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Abstract: Nowadays, virus pandemics have become a major burden seriously affecting human health
and social and economic development. Thus, the design and fabrication of effective and low-cost
techniques for early and accurate virus detection have been given priority for prevention and control
of such pandemics. Biosensors and bioelectronic devices have been demonstrated as promising tech-
nology to resolve the major drawbacks and problems of the current detection methods. Discovering
and applying advanced materials have offered opportunities to develop and commercialize biosensor
devices for effectively controlling pandemics. Along with various well-known materials such as
gold and silver nanoparticles, carbon-based materials, metal oxide-based materials, and graphene,
conjugated polymer (CPs) have become one of the most promising candidates for preparation and
construction of excellent biosensors with high sensitivity and specificity to different virus analytes
owing to their unique π orbital structure and chain conformation alterations, solution processabil-
ity, and flexibility. Therefore, CP-based biosensors have been regarded as innovative technologies
attracting great interest from the community for early diagnosis of COVID-19 as well as other virus
pandemics. For providing precious scientific evidence of CP-based biosensor technologies in virus
detection, this review aims to give a critical overview of the recent research related to use of CPs in
fabrication of virus biosensors. We emphasize structures and interesting characteristics of different
CPs and discuss the state-of-the-art applications of CP-based biosensors as well. In addition, different
types of biosensors such as optical biosensors, organic thin film transistors (OTFT), and conjugated
polymer hydrogels (CPHs) based on CPs are also summarized and presented.

Keywords: conjugated polymer; optical biosensors; conjugated polymer hydrogels; organic field-
effect transistors (OFETs); organic electrochemical transistors (OECTs)

1. Introduction

Viruses have been becoming a major threat to the wellbeing of humans, animals,
and plants. In the past, there were several notable worldwide pandemics such as the
1918 influenza [1], human immunodeficiency virus/acquired immunodeficiency syndrome
(HIV/AIDS) [2], 2009 swine-influenza A (H1N1) [3] causing millions of deaths. To date, the
COVID-19 pandemic, an infectious disease that is caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has remained and seriously affected the human
health and the social and economic development [4]. In general, development and use
of several approved vaccines along with the self-quarantine and good personal hygiene
habits have been demonstrated as effective solutions to prevent and stop the fast spreading
of viruses. Nonetheless, the development of effective, rapid, and low-cost techniques for
early and accurate virus detection has been utterly important and should be given priority
for prevention of such pandemics. To date, real-time reverse-transcription polymerase
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chain reaction (RT-PCR)-based techniques are still regarded as a gold-standard technol-
ogy for detection of virus pandemics, especially SARS-CoV-2, in combination with other
direct or indirect techniques, i.e., computerized tomography (CT) scans, enzyme-linked
immunosorbent assays (ELISAs), and serological assays [5,6]. Although these methods
have proven their own efficiency in virus detection, there have been still several drawbacks
and problems significantly encountering their practical applications, as presented in Table 1.
Such techniques often demand expensive equipment, expertise operators, time-consuming
and labor-intensive work to acquire the desired results [7].

Table 1. A comparison of various techniques commonly used for virus detection [7].

Representative
Technique Detecting Target Advantages Disadvantages

ELISA Antibodies or viral antigens High sensitivity and specificity
Require specific antibodies,

multiple steps, and
sophisticated laboratories

RT-PCR Viral genomes
Highest sensitivity, short
detection time, best for

diagnosis and screening

Expensive, potential sample
contamination causing

false-positive results, require
prior sequence data of the

specific target gene of interest

Viral cultivation
and isolation Virions and viral antigens

Gold standard for viral
identification, allows further

tests for other purposes such as
genotype confirmation

Slow and technically
demanding, prolonged time to
obtain results, requires further

identification for a positive
sample, not all viruses can

multiply in cell culture

CP-based biosensors
Virions, viral antigens,

antibodies, viral genomes
(potential)

