sensors have been designed into various structures and shapes to fit their
practical applications. The typical shapes and patterns of wearable sensors will be discussed
in this section.

4.1. Patch

The patch is one of the ideal choices for wearable sensors due to the feature of bendabil-
ity and fitness to the skin surface. A bunch of patch-type wearable sensors was fabricated
to realize various functions for health monitoring [101–103]. A skin patch was prepared
using a microfiber membrane with sodium polyacrylate microgels to measure sweat rate
and pH [101]. The sweat rate can be calculated from the changes in microgel volume.
Several dyes have been incorporated into the microgels that show the colorimetric re-
sponse for sweat pH (Figure 3a). Physiological signals are important information that is
closely associated with health conditions. A compact wearable patch was integrated with
a centerboard for signal processing and three sensors for vital signs monitoring [104]. It
shows the capability of recording electrocardiogram (ECG), photoplethysmography, and
body temperature.
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4.2. Textile

Compared with planar wearable sensors, textile-based sensors exhibit the advan-
tages of excellent air permeability, comfort, and perspirability. Cotton and polyester are
commonly used in textile-based sensors. Since textile-based fibers are non-conductive, func-
tional components should be weaved into textile-based fibers to sense health biomarkers.
For example, a core–shell structured yarn was prepared by wrapping graphene/Fe2(MoO4)3
fibers with nylon monofilament, which was weaved with polyester textiles [105]. The
thermoresistive graphene/Fe2(MoO4)3 fibers show the capability of detecting body tem-
perature. Moreover, the whole textile can be used as a triboelectric nanogenerator to detect
touch/pulse (pressure) in real time, as shown in Figure 3b [105]. In another case, cotton
thread was modified with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate (PE-
DOT:PSS) to produce a conductive performance, which was seamlessly integrated with
textiles or clothing for monitoring heart activity [106]. No sensing performance loss was
observed after 15 times of machine washability.

4.3. Wearable Tattoo Sensors

The electronic tattoo (e-tattoo) is an emerging category of wearable ultra-thin sensors
with a thickness of <500 nm and optical transparency of >85% [107,108]. The e-tattoo can
be printed on any body part of the wearers. The adhesive-containing device can be applied
anywhere on the wearer’s skin adhered mainly by van der Waals forces. The ultra-thin
thickness leads to breathable and stiffness-negligible features. The e-tattoo has shown the
capability of monitoring a series of physiological information such as metabolites, body
temperature, ECG, and electromyography [109,110]. For example, a tattoo-based sensor
was printed on the arm of volunteers using a bismuth/Nafion film electrode, as show in
Figure 3c [109]. It can monitor zinc in sweat through voltammetry during exercise with the
resistance of repeated mechanical deformation.

4.4. Microneedles-Based Sensors

Microneedles-based sensors are another important type of wearable sensing system,
which has been used to detect the biomarkers in interstitial fluid. Microneedles-based
sensors show a length of 1 mm, which leads to cause less pain than traditional injection
needles [111]. Moreover, the tiny holes caused by microneedles can automatically heal
within a few hours without bleeding and trauma. Many microneedles-based sensors have
been developed to monitor health conditions [112–114]. For example, microneedle elec-
trodes were prepared by combining 3D printing technology and Computerized Numerical
Control micromachining technology using poly(methyl methacrylate) [112]. An aptamer
has been used as a recognition component immobilized on the microneedle electrodes,
which shows the molecular recognition ability toward the irinotecan, its major metabolite
SN-38, and doxorubicin. The sensor can continuously monitor these drugs in real time in a
wide detection range. Narayan and co-workers proposed a microneedle-sensing platform
for fentanyl detection. The fentanyl in liquid samples was successfully detected using
square-wave voltammetry with a detection range of 20~160 µM and an LOD value of
27.8 µM [114].

4.5. Contact Lenses Sensors

In recent years, contact lenses gradually developed from glass and plastic to soft
hydrogels to obtain the functions of health detection [115]. The contact lens sensors are
new detachable medical devices between “implantable” and “wearable”. Tears show
compositional variations when suffering from ocular and systemic metabolic conditions.
As such, contact lens sensors can be used to monitor health conditions by analyzing
biomarkers in tears [116–119]. Microfluidic contact lenses were utilized for in situ sensing
pH, glucose, protein, and nitrite ions in tears (Figure 3d) [116]. Four biosensors were
located at the branch ends of the microfluidic device. The biomarkers were analyzed using
a colorimetric method with a smartphone-MATLAB algorithm.
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4.6. Mouthguard Sensors

Wearable biosensors can be integrated with mouthguards for monitoring dental health.
There are plenty of metabolic molecules and bacteria in saliva closely associated with
dental health [120]. For example, a uricase functionalized electrode was integrated with
a mouthguard platform by a screen-printed technology, as show in Figure 3e [121]. The
mouthguard biosensor exhibits high sensitivity and selectivity toward uric acid in human
saliva, which can be used to monitor the health condition of hyperuricemia patients. Other
biomarkers such as glucose, thiocyanate, H2S gas, and N-epsilon (carboxymethyl) lysine
also can be detected using the same technology [122–125].
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Various forms of wearable sensors have been designed to achieve real-time monitoring
purposes such as patch type, fabric type, and tattoo type [126–129]. The application forms
still need further investigation for practical use, which should consider stability, accuracy,
and power supply. Meanwhile, the biocompatibility study on wearable sensors has been
ignored for the last decade. Wearable sensors directly contact the human body, which may
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cause anaphylaxis or other uncomfortable feelings. Breathability, flexibility, stretchability,
and biocompatibility are the most desirable features of wearable sensors to meet the
requirements for real use.

