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Abstract: β-amyloid is an important pathological feature of Alzheimer’s disease. Its abnormal
production and aggregation in the patient’s brain is an important basis for the early diagnosis and
confirmation of Alzheimer’s disease. In this study, a novel aggregation-induced emission fluo-
rescent probe, PTPA-QM, was designed and synthesized based on pyridinyltriphenylamine and
quinoline–malononitrile. These molecules exhibit a donor–donor–π–acceptor structure with a dis-
torted intramolecular charge transfer feature. PTPA-QM displayed the advantages of good selectivity
toward viscosity. The fluorescence intensity of PTPA-QM in 99% glycerol solution was 22-fold higher
than that in pure DMSO. PTPA-QM has been confirmed to have excellent membrane permeability
and low toxicity. More importantly, PTPA-QM exhibits a high affinity towards β-amyloid in brain
sections of 5XFAD mice and classical inflammatory cognitive impairment mice. In conclusion, our
work provides a promising tool for the detection of β-amyloid.

Keywords: aggregation-induced emission fluorescent probe; β-amyloid; viscosity; Alzheimer’s disease

1. Introduction

With the further improvement of the economic standard of living and the intensifi-
cation of an aging society, Alzheimer’s disease (AD), Parkinson’s disease (PD), and other
neurodegenerative chronic diseases have become a major problem that threatens the health
of the general public [1–5]. AD is a common clinical degenerative disorder of the central
nervous system, which can lead to memory impairment, aphasia, visuospatial impairment,
and executive dysfunction [6]. Currently, the common clinical diagnostic tools for AD rely
on clinical symptoms combined with imaging, including computed tomography, magnetic
resonance imaging, and positron emission tomography [7,8]. These methods are cum-
bersome, of low specificity, have a short half-life, are expensive, and have unavoidable
limitations due to radiation risks to humans [9]. Therefore, there is an urgent need to
develop a highly sensitive, non-invasive, and safe diagnostic imaging technique.

The currently recognized pathogenesis of AD consists of five main aspects: amyloid
peptides (Aβ) deposition and toxic effects, Tau protein hyperphosphorylation, cholin-
ergic neuronal deficits, excitatory amino acid toxicity, and neuroinflammation [10–12].
In addition, neuroinflammation can induce neuronal tangles and Aβ deposition, which
in turn mediates neurotoxicity and neuronal apoptosis, resulting in patients exhibiting
varying degrees of cognitive dysfunction [13,14]. Therefore, Aβ, as a key pathological
target, is important for the detection and therapeutic research of neurodegenerative dis-
eases [15–18]. Aβ is a 4 kD small peptide fragment obtained by the sequential hydrolysis of
β-amyloid precursor protein using protein hydrolases β and γ. It mainly includes Aβ1-40
and Aβ1-42, where Aβ1-42 is the initiator and main structural substance of senile plaque
and can have toxic effects on neuronal cells [19,20]. The fluorescence imaging technique

Biosensors 2023, 13, 610. https://doi.org/10.3390/bios13060610 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios13060610
https://doi.org/10.3390/bios13060610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-2175-3154
https://doi.org/10.3390/bios13060610
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios13060610?type=check_update&version=3


Biosensors 2023, 13, 610 2 of 10

has the advantages of safety and simplicity, low cost, good real-time performance, and
high sensitivity [21]. Therefore, it is a safe and non-destructive imaging technique. It
is well suited for Aβ detection applications. Currently, Congo red (CR) derivatives and
thioflavin T (ThT) derivatives are commonly used fluorescent probes for the detection of
amyloid plaques [22–24]. It can specifically identify Aβ fibers. However, there are also
non-negligible drawbacks. For example, the Stokes shift is small, and the specificity and
sensitivity are poor [25]. When binding to Aβ fibers, it tends to accumulate π-π and leads to
aggregated fluorescence burst (ACQ), which significantly reduces the detection efficiency. It
even causes signal loss or “false positive” results. Therefore, the research and development
of novel small molecule fluorescent probes for Aβ plaques is particularly urgent.