Low cost, short response time,
biomimetic structure, dual

output signals

Moderate sensitivity and
selectivity,

moderate stability

Biosensors and bioelectronic devices have appeared as a potential strategy to suppress
the above issues of the current detection methods [8]. Furthermore, biosensor platforms
have also been considered as the next-generation diagnostic technologies for COVID-19
and other pandemics owing to their superior advantages related to the sensing robustness,
rapid detection, use of a minimum analyte concentration, and miniaturized devices [9–11].
Nanotechnology and advanced materials play a crucial role in the rapid advancement
and development of biosensors through an increased sensitivity and specificity to virus
analytes. Advances of novel materials in the design and fabrication of biosensors have
created opportunities to develop and commercialize biosensor devices in the healthcare
industry. Numerous materials, i.e., gold and silver nanoparticles, carbon-based materials,
metal oxide-based materials, and graphene have been applied for preparation of high-
performance biosensors [12,13]. Among them, conjugated polymer (CPs) is a promising
candidate for fabricate excellent biosensors with high sensitivity and selectivity to viruses
due to their outstanding features related to the unique π orbital structure and chain confor-
mation alterations [14]. Therefore, the development of innovative technologies based on
CP-based biosensors has been expected to attract huge attention among potential research
related to early diagnosis COVID-19 as well as other virus pandemics.

It has been crucial to consolidate the existing scientific evidence for applicability of
CP-based biosensor technologies in virus detection. Here, we provide a critical overview
and evaluation of the existing works in the field of CP-based biosensors for identifying
various viruses. Specifically, we briefly introduce and emphasize structures and interesting
characteristics of different CPs for biosensor applications. Moreover, the state-of-the-art
applications of CP-based biosensors in detection of viruses are summarized and described
in detail. Different potential kinds of CP-based biosensors including optical biosensors,
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organic thin film transistors (OTFT), and conjugated polymer hydrogels (CPHs) are also
discussed and presented. Therefore, this review provides an outlook on the future of CPs
in biosensor devices and their potential for the development of point-of-care technologies
(POCT) for early virus diagnosis.

2. Structures and Characteristics of Conjugated Polymers for Biosensors

CPs are defined as macromolecules generally consisting of a π-conjugated sp2 carbon-
based backbone surrounded by aliphatic side chains, which induce the superior features
such as intrinsic flexibility, optoelectronic properties, and solution processability [15,16].
CPs possess interesting properties related to a combination of electrical conductivity and
characteristics of organic polymers. Moreover, owing to strong light-harvesting, good
fluorescence quantum yield, and high photostability, CPs have been regarded as one of the
most promising candidates for development of biosensors and imaging technologies [17].
π-CPs molecules contain alternating saturated and unsaturated bonds [18], and the signals
including electrical charges or energy states can be fast migrated by this conjugated π-
electron system. Moreover, the electrical charges or energy states also generate the high
electrical conductivity for CPs [19], and the conjugated π-system can provide multiple
CP monomers to facilitate interaction with biomolecule analytes, thereby resulting in the
signal amplification effect [20]. CPs can be used for design of biosensor devices with two
different roles, i.e., active components or passive supporting and structuring materials.
In the role of passive supporting materials, CPs are used to support and immobilize the
detecting biocomponents [21]. On the other hand, CPs are often employed and served
as transducers (active components) in biosensors, which mediate the signal upon analyte
interaction. Compared to biosensors using other molecules, therefore, the sensor devices
based on CPs exhibited higher sensing performance [22]. For CP-based biosensors, CPs
are possible for designing two main types of transducers: (i) electrical transducer which
records electrical signals via changes in resistivity, in electrical current, or in potential [23,24];
and (ii) optical transducer receives optical signals which are manifested by changes in
fluorescence wavelength, intensity, or colors [25–27].

Owing to the outstanding features, the CPs are considered as one of the most im-
portant materials in fabrication of both electrochemical and optical biosensors for virus
detection [9,14,28]. There are two basic types of CPs that can be used to employ biosensors
including conjugated homopolymers and copolymers. Conjugated homopolymers such
as poly(acetylene), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(thiophene), poly(p-
phenylenevinylene) (PPV), poly (pyrrole) (PPy), and poly(aniline) (PANI) are defined
as normal CPs consisting of single species of repeating units [29], whereas a conjugated
copolymer is a CP containing two or more different types of repeating units (more than one
type of monomer) such as DPP-DTT, PEDOT:PSS, and TBTT-ProDOT [27]. Compared to ho-
mopolymers, copolymers are special CPs with excellent optical luminescent and electrical
conducting properties due to their extensive π-conjugation [30]. Moreover, copolymers also
possess some advantages in development of advanced biosensor devices such as tailorable
structures, tunable optoelectronic properties, processability, high solubility and stability,
and ease of device fabrication [31]. The properties of common homo- and co-CPs used for
preparation and design of biosensors are summarized in Table 2.