5. Signal Processing

The sensing results cannot be directly used for health analysis, which requires further
signal processing. Two aspects play a critically important role in signal processing: storage
of the data collected from sensors and filtration of the collected data to improve the
signal intensity. Optimization algorithms are often utilized for signal processing, which
expands the application range and improves analysis accuracy. Convolutional neural
network (CNN) is an efficient recognition method for signal processing, especially in
the field of pattern classification. The CNN can use original images, avoiding complex
image pre-processing. The CNN has been used for the automatic classification, acquisition,
and analysis of ECG signals from wearable devices, which provides higher accuracy
than other algorithms [130]. The CNN has been used to process the ultraviolet signals
to quantify ultraviolet intensity for real-time ultraviolet monitoring [131]. Other signal-
processing methods also have been utilized to analyze and process sensing signals [132,133].
The standard curve method is a typical processing procedure with a standard addition
method [132].

Various signal processing methods are utilized to achieve important health information.
In recent years, machine learning was used as a new signal processing method to achieve
disease prediction functions [134,135]. The individual difference increases the complexity
of signal processing and may affect disease analysis. Therefore, it is necessary to conduct a
large number of tests in advance to improve accuracy for practical applications.

6. Wearable Biosensors

There are many kinds of biosensors based on human health monitoring, and their
goals are different. Among them, the two main kinds are the physical sensor, which can
detect temperature, pressure, strain and so on and the chemical sensor, which can detect the
concentration of the target analyte. Here, the physiological pressure sensor of the physical
sensor and the sweat sensor of the chemical sensor are mainly introduced. In addition,
based on the wearable demand, the self-powered sensor without an external power supply
is also an important kind of wearable sensor, which is also proposed in this section.

6.1. Physiological Pressure Sensors

Wearable physiological pressure sensors have gained tremendous interest in recent
years due to their wide applications, which include but are not limited to detecting human
emotion, diagnosing diseases, and monitoring health status. For physiological pressures,
human intraocular and intracranial pressures are below 10 kPa, while others are often in
the range of 10 to 100 kPa, including blood pressure, radial artery wave, and heart rate [58].
This fact means that pressure sensors should be elaborated to meet the requirements
for measuring a specific type of pressure. So far, pressure sensors can be classified into
piezoresistance, piezocapacitance, piezoelectricity, and triboelectricity. In this section, we
will give a brief introduction to each mechanism and recent progress in physiological
pressure sensors.

Piezoresistive pressure sensors own a simple structure so that they are ready to fab-
ricate in labs and on a large scale, although extra power consumption is needed. For
piezoresistive pressure sensors, the resistance (R) is mainly related to the materials’ resistiv-
ity (ρ), materials’ length (L), and the contact area (A):

R =
ρL
A

(1)

Typically, conductive fillers (e.g., carbon materials [136], metallic nanomaterials [137–140],
and conductive polymers [141,142]) were added to elastomers (e.g., PDMS) to construct
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piezoresistive sensors. When pressure is applied to sensors, R is reduced as a result of a
decrease in L and/or an increase in A. For instance, a MXene-sponge was fabricated by a
simple dip-coating strategy [72]. An applied pressure resulted in more dense contact with
each other, increasing the conductivity of the sensor. When the stress was released, the
sponge returned to its initial state. In another case, Gong and colleagues reported a flexible
piezoresistive pressure sensor by sandwiching ultra-thin Au nanowires (NWs)-impregnated
tissue paper between a PDMS layer and a PDMS layer with patterned electrode arrays
(Figure 4) [140]. External pressure forced Au NWs to contact the electrode arrays due to
the compressive deformation of the paper. Meanwhile, the L of the sensor was reduced
under applied pressure, leading to a decrease in R (Equation (1)). Therefore, the current
was increased, showing a sensitivity of 1.14 kPa−1 in the range of 0–5 kPa at a voltage of
1.5 V. The gauge factor (GF) that was defined as the ratio of relative change in R to the strain
was 7.38 when the strain was below 14%. Following this work, the same group sandwiched
“soft” Au NWs and “rigid” Ag NWs between two PDMS layers by a consequential solution-
processable approach. Compared to their early report [140], the sensor showed higher
transparency (~60% of transparency at a visible wavelength of 550 nm), lower working
voltage (0.1 V), and larger GF (~240) [137]. To increase the sensitivity of pressure sensors,
piezoresistive pressure sensors were designed to own specific microstructures, which have
been well reviewed by Bao and coworkers [143].

Biosensors 2023, 12, x FOR PEER REVIEW 11 of 32 
 

Piezoresistive pressure sensors own a simple structure so that they are ready to fab-
ricate in labs and on a large scale, although extra power consumption is needed. For pie-
zoresistive pressure sensors, the resistance (R) is mainly related to the materials’ resistivity 
(ρ), materials’ length (L), and the contact area (A): 𝑅 = 𝜌𝐿𝐴  (1)

Typically, conductive fillers (e.g., carbon materials [136], metallic nanomaterials 
[137–140], and conductive polymers [141,142]) were added to elastomers (e.g., PDMS) to 
construct piezoresistive sensors. When pressure is applied to sensors, R is reduced as a 
result of a decrease in L and/or an increase in A. For instance, a MXene-sponge was fabri-
cated by a simple dip-coating strategy [72]. An applied pressure resulted in more dense 
contact with each other, increasing the conductivity of the sensor. When the stress was 
released, the sponge returned to its initial state. In another case, Gong and colleagues re-
ported a flexible piezoresistive pressure sensor by sandwiching ultra-thin Au nanowires 
(NWs)-impregnated tissue paper between a PDMS layer and a PDMS layer with patterned 
electrode arrays (Figure 4) [140]. External pressure forced Au NWs to contact the electrode 
arrays due to the compressive deformation of the paper. Meanwhile, the L of the sensor 
was reduced under applied pressure, leading to a decrease in R (Equation (1)). Therefore, 
the current was increased, showing a sensitivity of 1.14 kPa−1 in the range of 0–5 kPa at a 
voltage of 1.5 V. The gauge factor (GF) that was defined as the ratio of relative change in 
R to the strain was 7.38 when the strain was below 14%. Following this work, the same 
group sandwiched “soft” Au NWs and “rigid” Ag NWs between two PDMS layers by a 
consequential solution-processable approach. Compared to their early report [140], the 
sensor showed higher transparency (~60% of transparency at a visible wavelength of 550 
nm), lower working voltage (0.1 V), and larger GF (~240) [137]. To increase the sensitivity 
of pressure sensors, piezoresistive pressure sensors were designed to own specific micro-
structures, which have been well reviewed by Bao and coworkers [143].  