Compared to conventional organic dyes, aggregation-induced emission (AIE) fluorescent
probes have large Stokes shifts, strong fluorescence, and good resistance to bleaching [26–30].
The chromophore quinoline–malononitrile (QM) has recently emerged as a novel AIE building
block with some remarkable features, such as red to near-infrared (NIR) emission, high
brightness, remarkable photostability, and good biocompatibility [31–33]. Thus, the long-
wavelength fluorescence emission of QM has made it a useful chemical tool for imaging
disease-related biomarkers in cells and in vivo [34–36]. Herein, we set out to AIE the
fluorescent probes PTPA-QM (Figure 1) employing the QM and triphenylamine aldehyde
derivative as the AIE building block. The constructed probe, PTPA-QM, has good optical
activity. In low-viscosity solutions, it has a very weak fluorescence due to the intramolecular
distorted internal charge transfer (TICT) effect between the α,β-unsaturated bonds. With
the increase in solution viscosity, the emission of red wavelengths is greatly enhanced. In
addition, owing to the low cytotoxicity and excellent photostability, PTPA-QM can be used
for fluorescence imaging with PC12 cells. To our delight, PTPA-QM can image Aβ in the
brain of 5XFAD mice and classical inflammatory cognitive impairment mice. Our AIE
probe holds great promise for exploring the early diagnosis of diseases caused by Aβ.
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2. Experimental Section
2.1. Materials and Methods

All the reagents and solvents used were analytical grade and obtained commercially
without further purification. Ultrapure water was used throughout the experiment. Various
biologically relevant species (Ca2+, Fe3+, K+, Na+, F−, Cl−, Br−, I−, SO3

2−, CO3
2−, HSO3

−,
H2O2, GSH, TrP, Phe, Met, Thr, Glu, Lys) were purchased from Sigma-Aldrich. 1H NMR
and 13C NMR spectra were carried out on 400 MHz and 125 MHz, and TMS was used
as an internal standard. A Shimadzu UV-2550 spectrometer was performed to obtain
UV-vis spectra. Fluorescent spectra were achieved using a Hitachi F-4700 fluorescence
spectrophotometer. The probe PTPA-QM solid was prepared with dimethyl sulfoxide



Biosensors 2023, 13, 610 3 of 10

(DMSO) solution to form a 1 × 10−3 mol/L probe master mix. The master mix was placed
in a refrigerator and set aside. The above PTPA-QM solution was diluted to the desired
solution concentration. A complete cytotoxicity assay using PC12 cells and labeling using
brain sections are provided in the Supporting Information.

2.2. Synthesis of Compound PTPA-QM

The whole synthesis routine is provided in Scheme 1. Compound 1 (351 mg, 1 mmol)
was dissolved with Compound 2 (221 mg, 1 mmol) in anhydrous acetonitrile, and 0.5 mL
of piperidine was added and refluxed for 12 h. At the end of the reaction, a clear precipitate
could be observed, filtered, and washed with a small amount of acetonitrile. The compound
PTPA-QM was recrystallized to obtain a brown–red solid as the desired product (0.2560 g,
yield: 46%).

1H NMR (400 MHz, DMSO) δ 8.91 (d, J = 8.3 Hz, 1H), 8.60 (d, J = 5.9 Hz, 2H), 8.04 (s,
1H), 7.93 (s, 1H), 7.79 (d, J = 8.6 Hz, 2H), 7.75 (d, J = 8.6 Hz, 2H), 7.68 (d, J = 5.9 Hz, 2H), 7.62
(s, 1H), 7.46 (s, 1H), 7.41 (d, J = 8.3 Hz, 2H), 7.39 (s, 1H), 7.19 (s, 1H), 7.15 (dd, J = 8.2, 3.0 Hz,
4H), 7.07 (d, J = 8.5 Hz, 2H), 7.03 (s, 1H), 4.00 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 153.33,
150.48, 149.36, 149.07, 148.11, 147.58, 146.65, 139.63, 139.47, 133.36, 132.79, 129.94, 129.17,
128.96, 128.14, 126.60, 126.04, 124.93, 124.85, 124.71, 123.05, 121.38, 121.20, 120.51, 119.41,
117.99, 116.59, 107.51, 50.91, 37.17. HRMS (ESI-TOF) Calcd for C38H27N5 [M+H]+: 554.2320.
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3. Results and Discussion
3.1. Design and Synthesis of Probe PTPA-QM