CPs are basically prepared by two approaches including chemical and electrochemical
methods [14,32]. Some desirable properties of CPs are enabled by tailoring and modulating
their molecular weight, sequence, and end groups. Thus, controlled polymerization meth-
ods with high reproducibility during the synthesis and preparation process play a crucial
role for producing novel CPs [33]. Electrochemical polymerization is often preferred to be
used for preparation of CPs in biosensor applications due to several advantages includ-
ing low temperature, a large surface area of microelectrodes, controllable thickness and
shapes of CP films, and fast process (few seconds) [34]. Moreover, in the electrochemical
polymerization method, the CPs are also deposited on the electrode surface by coupling
reactions of oligomers produced by radical cations of oxidized monomers [35]. Recently,
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doping has been demonstrated as a promising method to increase in the hole mobility of
CPs [36,37], thereby improving the sensitivity of CP-based biosensors [38]. The pristine
state of CPs often exhibits low conductivity and mobility; thus, the doping process can
significantly increase its electrical conductivity. The CP doping is able to be classified into
four main approaches, including chemical doping, electrochemical doping, photochemical
doping, and interfacial doping [39]. In chemical doping, the charge transfer redox is a main
mechanism, and the CP doping can be conducted in two ways such as p-type doping or
n-type doping. The p-type doping is accomplished by partially oxidizing the CP backbones
using halogens, i.e., iodine, bromine, or chlorine (Figure 1) [40,41], whereas n-type doping
can be achieved by reduction of CPs using a strong reduction potential such as sodium
organic compounds [42]. For electrochemical doping, the principle is mainly the same as
that of the chemical doping process but using an electrode to supply the redox potential.
Therefore, the electrochemical doping of CPs is highly influenced by the potential and
counter ions from the surrounding electrolyte solution. The electrochemical doping is the
most commonly used doping technique for fabrication of CPs in biosensor applications,
especially electrochemical biosensors [43]. Recently, most research has concentrated on
studying and using the p-type doping process to improve the electrical conductivity of
CPs [44].
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Table 2. Summary of important properties of common conjugated polymers for development of
CP-biosensors.

Conjugated Polymers Conductivity
(S/cm) Properties Refs

Homopolymers

Polyacetylene Trans-polyacetylene (4.4 × 10−5 )
Cis-polyacetylene (1.7 × 10−9)

Water insolubility
Low solubility in organic solvents

The morphology consists of fibrils, with an
average width of 200 Å

[45,46]

Polypyrrole (PPy) 2–100
Solubility in DMSO, chloroform, chlorobenzene,

and tetrachloromethane
Environmental stability, compatibility

[47]

Polythiophene (PT) 10–103

Insolubility in ordinary solvents
The optical properties of PTs are sensitive to

many factors.
PTs exhibit absorption shifts due to application

of electric potentials

[48]

Poly(phenylenevinylene)
(PPV) 10–13

Water insolubility
A highly ordered crystalline thin film.

A small optical band gap and bright yellow
fluorescence

[49]

Poly(aniline) (PANI) 30–200
Insolubility in the common organic solvents
Solubility in NMP, DMSO, DMF, and THF
Environmental stability and compatibility

[50]

Poly(3,4-
ethylenedioxythiophene)

(PEDOT)
0.4–400

Available aqueous dispersion
Low density, excellent thermoelectric

performance
[51,52]

Polydiacetylene (PDA) ∼10−5

Highly ordered backbones with customizable
side chains

An absorption peak at ∼640 nm (blue color).
Upon interaction with external stimuli, the main

absorption peak shifts hypsochromically to
∼540 nm (red color)

[53]

Copolymers

DPP-DTT 8.4
Solubility in chloroform, chlorobenzene, and

dichlorobenzene
High mobility 10 cm2/Vs

[54,55]

PEDOT:PSS 54

Self-healing properties
Adjustable conductivity, good transparency to
visible light, excellent thermal stability, and a

high level of biocompatibility
High water solubility

[56,57]

TBTT-ProDOT - Optical bandgaps ranging from 1.96–2.46 eV
High photoluminescent quantum yields [31,58]