 

Figure 4. (a) Schematic illustration of the fabrication of a flexible sensor. Images showing (b) the
bendability of the sensor, (c) the morphology of Au NWs-coated tissue fibers (scale bar = 100µm).
(d) Schematic illustration of the sensing mechanism. (e) Current changes in responses to loading and
unloading. Reproduced with permission [140]. Copyright, 2014, Nature Publishing Group, a division
of Macmillan Publishers Limited.

In addition, conductive hydrogels that feature three-dimensional networks are good
candidates for the preparation of pressure sensors. The simplest way is to incorporate inor-
ganic ions into hydrogels to increase conductivity [144,145]. Ge and co-workers prepared a
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transparent poly(acrylamide)-poly(vinyl alcohol) (PAAm-PVA) hydrogel with potassium
chloride via a typical sol–gel method [144]. Under external pressure, the resistance de-
creased, and thus, the current increased. The sensitivity of the sensor is 0.05 kPa−1 below
3.27 kPa. Currently, hydrogel-based pressure sensors are usually able to detect many
other deformations, such as twisting, stretching, bending, and others. In one case, Feng
and co-workers reported a flexible hydrogel-based sensor that was composed of poly(N-
isopropylacrylamide-co-AAm) (pNIPAm-co-AAm), PVA-graphene oxide (PVA-GO), and
polyacrylic acid (PAAc)-Fe3+ ions [145]. The hydrogel has triple synergistic interactions
in the gel matrix, showing a high compress strength of 1.1 MPa. The Fe3+ ions and rGO
allowed the hydrogel an excellent conductivity (~170 Ω/mm). Under external pressure,
the thickness of the hydrogel sensor changed, resulting in a rapid and reversible resistance
change. In addition to sensing pressure, the hydrogel-based sensor was able to detect
human skin temperature due to the temperature responsivity of pNIPAm. As a result of
the collapse of pNIPAm at >32 ◦C, the sensor showed an enhanced resistance as a function
of increasing temperature in the range of 30–55 ◦C. Taken together, the sensor showed
pressure-temperature dual sensing capability [145]. In addition, incorporating conductive
polymers and carbon nanomaterials are proven to be an effective approach to prepare
hydrogel-based piezoresistive pressure sensors [146]. For applications in the real world, the
evaporation of water in the hydrogel matrix should be effectively suppressed to maintain
gels’ elasticity and thus sensing capacity. This concern can be solved by adding organic
solvent or salts as well as elastomer encapsulation [147].

The capacitive sensors have also been used to monitor physiological pressure, which
featured a dielectric layer sandwiched between two conducting electrode plates. Theoreti-
cally, the change in capacitance can be defined as

C = (ε0 × εd)× A/d, (2)

where ε0 and εd are the permittivities of the vacuum and the dielectric layer, respectively, A is
the contact area, and d is the distance between two conducting electrode plates. Therefore,
changing εd, A, and/or d can lead to a varied value of C. Soft elastomers [66,148–152],
hydrogels [93,153], and inorganic films [154] have been used as dielectric layers in capacitive
sensors. To increase the sensitivity, the morphologies of dielectric layers [70,148,149] or
conducting electrodes [155,156] were designed into specific nano-/microstructures, such as
pores [70,148], pyramids [9,157], pillars [158], and cones [149].

Changing d as a result of pressure can lead to a significantly varied value of C, while
the synergetic effect due to changes in εd and A should be considered. For instance, Tay et al.
prepared a highly porous hexagonal boron nitride (BN)/PDMS foam that is lightweight
(15 mg/cm3), and the εd of the foam is close to that of air (Figure 5) [70]. Upon loading
stress, the BN/PDMS foam was compressed, leading to a decrease in d, and thus, C is
increased (Equation (2)). When releasing the load, C returned to its initial value because the
BN/PDMS-based sensor returned to its initial state. Due to the synergistic effects between
BN and PDMS, the sensor showed high compressibility (up to 95% strain), remarkably high
sensitivity (0.854 kPa−1) at a pressure range of <0.5 kPa, and a lower LOD (<1 Pa). Another
interesting example reported by Zhang and co-workers showed a wearable capacitive
electronic skin composed of a pNIPAm-based microgel monolayer sandwiched between
two silver soft electrodes [93]. The diameter and chemical composition of pNIPAm-based
microgels affected the capacitance and thus the sensitivity of the sensors under external
stress. Such a device can wirelessly sense pressure as low as 2 Pa, featuring a sensitivity of
10.1 kPa−1. Consequently, it was capable of monitoring pulse beat, apex beat, swallowing,
etc. Differently, Xiong et al. demonstrated an ultra-highly sensitive capacitive sensor
integrated by an ultra-thin dielectric layer and two micro-arrayed PDMS-Au electrodes.
Under external pressure, the changes of A and d resulted in the superior properties of the
sensor, showing a sensitivity of 30.2 kPa−1 and the LOD (0.7 Pa) in the pressure regime of
<130 Pa [156].
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WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

The physiological pressure sensor has found wide applications in monitoring human
activities and health conditions [159–161]. The sensitivity and detection pressure range
are two important performances for practical applications. Sensitivity shows the sensor’s
ability to identify external pressure signals, while the pressure range stands for the sensor’s
application field. However, the sensitivity and detection pressure range exhibit a trade-off
trend for most physiological pressure sensors. As such, the sensor with high sensitivity and
a wide linear range has become a hot topic of research. In general, microstructures with a
small form factor, such as sharp protrusions and micro-fluctuations, can generate a high
sensitivity at low pressure, while structures with a large form factor lead to wider sensing
ranges. The combination of the two concepts is capable of obtaining high sensitivity in a
wide linear range.