The fluorescent probe PTPA-QM was successfully prepared according to the syn-
thetic path shown in Scheme 1. The structure was confirmed by 1H NMR, 13C NMR, and
HRMS. The Knoevenagel condensation reaction was used to form a fluorescent probe with
a donor–donor–π–acceptor (D1-D2-π-A) from a triphenylamine aldehyde derivative and
a quinoline–malononitrile derivative with a good power supply and large conjugation
system. Triphenylamine derivatives were used as the electron-donating group and quino-
line as the electron-absorbing group, which were linked by ethylene bonds to construct
fluorescent probes.

3.2. Photophysical Properties of PTPA-QM

In order to investigate whether PTPA-QM has a solvent effect, the fluorescence spectra
of PTPA-QM in different solvents were investigated. As shown in Figure 2a, in a low-
viscosity solution PBS, PTPA-QM has a weak fluorescence emission peak at 645 nm. In
the glycerol system with high-viscosity PTPA-QM, the red fluorescence was significantly
enhanced at 605 nm. The maximum absorption peaks were located at 448 nm. The
fluorescence intensity increased about eight-fold. PTPA-QM in other organic solvents with
different polarities was negligible compared to the strong fluorescence in glycerol. The
quantum yield of the probe PTPA-QM was 0.09% in THF and 3.93% in glycerol. Therefore,
PTPA-QM could serve as an effective probe to detect changes in the viscosity.
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Subsequently, the fluorescence spectra of the fluorescent probe PTPA-QM were ex-
amined in different volume ratios of PBS mixed with DMSO. As can be observed from
Figure 2b, a weak emission peak of PTPA-QM at 645 nm was observed when the volume
fraction of water was less than 60%. When the volume fraction of PBS (fw) is greater than
60%, the fluorescence intensity shows a significant enhancement. While the fluorescence
intensity reaches a maximum in PBS / DMSO (4:1 = v/v), the emission wavelength shows a
certain degree of blue shift, indicating the gradual formation of nanoaggregates. However,
the fluorescence intensity increased about 12-fold. It is demonstrated that the fluorescent
probe PTPA-QM is a molecule with typical AIE properties, and that the intramolecular
rotation of compound PTPA-QM is restricted in the aggregated state, thus causing intense
fluorescence emission. In addition, this is consistent with the color change visible to the
naked eye under UV light, which fluoresces faintly at first and eventually produces a
red fluorescence.

To examine the performance of PTPA-QM, its photostability was investigated. The
fluorescence intensity of PTPA-QM at 615 nm was recorded by continuous laser irradiation
for 16 min after dissolving the PTPA-QM in different levels of glycerol solution (0%, 25%,
50%, 75%, 99%). As shown in Figure 3a, the fluorescence intensity of the fluorescent probe
PTPA-QM hardly changed in different concentrations of glycerol, and the probe exhibited
good photostability.

A fluorescent probe with specificity and selectivity for the test article compared to
potential competing species is a necessary condition for a good probe. We evaluated the
response of PTPA-QM to various biologically relevant species including metal ions, anions,
and amino acids in different solutions (DMSO, DMSO: glycerol = 1:4). The fluorescence
intensity of the fluorescent probe PTPA-QM was almost unchanged (Figure 3b). Including
common amino acids exhibited no obvious effect on the emission of PTPA-QM. The results
show that PTPA-QM has a negligible effect on factors other than viscosity sensitivity.
Therefore, PTPA-QM can be used as an ideal fluorescent probe for viscosity detection.