3. CPs-Based Optical Biosensors for Virus Detection

CPs have attracted huge attention as effective optical transducers in optical biosensor
for virus detection due to their excellent light absorption and emission properties. Particu-
larly, water-soluble CPs such as poly(fluorene phenylene), polyfluorene, and polythiophene
have been recently employed as optical probes for developing and designing fluorescent
and colorimetric biosensors.
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3.1. Fluorescent Conjugated Polymer Biosensors

Fluorescence analysis has been considered as one of the most promising technologies
in biosensing applications due to its superior advantages such as high sensitivity, simple
operation, and strong specificity. Recently, DNA-CPs have been used as effectively fluores-
cent probes for detecting various viruses. The CP-based fluorescent biosensor is presented
in Figure 2a, which mainly includes two domains A and B [59]: A domain is a CP template,
and B domain is a specific probe to a targeted virus. Moreover, a C factor can be additionally
introduced to enhance the fluorescent interaction. For the detection mechanisms of CP-
based fluorescent biosensors, the fluorescence of CPs may be turned on/off or shift upon
the virus presence [60]. The fluorescent biosensor based on DNA-CPs can generate different
fluorescence readouts by charge attraction, thereby leading to detection of different viruses
via their DNA sequence [59]. For instance, Zhang et al. successfully fabricated a label-free
fluorescent CP-based DNA biosensor using a cationic CP, poly(3-(3′-N,N,N-triethylamino-
1′-propyloxy)-4-methyl-2,5-thiophene) (PMNT) (Figure 2b) [61]. This study demonstrated
that the fluorescence of PMNT polymer showed a significant change at 530 nm and a peak
at 580 nm upon interacting with single-stranded DNA (ssDNA). The PMNT CP interacted
with DNA molecules by electrostatic interactions and DNA base-mediated interactions.
The results indicated that the PMNT-based fluorescent biosensor exhibited a high sensing
performance with a detection limit of 1 nM DNA.
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Figure 2. (a) Schematic illustration of the working mechanism of CP-biosensors in detection of
various viruses based on different fluorescent readouts. Different types of CPs indicate blue, green,
and red fluorescents, respectively. The various readouts (filled with blue, green, and red colors)
indicate the sensing signals are obtained from different fluorescent CPs [59]; (b) Proposed scheme
representing the binding mechanism between PMNT and ssDNA/dsDNA [61].

Currently, there have been some detection modes of CP-based fluorescent biosen-
sors including (i) fluorescent enhancement (turn-on); (ii) fluorescent quenching (turn-off);
(iii) fluorescent color change. For the fluorescent enhancement mode, the presence of target
analytes will produce bindings perturbing the electron density along the CP backbone
or changing the conformation of the polymer chain, leading to a significant increase in
CP fluorescence. The CP fluorescence is partly or completely quenched and turned off
by non-radiative relaxation pathways in a chain or the intermolecular aggregation of CP
chains in the fluorescent quenching mode [62,63]. The fluorescent color change is likely to
gradually increase along with a change in electron density inside the CP backbone, and the
driving forces causing this change are induced by polymer aggregation [64], conformational
change [65,66], and electron energy transfer [26,67]. In the CP-based fluorescent biosen-
sors, hybridization of a complementary sequence with the DNA/RNA viruses results in a
considerable enhancement of the fluorescence intensity as well as color change because
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of changes in the DNA/RNA structure. Therefore, these mechanisms are exploited to
develop and design biosensors for effectively detecting various viruses through their DNA
or RNA. Furthermore, fluorescence resonance energy transfer (FRET) has been also used to
amplify the fluorescent signal in the CP-based fluorescent biosensors [68,69]. Regarding
this approach, the energy of CPs is transferred to a fluorophore or quencher relying on an
energy transfer mechanism between two chromophores [70]. The fluorescent color change
mode is triggered depending on the changed conjugation length of a CP backbone, thereby
leading to the shifted wavelengths of the absorbed light by the CPs.