6.2. Wearable Sweat Sensors

The body’s biochemical state is an important indicator in health monitoring. Blood
tests are standard methods to determine the various biochemical indicators in the human
body. However, blood sampling is an invasive and pain-produced procedure, which may
lead to infection risk. Blood tests are thus not suitable for healthcare monitoring, which
usually require daily or even time sampling. Sweat, one of the biological fluids secreted by
eccrine glands through an osmotic pressure-driven manner, can be non-invasively collected
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on the skin’s surface [42]. A series of health indicators, e.g., pH, glucose, K+, Na+, Ca2+,
and heavy metal ions, can be identified in sweat. Therefore, considerable efforts have been
devoted to developing skin contact sensing devices, although the secretion of sweat needs
to be activated.

6.2.1. Sweat Extraction Strategies

Sweat collection is one important factor that affects wearable sweat analysis. In general,
perspiration requires the assistance of exercise, heat, drug, and electric stimulation. The
traditional sweat collection methods restrict the practical use of wearable sweat biosensors.
Therefore, much effort has been devoted to exploring more efficient and convenient collec-
tion methods. Paper-based microfluidic channels have been demonstrated as an extremely
effective method for long-term sweat collection and analysis. The porous structure of paper
enables it to quickly absorb and transport sweat to specific locations through capillary
pressure. Paper-based microfluidics can be integrated with wearable biosensors to achieve
sweat analysis at rest [162,163]. For example, paper-based microfluidics were developed
to deliver sweat fluid to the analytic area via capillary forces [162]. A hydrogel sheet was
placed in a sampling well to extract sweat to microfluidic channels by interfacing it with
the skin. The microfluidic device was integrated with a lactate-sensing strip to realize
continuous lactate analysis. Textiles show excellent flexible and breathable properties,
which enable it as a good candidate for sweat collection [164,165]. A textile was laser-
engraved into tree-like bifurcating channels for sweat collection [164]. A fractal structure
of the textile channels was designed to minimize sweat flow resistance. The textile-based
microfluidic device shows a short induction time (<1 m) and a maximum flux of up to
4.0 µL cm−2 min−1 during sweat collection.

6.2.2. Common Sweat-Based Wearable Sensor

• pH and Ion Detection

The changes in pH are closely related to varied skin diseases such as dermatitis,
ichthyosis, and fungal infections, while the concentration of alkali or alkaline–earth metal
ions can reflect electrolyte homeostasis. Therefore, the pH and the concentration of ions
in sweat are important analytes of wearable biosensors. Nyein and co-workers reported
a wearable sensing system that was able to real-time monitor sweat pH, Ca2+, and skin
temperature [166]. As shown in Figure 6a, the electrochemical platform was fabricated by
logically imprinting a Ca2+ sensor, a pH sensor, and a skin temperature sensor on a flexible
printed circuit board. The system allowed the accurate determination of Ca2+ and pH in
body fluids including sweat, urine, and tears. The real-time Ca2+ and pH simultaneous
detection not only minimized cross-contamination from delayed samples but also avoided
pH correction in clinical diagnosis, e.g., hypercalcemia and hypocalcemia tests. In another
case, Nakata et al. developed a mechanically flexible sweat pH sensor using an InGaZnO-
based ISFET (ion-sensitive field-effect transistor) [167]. The pH value of sweat and skin
temperature could be recorded in real time by attaching the device to the neck of testers
during exercise. Cordero et al. showed a fully integrated sweat-sensing device, consisting
of state-of-the-art ISFETs, ion-sensing membranes (ISMs), miniaturized quasi-reference
electrode (QRE), and low-volume passive microfluidics [168]. The embedded QRE elevated
the sensing platform with excellent linear sensitivity. During the real-time measurements,
the platform was also able to perform stable and repeatable readings, which could fully
track the physiological variation in ion concentrations in sweat.