Subsequently, we explored the fluorescence response pattern of PTPA-QM in the
DMSO-glycerol system. As shown in Figure 4, the fluorescence intensity of PTPA-QM at
615 nm was negligible in the DMSO. With the increasing content of glycerol, the viscosity
of the detection system also increased gradually, and its fluorescence intensity increased
significantly. The fluorescence intensity of PTPA-QM in 99% glycerol solution was 22-fold
higher than that in pure DMSO.
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The formation of fluorescence differences in PTPA-QM in different viscosities can be
demonstrated by time-dependent density functional theory (TD-DFT) calculations using the
B3LYP/6-311G method of the Gaussian 09 package. In the ground state, the triphenylamine
group and quinoline–malononitrile group remain almost planar. The oscillator strength
(ƒem) was 0.9077 (Figure 5). However, when the fluorescent molecule is excited, the
triphenylamine group and quinoline–malononitrile groups are in a perpendicular position.
The conformation of NIR-PF was in a distorted state, and the oscillator strength (ƒem)
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was 0.6524. It was demonstrated that in viscous solutions, the fluorescent molecules
undergo the TICT process. Meanwhile, the HOMO of PTPA-QM primarily resided on
the triphenylamine group, while the LUMO predominantly resided on the quinoline–
malononitrile, thus forming the typical TICT process. These results indicate that the ground
state of the fluorescent probe PTPA-QM can be excited to an excited state when under
glycerol conditions, thus leading to an intense fluorescence. However, PTPA-QM can rotate
freely in a low-viscosity environment, forming a distorted excited state, which leads to
weak fluorescence.
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Figure 5. The optimized structure, HOMO, LUMO, and oscillator strength of PTPA-QM at around
(a) 0◦ and (b) 90◦.

Based on the spectral data, a possible response mechanism of PTPA-QM to viscosity
was proposed. In a low-viscosity environment, rotations between free-orbiting electron
donors and electron acceptors are allowed. When the fluorescent probe is excited by pho-
tons, the excited state energy is released non-radiometrically by reversing the intramolecu-
lar charge transfer, showing weak fluorescence. In a high-viscosity solution environment,
the intramolecular rotation of the fluorescent probe is inhibited. The excitation energy is
released in the form of radiation, which eventually leads to a stronger fluorescence.

3.3. Cell Imaging

To study the latent function values of PTPA-QM towards biological systems, we
carried out fluorescent bio-imaging experiments in PC12 cells. The cytotoxicity of PTPA-
QM against PC12 cells was assessed using CCK8 assays. Figure 6 indicated that the low
concentration probe PTPA-QM (40 µM) showed low toxicity to cells and could be well
applied to a biological application. Therefore, the PC12 cells were incubated into the
culture plate and were cultured with the probe PTPA-QM (10µM) for about 1 h and imaged
through CLSM.
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3.4. Specificity of PTPA-QM to Aβ Plaques in Brain Slices

The active cavity sites of amyloid fibrils were obtained by simulation with Schrödinger
software and then docked with the structurally optimized PTPA-QM to obtain the inter-
action model of PTPA-QM with amyloid fibrils. As can be seen from the figure, the space
of the active cavity of amyloid fibrils is very narrow, making it difficult for the highly
distorted structure to insert into the active cavity. The linearly structured fluorescent probe
PTPA-QM has a very small rigid backbone structure that is easily inserted between the
β-folded lamellar structures of the amyloid fibrils and forms interactions with the amino
acid residues on the amyloid fibrils.

Wang et al. [37] found that the molecules of ThT could insert into the β-folded lamellae
of Aβ fibrils. ThT only showed a weak N-H···π interaction with the side groups of HIS13.
The molecules of PTPA-QM could be inserted into the β-folded lamellae of Aβ fibrils and
interact with the amino acid residues of HIS13, VAL36, GLY38, and GLN15 (Figure 7), while
PTPA-QM possessed strong N-H···O, C-H···O, N-H···π, π···π, N+···π multiple interactions.
Through these intermolecular interactions, the probe is subject to intramolecular motion
and emits a strong fluorescence when excited by light, thus enabling the fluorescence
detection of Aβ fibers.
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The sensitivity of the compound to Aβ was investigated by the fluorescence detection
of PTPA-QM on Aβ. As an AIE probe, PTPA-QM showed essentially a weak fluorescence
response. However, when a small amount of Aβ fiber solution was added, the fluorescence
intensity increased. However, the change in the fluorescence intensity increased only about
two-fold. After binding to the Aβ fiber, the maximum emission peak of the compound
PTPA-QM was located at 625 nm and showed red fluorescence (Figure S2). The most
important reason is that the binding of PTPA-QM to Aβ aggregates limits the free rotation of
the bonds, which enhances the fluorescence emission. We investigated the selectivity of this
probe PTPA-QM (PTPA-QM,10 µM, ethanol/H2O = 4:6; proteins, 10 µM). Several proteins
were selected for fluorescence detection. For example, Aβ aggregates, the aggregation of
amylin, the aggregation of a-synuclein, and amyloid fibrils from hen egg white lysozyme
(Figure S3). However, when other proteins were added, there was a slight change in
the fluorescence intensity. Therefore, the fluorescent probe PTPA-QM is less selective
for Aβ aggregates. Therefore, animal tissue sections were selected for staining in the
imaging experiments.