Fluorescent biosensor devices for virus detection transduce biological recognition
events into measurable signals in the presence of viruses. In general, water-soluble CPs
have been widely used for design of solution-state biosensors, and these sensor devices
work based on three types of signal transduction mechanisms: electron transfer, FRET,
and analyte-induced aggregation of CPs [71]. Compared with other inorganic or small
molecule counterparts, CPs enable the trapping of energy and/or migrating electrons
along the conjugated backbone due to their good light-harvesting abilities [72]. For the
electron transfer mechanism, the CP-based biosensor devices can induce a superquenching
fluorescent effect by the appearance of quenchers through an effective electron transfer
process. In this sensing system, the quenchers are often used as energy acceptors to allow
transferring energy from the CP to the acceptor via FRET [26]. It has been demonstrated
that FRET was developed based on the Forster theory which is generated from dipole–
dipole interactions [71]. For the aggregation mechanism, the presence of virus analytes can
induce the π-stacking phenomenon of the CP backbones, and the water-soluble CPs are
aggregated by interchain interactions, which results in the fluorescence quenching.

3.2. Colorimetric-Conjugated Polymer-Based Biosensors

Due to the high ability in the amplification of sensory signals, CP-based fluorescent
biosensors are considered as an ideal technique for detection of extremely small quantities
of virus analytes. However, they require high-tech tools and expensive spectrophotometer
instruments. Therefore, colorimetric biosensors are currently regarded as the most con-
venient and effective approach without using equipment for quickly detecting various
viruses [73–75]. Colorimetric biosensors can be employed for identifying and quantitatively
measuring virus analytes through color changes which can possibly be recognized by
the naked eye or with simple portable optical detectors. Thus, colorimetric biosensors
have attracted huge attention in the development of optical biosensors due to their high
accessibility, cheap costs, simplicity, practicality, and high sensitivity and selectivity [76].
In general, colorimetric biosensors, defined as a special type of optical sensors, change
or switch the color by a change in the environmental properties (external stimuli) such
as physical or chemical environments. Recently, CPs have gained great interest as an
excellent candidate for design and preparation of colorimetric biosensors due to their
high sensitivity with significant changes in physicochemical properties [77,78]. Moreover,
CPs are likely to be used in the rapid detection and biorecognition of elements of viruses,
such as antibodies and proteins, because of the instantaneous transduction of stimuli into
response [79]. Among many CPs employed for fabrication of colorimetric biosensors, PANI,
polythiophenes, and PDAs are the most common CPs used for detection of pathogens and
viruses [18,79,80]. Based on the designs and architectures, CP-based colorimetric biosensors
can be divided into two basic types: solution-based CP biosensors (non-substrate) and
substrate-based CP biosensors.

3.2.1. Solution-Based CP Colorimetric Biosensors

The motivation for creating and developing aqueous solution-based CP colorimet-
ric biosensors has originated from the state of clinically interesting target molecules and
outstanding features of CPs. In biosensors, biological targets (i.e., DNA/RNA, proteins,
or antibodies) often need to be dissolved and maintained in an aqueous environment.
Furthermore, some CPs are highly water-soluble, which are easily dissolved and interacted
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with aqueous solution of target molecules. Many solution-state colorimetric biosensors
using CPs have been fabricated for the detection of viruses. Among them, the PDA poly-
mer is often used as a colorimetric sensing material in the fabrication of solution-state
colorimetric biosensors due to its unique chromatic properties [81,82]. Most PDA colori-
metric biosensors are prepared by incorporating specific bio-receptors into the polymer
matrix or liposome. The PDA backbone conformation is changed by binds between target
molecules and receptors, leading to the changed color from blue to red [83]. For instance,
Song et al. developed the PDA colorimetric nanosensor by functionalizing PDA with a
peptide (PEP) for identifying the pandemic H1N1 virus (Figure 3) [80]. This biosensor
was prepared by simultaneous combination of PDA nanoprecipitation and modification
with PEP to produce a specific and selective recognition to the pH1N1 virus. Specifically,
10,12-pentacosadiynoic acid (PCDA) and PCDA-NHS monomers were self-assembled and
precipitated to obtain PDA nanoparticles in the aqueous phase, followed by UV irradiation
to form the blue-colored PDA biosensor (Figure 3a). Hemagglutinin (HA) proteins play a
vital role in aiding the virus to first adhere to and to enter a host cell, and thus, they are
often used as bioreceptors to recognize specifically viruses, especially influenza virus [84].
The PEP-PDA biosensor was completely obtained by decoration of HA1 protein receptors
through binding with PEP-modified PDA molecules, and this colorimetric biosensor could
accurately recognize pH1N1 viruses because of a high affinity of HA1 receptors with the H1
strain (Figure 3b). Importantly, the PDA colorimetric biosensors have been demonstrated
to be capable of detecting H1N1 virus by only the naked eye due to the unique chromic
characteristics of PDA molecules. The PEP-PDA biosensor showed a colorimetric response
with an obvious blue-to-red color change when reacting with pH1N1 viruses (Figure 3c),
which is clearly visible to the naked eye. It has been indicated that the colorimetric transi-
tion of the PEP-PDA biosensor from blue to red can be explained by the perturbation of the
conjugated ene–yne backbone of PDA cause by steric repulsion at the biosensor surface
from the interaction of H1 strain and PEP [85]. This study demonstrated that PDA can
be employed for fabrication and development of a commercially available kit based on
colorimetric biosensors for virus detection.