• Glucose Detection

The uncontrollable blood glucose level caused by diabetes generates the requirements
for daily blood measurement. Recently, considerable attention has been paid to monitor
sweat glucose using wearable sensors due to their non-invasive and painless advantages.
For example, Zhao and co-workers demonstrated a proof-of-concept wearable glucose
biosensor based on a highly stretchable gold fiber for monitoring glucose in sweat [169].
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The wearable sensor is a three-electrode electrochemical platform, where a gold fiber with
Prussian blue and glucose oxidase was used as a working electrode, an Ag/AgCl electrode
was used as a reference electrode, and a bare gold fiber was used as a counter electrode.
The glucose in the sweat sample was oxidized with the catalysis of glucose oxidase on
the working electrode to produce H2O2. Cyclic voltammetry was utilized to measure
the concentration of H2O2 generated from the oxidization of glucose in human sweat. In
addition, the intrinsic stretchability of the gold fibers was further strengthened by forming
a helix structure, resulting in a robust electrochemical performance with strains up to 200%.
Xiao and co-workers reported a microfluidic chip-based wearable colorimetric sensor for
detecting sweat glucose, as shown in Figure 6b [170]. The sensor exhibited benign practical
applications in detecting glucose in sweat samples from a group of volunteers engaged
in both fasting and postprandial trials. The sensor contains glucose oxidase, peroxidase,
and o-dianisidine, where the o-dianisidine was used as a colorimetric reagent. During the
detection, glucose in sweat was oxidized with the catalysis of glucose oxidase to produce
H2O2. The produced H2O2 further oxidized the colorless o-dianisidine into red-colored
oxidized o-dianisidine with the catalysis of HRP. The obtained sensors for detecting glucose
in sweat showed a good linear range from 0.1 to 0.5 mM with an LOD of 0.03 mM. He
and co-workers fabricated an intelligent Janus textile band, which was integrated with a
self-pumping sweat collection, comfortable epidemic microclimate, and sensitive electro-
chemical biosensing [171]. The sweat pumping was driven by Janus wettability, which
is realized by electrospinning a hydrophobic polyurethane (PU) nanofiber array onto a
super-hydrophilic gauze. The sweat could thus be unidirectionally and thoroughly trans-
ported from the skin (hydrophobic side) to the embedded electrode surface (hydrophilic
side). The electrode could sensitively detect metabolites in sweat such as glucose, lactate,
K+, and Na+ in real time. Moreover, the wearable device leads to physiological comfort
due to the effective drain of epidermal sweat. Glucose oxidase can catalyze the oxidation
reaction of glucose, yielding H2O2 molecules. Thus, sweat glucose levels can be measured
by H2O2 signals. For example, Li and co-workers fabricated a wearable sweat-capture
device using patterned graphene arrays with controlled superwettability and electrical
conductivity, which could simultaneously capture sweat droplets and electrochemically
measure glucose [172]. Glucose detection is also involved with glucose oxidase-dependent
enzymatic reaction.

• Zn2+ Detection

Zn, an important element involved in various enzyme-relevant biochemical processes,
plays a wide variety of physiological roles such as maintaining normal metabolism and
immune function. Zn concentration in biological fluids offers a reflection of broad phys-
iological states, e.g., muscle damage. Considerable challenges have been encountered
in the non-invasive detection of Zn2+ due to microliter sampling volumes and sub-ppm
concentrations (0.39–1.56 ppm). Thus, there are long-term pursuits of wearable Zn2+ sen-
sors with high sensitivity, specificity, a wide dynamic range, high signal reliability, and
real-time detection from low-sampling volumes. Subramaniam and co-workers developed
a miniaturized, coaxial, cable-type electrochemical sensor, consisting of a carbon nanotube
(CNT)-immobilized cellulose yarn, as shown in Figure 6c [173]. The sensor comprises two
cables of CNT thread. One cable was coated with a polymeric ion receptor, tetrakis(p-
aminophenyl) porphyrin (TAPP), which acted as a working electrode, while the other cable
without modification was used as a reference electrode. The TAPP-receptor membrane
interacted with Zn2+ through Faradaic charge-transfer interactions, which demonstrates
the ability to selectively capture Zn2+ from solutions. The Zn2+ concentration could be
measured through electrochemical techniques, such as cyclic voltammetry, differential
pulse voltammetry, and chronoamperometry. The wearable sensor had a rapid response
(~60 s) toward Zn2+ with ultra-high sensitivity in the range from 0.1 to 500 ppm. It showed
superior anti-interference (selectivity coefficient 10−3–10−5) from various cations (Na+, K+,
Mg2+, Cd2+, Ca2+, Fe2+, and Cu2+) and anions (Cl−, NO3−, PO4

3−, and CH3COO−). The
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practical performance also had been validated by the real-time detection of Zn2+ across a
varied spectrum of samples ranging from human perspiration to agricultural soil.

• Urea Detection

Urea, an important nitrogen metabolite in body fluids, is one of the important indi-
cators of renal function and heart metabolic disorders. High levels of urea in sweat often
appear in patients with hepatic or renal failure, or uremia, indicating the importance of mon-
itoring sweat urea. Liu and co-workers reported a flexible and conformal urea sensor based
on a molecularly imprinted polymer (MIP) approach, as shown in Figure 6d [174]. Firstly,
the urea-targeted poly(3,4-ethylenedioxythiophene) (urea-PEDOT) MIP was deposited on a
hybrid nanostructure of CNT and gold nanotube (Au NTs) through electropolymerization.
Then, the urea template molecules in the MIP were removed to obtain the molecularly
imprinted recognition sites, which showed the ability of specific urea recognition. The
urea molecules in the sweat sample could rebind with molecularly imprinted recogni-
tion sites during the urea detection. The MIP sensor exhibited a good linear response
toward physiological levels of urea without interferences from common coexisting species.
Furthermore, this flexible sensor possessed excellent mechanical tolerance and exhibited
unaffected electrochemical performance under bending deformation. The sensors could
distinctly respond to the urea level variations in volunteers’ sweat after aerobic exercise,
which validates their practical values.

• Levodopa Detection

Levodopa, the precursor of dopamine, has been treated as the standard medication
clinically prescribed to people with Parkinson’s disease. The levodopa dosage monitoring
and controlling is remarkably critical due to the dosage-dependent onset of undesired
fluctuations in the patient’s physical and emotional conditions, e.g., speech movement
and mood. Additionally, levodopa undergoes a xenobiotic metabolism pathway and
can excrete through sweat. Thus, recent attention has been paid to the development of
wearable sensors for sensing sweat levodopa. Tai and co-workers fabricated a wearable
sweatband on a nanodendritic electrochemical platform for quantitatively monitoring
levodopa, as shown in Figure 6e [175]. The sensing element of the sweat levodopa band
is a standard three-electrode electrochemical platform, where the working electrode was
functionalized with tyrosinase enzyme. The levodopa was oxidized with the catalysis of
tyrosinase enzyme to dopaquinone, which generated the Faradaic current. The Faradaic
current was measured to evaluate the concentration of levodopa in sweat samples. The
robustness and stability of the electrochemical sensor were greatly enhanced by the seamless
incorporation of dendritic growth, enzyme immobilization, and stabilizing film. The
practical application of the sweatband for long-term and non-invasive monitoring levodopa
was undertaken in human subjects after fava beans intake, showing the desired guidance
for dosage optimization. Similarly, Javey and co-workers reported a wearable PDMS-
based microfluidic device integrated with electrochemical electrodes for the continuous
measurement of sweat composition such as pH, Cl−, and levodopa [176]. The device mainly
consisted of sweat-sensing electrodes, a laminated hydrophilic filler, and a PDMS-based
microfluidic layer three elements. The sensing electrode of levodopa was prepared by
depositing the tyrosinase enzyme on Au nanodendrites. The levodopa was oxidized with
the catalysis of tyrosinase enzyme to dopaquinone generating the Faradaic current, which
was used to measure the concentration of levodopa in the sweat sample.