The main pathological feature of AD is the abnormal deposition of Aβ in the brain.
Therefore, the detection of Aβ in brain tissue is important for the detection and patho-
logical study of AD. Neuroinflammatory regulation and Aβ production are key factors
in the pathogenesis of AD. Therefore, Tg mice and LPS-induced inflammatory cognitive
impairment mice were selected for the applied study of fluorescent molecules.

First, brain tissue sections from Tg mice (5XFAD, 9 months old, male) were stained
for the neuropathological fluorescence co-localization of Aβ using the probe PTPA-QM to
assess the targeting of the probe to Aβ. Fluorescence co-localization imaging results showed
that many fluorescent patches could be observed in brain tissue sections of Tg mice co-
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incubated with ThT and PTPA-QM. The superimposed images showed that the green spots
of the ThT-stained image overlapped almost completely with the red spots of the PTPA-
QM-stained image (Figure 8a–c). In LPS-induced inflammatory cognitive impairment mice
(C57BL/6J mice, 3 months old, male), fluorescent molecules were co-stained with ThT on
brain sections in the experiments. We can see that the plaques stained with the probe PTPA-
QM are consistent with ThT (Figure 8d–l). Additionally, it can rapidly stain Aβ within
10 min in mouse brain sections. Therefore, it is clear from the experimental results that the
probe PTPA-QM can bind to Aβ in the brain and fluoresce at excitation wavelengths.
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Figure 8. Colocalization of ThT labeling (a,d,g,j) and PTPA-QM (b,e,h,k) with immunostaining of
Aβ in the brain sections of 5XFAD transgenic mice (a–c) and LPS-induced inflammatory cognitive
impairment mice (d–l). (g,h,i) Cerebral cortex; (j,k,l) hippocampus. (c,f,i,l) are the merged images of
PTPA-QM and ThT.

4. Conclusions

In summary, we developed a fluorescent probe, PTPA-QM, using a simple synthetic
procedure. PTPA-QM shows a good performance for viscosity with enhanced fluorescence
emission at 615 nm. The PTPA-QM exhibits a significant AIE effect, with significant turn-
on fluorescence enhancement. Additionally, this probe has low cytotoxicity to PC12. In
addition, PTPA-QM was successfully used for the fluorescence imaging of Aβ in the brain
of Tg mice and LPS-induced inflammatory cognitive impairment mice. PTPA-QM rapidly
stains Aβ in mouse brain sections in less than 10 min. Overall, all these studies suggest that
our AIE probe holds great promise in exploring the pathology of AD, and, with further
development, could be widely used for early diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bios13060610/s1, Figure S1: Normalized absorption spectra of PTPA-QM
(1.0 × 10−5 M) (black). Normalized FL spectra of of PTPA-QM (1.0 × 10−5 M) (red); Figure S2:
Fluorescent responses of PTPA-QM to the aggregates of fibrils. (Ethanol/H2O = 4:6); Figure S3:
Fluorescent responses of PTPA-QM to proteins. (PTPA-QM,10 µM, ethanol/H2O = 4:6; proteins,
10 µM); Figure S4: 1 H NMR, 13 C NMR and HR-MS spectra (PTPA-QM)
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