Antibodies (immunoglobulins) are also known as one of the best receptors that can be
employed to fabricate biosensors for detecting viruses [35]. Jiang and coworkers designed
a highly sensitive, specific, and rapid solution-state biosensor based on PDA vesicles for
detecting H5 influenza virus using the anti-H5 influenza antibody [86]. The PDA vesicles
were formed by a combination of PCDA and 1,2-dimyristoyl-sn-glycero-3-phosphocholine
(DMPC), followed by UV (254nm) irradiation. These PDA vesicles were integrated with
bioreceptors (H5-mAb, monoclonal antibodies against the HA of H5 influenza virus) by
covalent bonds and an EDC/NHS coupling reaction, while the excess carboxylic acid
groups on the PDA versicle surface were blocked by bovine serum albumin (BSA) for
prevention of non-specific adsorption. Such solution PDA vesicle biosensor showed a
high performance in detecting H5 influenza virus: (i) a low LOD value (0.53 copies µL−1)
and (ii) an obvious changed color from blue to red that enabled it to be recognized by the
naked eye or simply measured by a UV-vis spectrometer. Furthermore, the colorimetric
PDA biosensor exhibited high selectivity to H5 influenza virus in the presence of various
pathogens including H3 influenza virus, NVD, and PRRSV (Figure 3d). In addition, this
PDA biosensor also presented good results in detecting virus isolated from tracheal swabs
in comparison with the RT-PCR technique. Except for influenza virus, solution-based
PDA colorimetric biosensors have been demonstrated to be available for detection of other
common viruses such as vaccinia virus infects [87,88], foot-and-mouth disease virus [89],
bovine viral diarrhea virus [90], and hepatitis B [91]. These studies prove the possibility and
potential of PDA in the development of solution-based colorimetric biosensors in effective
detection of various viruses.