• Vitamin C (VC) Detection

VC is a very important physiological reductive molecule, which can easily be absorbed
from normal fruits, e.g., oranges. VC is involved in abundant physiological activities, e.g.,
collagen production (related wound healing and skin care), iron absorption, cold treatment,
immune system, and neurological disorders. Sempionatto and co-workers developed a
wearable electrochemical biosensor that monitored the concentration and dynamics of VC
in a non-invasive manner, as shown in Figure 6f [177]. Such wearable noninvasive sensors
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were fabricated by immobilizing ascorbate oxidase on flexible printable tattoo electrodes.
The resultant wearable biosensor could reliably measure the temporal rise and fall of
sweat VC concentrations in sweat samples with high sensitivity after taking VC pills or
juices. Similarly, Javey and co-workers reported an Au nanodendrites-based three-electrode
electrochemical platform, where the Au nanodendrite with conducting PEDOT doped with
LiClO4 and L-ascorbate oxidase was used as a working electrode [12]. When VC presents
in sweat samples, the VC will be oxidized by O2 with the catalysis of L-ascorbate oxidase,
which generates the Faradaic current for measuring VC concentration. In another case,
Kim and co-workers reported a wireless, skin-interfaced microfluidic biochemical device
that contained immunoassays for sweat cortisol and fluorescent assays for glucose and VC,
respectively [178]. The microfluidic structure was used to reduce the sweat evaporation
rate and collect sweat in a rest state. The collected sweat was stored in a pair of reservoirs
connected by microchannels with VC oxidase and glucose oxidase. The oxidation reactions
of VC and glucose generated H2O2 that oxidized a fluorometric probe (OxiRed) to form
resorufin, yielding a fluorescence signal.

• Lactic Acid Detection

Lactic acid is an important biomarker produced by the human body during anaerobic
exercise causing muscle soreness and other conditions. The lactic acid level in sweat also
can be monitored using wearable biosensors. Molecularly imprinted technology has been
used to detect lactic acid in sweat to increase selectivity [179]. In one case, lactate molecules
imprinted with poly(3-aminophenyl boronic acid) have been used as a selective electrode,
which exhibited the selective lactate-sensing performance and stable signal changes with
lactate concentration variations. Lactic acid also can be detected by traditional enzyme
catalytic reactions [180]. Lactate oxidase was immobilized on the electrode surface, which
can convert lactate to pyruvate, yielding hydrogen peroxide. Then hydrogen peroxide
can be detected by electroanalytical methods using Prussian blue as a redox mediator. In
addition to the aforementioned methods, lactic acid also can be detected by measuring the
variation in sweat pH [181].

6.2.3. Problems That Occur When Analyzing Sweat

Although wearable sweat sensors show tremendous advantages over blood-based
diagnosis, there are still some critical challenges to overcome for practical use. Firstly,
sweat collection technologies at rest need to be further explored for convenient use. In
the current stage, sweat collection requires the assistance of exercise, drugs, or electro
stimuli, restricting its real use. Secondly, the concentration of biomarkers in sweat is much
lower than in vivo concentration. As such, it requires wearable sweat sensors with much
higher sensitivity. More innovative materials should be designed and prepared to enhance
the sensing performance. Last, sweat evaporation will lead to inaccurate results during
biomarker analysis. The sweat excreted at different time intervals may mix, which also
results in inaccurate results.

6.3. Wearable Self-Powered Biosensors

Flexible and wearable biosensors have enormous benefits for monitoring a health con-
dition. Wearable biosensors require batteries to offer energy for sensing. The development
of self-powered biosensors provides a possible approach to avoid the inconvenience caused
by batteries. The wearable self-powered biosensors can harvest energy from the body or
ambient atmosphere and convert it into electrical signals. There are three types of self-
powered biosensors classified by operating mechanisms, such as piezoelectric nanogenera-
tors (PENGs) [182–184], triboelectric nanogenerators (TENGs) [185–187], and pyroelectric
nanogenerators (PyNGs) [83]. In this section, we mainly describe the working principles
and applications of various wearable self-powered biosensors in the health-monitoring
system [188].
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6.3.1. Piezoelectric Nanogenerators (PENGs)

PENGs consist of a piezoelectric layer and two electrodes, which is an important energy-
harvesting device based on the polarization of piezoelectric materials (Figure 7f) [188]. When
an external force is applied, equal but opposite charges will be generated on the tensile side
surface and compressive side surface due to the polarization of the piezoelectric layer. There-
fore, an electron flow is generated from the bottom to the top electrode of the device [189].
The typical piezoelectric materials include polyvinylidene fluoride (PVDF) [190,191], lead
titanate, [192] and gallium nitride [193]. Many strategies have been proposed to enhance the
performance of PENGs such as promoting mechanical drawing, adding nanofillers [191],
and combining with transistors [192].

PENG-based biosensors have a similar structure to TENG-based biosensors, which
achieved self-powering performance based on the polarization of piezoelectric material.
PENG-based biosensors exhibited potential applications in human physiological health
monitoring [184]. PVDF is the most well-known semi-crystalline piezoelectric material
with strong piezoelectricity, which has been used to fabricate PENG-based biosensors [194].
For example, Deng and co-workers fabricated a PENG-based hierarchically interlocked
PVDF/ZnO nanofibers biosensor by growing the ZnO nanorods on the surface of PVDF
nanofibers (Figure 8b) [195]. The sensor was fabricated by sandwiching PVDF/ZnO
nanofibers with two PU films embedded with Ag NWs. The PU/Ag NWs films and
PVDF/ZnO nanofibers were used as electrodes and a piezoelectric layer, respectively. When
an external force is applied to the sensor, equal but opposite charges will be generated
on the two surfaces of the PVDF/ZnO nanofibers due to the polarization of PVDF/ZnO
nanofibers. This process generates charge flow between the top and bottom electrodes. The
sensor was used to monitor physiological signals such as walking, respiration, wrist pulse,
and muscle behavior. Similarly, Chen and co-workers reported a flexible and wearable
PENG-based 3D cellular sensor array, which contained a 3D cellular electrode with caged
piezoelectric nanoparticles [196]. The piezoelectric functional layer was sandwiched by
two copper electrodes. The sensor exhibited high-pressure sensitivity of 0.19 V kPa−1 and
a fast response time of 16 ms, which has been used to monitor the human heartbeat and
eyeball motion.
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6.3.2. Triboelectric Nanogenerators (TENGs)

TENGs were firstly reported by Wang and co-workers in 2012, which generated
charges by two materials with different electronegativity contacting and separating based
on the principle of triboelectrification and electrostatic induction [198]. When two materials
with different electronegativity are in contact with each other, equal but opposite triboelec-
tric charges are generated on these materials’ surfaces. If the two surfaces of materials are
separated, a potential drop will be created, resulting in a flow of electrons between two
electrodes [199]. According to the polarization change and electrode configuration, there
are four fundamental working modes of TENGs: vertical contact mode, single electrode
mode, lateral sliding mode, and freestanding mode [197]. The vertical contact mode has
been shown in Figure 7a, in which two friction materials are placed face to face. When
an external force was applied to the sensor, the direct contact of two materials resulted in
equal but opposite charges and potential in the vertical direction [198]. The single electrode
mode contains an electrode layer and a moving layer, which is the most simple mode
(Figure 7b). The electrical field will be changed between the electrode and the moving
layer due to the periodic contact and separation. This change results in a flow of electrons
between the ground and the electrode to match the potential difference [200]. The lateral
sliding mode has a similar structure to the vertical contact mode based on two different
materials with metal coatings on the back sides (Figure 7c). Equal but opposite charges
will be generated on the surface of the materials when two materials slide with each other.
Then, when the top layer moves over the base layer, a flow of electrons occurs between the
bottom and top electrodes until reaching equilibrium states [201]. The freestanding mode
is composed of a moving layer and two electrodes. The charge will be generated due to the
triboelectrification between the moving layer and two electrodes. An electron flow from
one electrode to another occurs due to the potential generated to balance the asymmetric
charge (Figure 7d) [83].
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The TENG-based biosensor has been widely investigated for monitoring health condi-
tions and disease prediction. It can convert the human body and internal organ motions into
electrical signals based on the contact electrification and electrostatic induction between two
different electron-affinity materials [204,205]. TENG-based biosensors have been used as
biomedical and healthcare devices to detect physiological signals in the health-monitoring
system. For example, Hu and co-workers reported a wearable self-powered pressure sensor
for cardiovascular healthcare (Figure 8a) [202]. The sensor was fabricated by sandwiching
conical PDMS-based hierarchical elastomer microstructures (HEM) between two ultra-thin
films of fluorinated ethylene propylene (FEP)/Ag film and Ag/polyethylene terephtha-
late film, respectively. When an external force was applied to the sensor resulting in the
deformation of the PDMS elastomer, the top film contacted the bottom film, resulting in
the electrons flowing from the bottom electrode to the top electrode. Once the pressure is
released, the PDMS elastomer rebounds to its original state, leading to reverse charge flow.
This sensor achieves a sensitivity of 7.989 V kPa−1 in the pressure range of 0.1–60 kPa. In
addition, the sensor without an external power source can not only monitor pulse, artery,
and heart condition but also monitor the wide range of blood pressure. The sensing perfor-
mance of TENG-based sensors depends on the interfacial interaction of two materials and
charge generation on the contacting layers. As similar to many sensors mentioned in this
section, TENG-based sensors that featured microstructures on the surface usually showed
enhanced sensitivity, including pyramides, nanopillars, and microneedles [206–209]. To
solve the complexity rising from traditional fabrication procedures, Ke and co-workers
reported a simple CO2 laser to build an Al/PDMS triboelectric pressure sensor that showed
the sensitivity of ~3.11 V kPa−1 due to the high pattern density and contact area caused by
the unique two-height microneedles array [208]. Drawing inspiration from human skin
haptic performance, Maharjan and co-workers designed a soft piezoelectric pressure sensor
that owned interlocking microstructures. The sensor can sense a wide range of pressure
from 0.2 to 500 kPa with a sensitivity of 0.77 V kPa−1 [209]. The triboelectric effect also can
be coupled with enzymatic reactions to realize multiple sensing functions. For example,
Liu and coworkers fabricated stretchable fiber-based TENG with stretchable conductive
fibers and varnished wires [210]. The fibers were modified with glucose oxidase, lactate
oxidase, and creatininase, which enable the TENG to precisely sense the motion states,
glucose, creatinine, and lactate in sweat.