Polythiophenes and derivatives have also been employed for fabrication of solution-
based colorimetric biosensors in detection of virus biorecognitions such as RNA because of
their high water-solubility and structures [92]. Currently, detection of RNA viruses has still
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remained a big challenge due to the small size of miRNA, low annealing temperature, as
well as the risk of cross hybridization. The length of the polythiophene derivatives con-
taining 20–40 thiophene repeat units is demonstrated to match well with the miRNA virus
size to generate the conformational changes [93]. Therefore, several studies have taken ad-
vantage of polythiophene derivatives for the development of simple, solution colorimetric
biosensors to detect miRNA viruses without chemical labels and expensive instrumenta-
tion. For example, Zhang et al. developed an aqueous colorimetric biosensor based on a
cationic polythiophene derivative (poly[3-(30-N,N,N-triethylamino-1-propyloxy)-4-methyl-
2,5-thiophene hydrochloride (PMNT)) as an optical probe for detection of microRNAs
from viruses [94]. In the solution, PMNT exists in a random-coil conformation, and its
twisted conjugated backbone causes a decreased effect in the conjugation length, thereby
resulting in an absorption peak at 400 nm and a yellow color (Figure 3e,f). Upon addition
of a ssDNA receptor, the PMNT solution shifted to a red color and a new absorption
peak at 525 nm derived from highly conjugated, planar conformation of PMNT. In the
presence of a target miRNA, the triplex structure of the ssDNA/miRNA hybrid and PMNT
molecules was formed, and PMNT in the triplex was less conjugated and a nonplanar
conformation, leading to the same absorption peak of the triplex with PMNT itself but
with greater absorption and an orange color. Interestingly, the authors demonstrated that
this solution PMNT colorimetric biosensor was likely to be reproduced by digestion of
miRNA using RNase H. Moreover, the PMNT biosensor could be carried out by simple
spectrophotometers or even by the naked eye, considerably reducing the cost and in-
creasing the test throughput. With a similar approach, Ho and Leclerc also developed an
inexpensive solution colorimetric biosensor using a cationic polythiophene derivative for
rapid detection and high-throughput screening of various target pathogenic proteins in
the femtomole range [95]. In this study, ssDNA aptamer was first bonded to a cationic
polythiophene through charge–charge interactions to obtain a solution colorimetric biosen-
sor. The addition of pathogen proteins caused a polymer conformational change, and
the biosensor worked by a color shift from yellow to red. More recently, Ammanath and
coworkers successfully designed a flow-through colorimetric biosensor based on a cationic
poly (3-alkoxy-4-methylthiophene) for detection of microRNA (mir21) and hepatitis B
virus DNA (HBV-DNA) in plasma without requiring tedious sample pre-treatment and
clean up protocols [96]. The biosensor could show colorimetric responses at nanomolar
concentrations of mir21 and HBV-DNA from 1 nM to 10 mM, with a LOD of ~2 nM in
plasma. The colorimetric biosensor system could be developed as a point of care disease
diagnosis and used for detecting numerous virus biomarkers in plasma. The results from
these studies demonstrated that polythiophenes and derivatives are potential candidates
for the development of colorimetric biosensors that can be utilized to recognize virus
biomarkers conveniently and rapidly.

3.2.2. Substrate-Based CP Colorimetric Biosensors

Liquid-phase CP colorimetric biosensors are simply designed by dispersing CP
molecules in a buffer solution, while solid-phase biosensors are prepared by immobi-
lizing CP supramolecules onto substrate supports, facilitating the development of POCT
devices with simplicity, flexibility, and portability. Although the solution CP colorimetric
biosensors are convenient and low cost, their relative instability in solution has limited
their applicability in practice. Hence, solid-phase colorimetric biosensors constructed on a
substrate are ideal for the design of advanced colorimetric biosensors with simple, rapid,
and robust platforms. For instance, a PDA solid colorimetric biosensor was reported for
rapid identification of the influenza A (H1N1) virus by coating and immobilizing PDA
nanovesicles onto a polyvinylidene fluoride (PVDF) substrate [97]. In this study, PDA
nanovesicles were first prepared by functionalizing PDA with M149 antibody, and im-
mobilization of these PDA nanovesicles on PVDF membrane showed a further improved
stability and sample handling. However, currently conventional approaches for fabrication
of solid-phase CP colorimetric biosensors have often relied on Langmuir–Blodgett (LB) or
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Langmuir–Schaeffer (LS) films [98]. These methods presented weak optical signals and
required stringent conditions. On the other hand, solution colorimetric biosensors could
show a stronger optical response due to use of CP supramolecules in a high concentration.
Therefore, a potential strategy has been recently developed by integration and immobi-
lization of liquid-phase CP biosensors onto a solid substrate, thereby effectively taking
advantages of a liquid-phase CP dispersion for improving the sensing performance of a
substrate colorimetric biosensor. Take, for example, Park et al. who developed a direct,
multiplex colorimetric biosensor platform for identifying pathogens using a novel proce-
dure to immobilize PDA liposomes (Figure 4) [99]. It has demonstrated that the instable
immobilization of PDA liposomes on the solid substrate has been considered as a critical
drawback for the design of the PDA liposome-based colorimetric biosensors. The study
provided a promising strategy to overcome this problem by introducing an interlinker
(ethylenediamine) which effectively works as a crosslinker to aid the immobilization of
PDA liposomes. Using this strategy, the authors also successfully prepared a PDA col-
orimetric chip with the improved signal intensity and the high sensitivity. Furthermore,
the substrate-based PDA colorimetric biosensor enabled it to perform the simultaneous
quantitative and qualitative measurement of six different species of pathogens.