6.3.3. Pyroelectric Nanogenerators (PyNGs)

PyNGs are energy-harvesting devices that can convert thermal energy into electrical
energy based on the spin Seebeck effect (Figure 7e) [2]. The pyroelectric effect is related
to the spontaneous polarization of pyroelectric materials. When temperature increases or
decreases over time, the intensity of spontaneous polarization (Ps) will decrease or increase,
respectively [189]. In addition, the short-circuit current and open-circuit voltage of pyro-
electric materials can be evaluated using Equation (3) and Equation (4), respectively [211].

Ise =
Q

∆T
= P∆T, (3)

Voc =
Q
C

=
P

εT
33
·h·∆T, (4)

where Q is the pyroelectric charge, p is the pyroelectric coefficient, A is the surface area, and
∆T is the change of temperature. In addition, the stored electrical energy of pyroelectric
materials can be evaluated using Equation (5) [211]:

E =
1
2
· P2

εT
33
·A·h·∆T2. (5)
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Meanwhile, the electrical energy depends on the pyroelectric coefficient, which can be
evaluated using Equation (6) [212]:

P =
dPs

dT
. (6)

Multifunctional biosensors have great significance in the field of wearable health-
monitoring devices. Multiple self-powered biosensors can be integrated into one device
such as TENG/PENG-based biosensors [213], TENG/PyNG-based biosensors [203], and
PENG/PyNG-based biosensors [189]. The TENG/PyNG-based biosensor can convert
thermal energy and mechanical energy into electrical signals based on the pyroelectric
effect and triboelectric effect without any interference. It is one of the important self-
powered multifunctional biosensors for monitoring health conditions in disease prediction
systems. For example, Ko and co-workers reported a self-powered multimodal pressure–
temperature sensor based on P(VDF-co-TrFE) (Figure 8c). The sensor shows high-pressure
sensitivity of 40 nA kPa−1 and 1.4 V kPa−1 in the pressure range of 98 Pa–98 kPa and
temperature sensitivity of 0.38 nA ◦C−1 and 0.27 nA ◦C−1 in cooling and heating states,
respectively. In addition, this sensor can be used to monitor pulse pressure as well as
multimodal finger touch [203].

6.3.4. Biofuel Cell

In recent years, biofuel cells have attracted much attention due to their capability
of converting biomass energy into electricity by bioelectrochemical reactions [214,215].
In general, biofuel cells are comprised of an anode, a cathode, and an electrolyte. The
biofuels are oxidized on the anode catalyzed by enzymes or microbial to generate electrons.
Electrons are transmitted to the cathode through external circuits with the consuming
biofuels [216]. The intensity of electric signals is dependent on the concentration of biofuels.
Biofuel cells have been used to sense various metabolites in sweat including glucose, growth
factor, lactate, ethanol, etc. [217–220]. Since the deactivation or leaching of enzymes occurs
with time, signal stability is a significant challenge for biofuel cells during long-term use.
In one case, laccase was encapsulated in a porous organometallic framework material to
enhance enzyme stability [221]. The composite was trapped in a bacterial cellulose/carbon
nanotube framework to prepare a highly flexible anode of biofuel cells. The biofuel cell is
capable of self-powered sensing phenolic compounds. In another case, a wearable microbial
fuel cell was fabricated using bacillus subtilis as dormant biocatalysts, which yielded a
maximum power density of 16.6 µW/cm2 through bacterial activity by consuming lactic
acid in sweat [222]. The microbial fuel cell shows no significant decrease in electrical output
after 3 weeks of storage.

To increase the capability of practical use, wireless communication technology was
utilized in self-powered sensing systems [223,224]. For example, a self-powered wearable
sensing system can be used for on-demand, continuous, and real-time pulse monitoring,
which includes a TENGs power supply unit, pressure sensor, and multifunctional circuit. It
shows the capability of power management, energy storage, data collection, visualization,
and wireless data transmission. The device exhibits an output power of 816.6 MWm−2, a
sensitivity of 6.03 kPa−1, a low detection limit of 9 Pa, and a response time of 80 ms [223].
In another example, a self-powered wearable system for telemedicine applications has
been fabricated including three units: a self-powered unit consisting of a diode and a
capacitor, sensor data acquisition, and remote monitoring. The sensor acquires health
parameter data from different parts of the body and sends it to a microcontroller. The
microcontroller is coupled with a Wi-Fi module for data communication with a cloud-based
website displaying real-time health parameters through the website [224].

Self-powered sensing systems can run without an external power supply recognized
as a new wearable sensing manner [225–227]. A series of electricity generation mechanisms
have been investigated to improve the portability of the sensing system such as tribo-
electricity [201], piezoelectricity [194], and hydrovoltaic effect [38]. The trade-off between
sensitivity and output power is a main issue for self-powered sensing systems. Some new
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methods have been developed to improve both sensitivity and power output. In addition,
long-term durability is another large issue to overcome for self-powered sensing systems.

7. Summary and Future Prospects

Flexible and wearable biosensors find various important applications in the field of
medical treatment and health. It can enable continuous health monitoring and convenient
diagnosis in real time. This is particularly important for monitoring various health risks in
people’s daily life. In this review, recent advances in flexible and wearable biosensors are
discussed, focusing on principles, techniques, and applications. Various microfabrication
techniques are introduced in this paper, which benefits to improve the performance of
biosensors. However, there are many challenges and limitations of biosensors to overcome
for further application and commercialization. For example, the limited resolution of micro-
nanofabrication technologies leads to large difficulties with preparing multifunctional
integrated biosensors. In addition, various deposition technologies are utilized to fabricate
sensing electrodes, which reduce the flexibility of devices and the stability of output signals.
The mechanical mismatch between an electronic device and the biological tissue is another
large issue when it comes to obtaining stable signals. In general, the sensing electrodes
show much larger elastic modulus than biological tissues, which results in inferior contact
interfaces generating signal losses. As such, more efforts are encouraged to devote in this
field to overcome the current challenges and inspire more creative applications.
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