In the last decade, development of colorimetric biosensors based on paper substrates
has attracted large attention owing to several superior advantages including simplicity,
rapidity, and low cost [100]. CPs are recently considered as an excellent candidate for
the design of paper-based colorimetric biosensors because of their solution processabil-
ity [101,102]. PDA is also a commonly used CP for fabrication of paper-based colorimetric
biosensor devices that can serve as POCT platforms for detection of viruses. Son and
coworkers recently introduced a PDA-based colorimetric biosensor for POCT detecting
the influenza A virus [103]. This PDA-paper chip was prepared by immobilizing PDA
molecules on the PVDF flexible substrate through a photo-polymerizing process, followed
by decorating antibody bioreceptors into this PDA-PVDF membrane (Figure 5a). The
PDA-paper colorimetric biosensor was demonstrated to show unique chromatic features
related to a clearly changed color from blue to red in the presence of pH1N1 virus under
different temperature and pH conditions. Especially, the PDA-paper chips were success-
fully integrated in a POCT system with special features: (i) visually recognizing viruses at
a high concentration by the naked eye and (ii) identifying viruses at low concentrations
using paper chips in combination with a developed program (App.) (Figure 5b). With a
similar approach, Prainito et al. also developed a colorimetric, paper-based PDA biosensor
for early detection of the SARS-CoV-2 virus via its spike protein in artificial saliva [104].
For maximizing the sensing performance, this PDA biosensor platform was fabricated with
an optimal PCDA-NHS molar concentration of 10% via an esterification reaction of NHS
and PCDA monomers. The SARS-CoV-2 spike proteins in saliva samples were used as
biomarkers that induced a color change from blue to red when binding to the antibody
receptors (Figure 5c). The paper-based PDA sensing platform showed a high sensing
performance in detection of the SARS-CoV-2 spike protein, i.e., rapid and high responsivity
within the concentration range of 1 to 100 ng/mL. Furthermore, pH and temperature
conditions had little influence on the sensing ability of the paper-based colorimetric sensor.
A smartphone image could be used to record and assess the sensing signal. These results
demonstrated that PDA and CPs have been considered as potential materials for designing
rapid, colorimetric paper-based biosensors to detect various emerging viruses, especially
COVID-19.
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Figure 3. (a,b) Schematic illustration of the peptide-functionalized polydiacetylene (PEP-PDA)
colorimetric biosensor for pH1N1 detection; (c) Colorimetric response of the PEP-PDA biosensor
to different concentrations of pH1N1 [80]; (d) Colorimetric response of the PDA vesicle-based
biosensor to different pathogens: H5—H5N1 influenza virus, H3—H3N2 influenza virus strain,
NDV—Newcastle disease virus LaSota strain, and PRRSV—porcine reproductive and respiratory
syndrome virus VR2332 strain [86]. (e) UV–vis absorption spectra and (f) optical images of PMNT
with various target molecules: (a) pristine PMNT; (b) DNA; (c) DNA/miRNA; and (d) DNA/miRNA
+ RNase H [94].
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paper chips for colorimetric detection of pH1N1 virus [103]; (c) PDA-paper biosensor for detection
of the SARS-CoV-2 spike protein in artificial saliva [104]; (d) schematic illustration of preparation
approach PDA nanovesicle-based colorimetric biosensor on nitrocellulose membrane and (e) its
commercial kits [91].

Hepatitis B is an infectious disease, known as one of the 10 top leading causes of death
in the world, which is caused by the Hepatitis B virus (HBV) [105]. Thus, the development
of early diagnosis techniques for accurately detecting HBV virus has gained great attention
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among the general public and the scientific community. In recent years, the development
of colorimetric biosensors based on the immunochromatographic assay (ICA) has been
extensively investigated as a potential approach for early diagnosis of hepatitis B due to the
rapid and straightforward detection of ICA [106]. Roh and coworkers developed a PDA
commercial kit to selectively detect trace hepatitis B antigen by using PDA vesicles as a
colorimetric indicator as well as a surface for immobilized hepatitis B surface antibody
(HBsAb) [91]. First, the PDA/HBsAb complexes with sizes of ~200 nm were obtained by
conjugation of HBsAb antibody and PDA through covalent linkage, followed by attaching
these complexes on nitrocellulose membrane (Figure 5d). The PDA/HBsAb biosensor
enabled to show the color change when target antigens interacted with antibodies, and the
LOD was reported to be 0.1 ng/mL. In addition, the PDA/HBsAb complexes were also
embedded on a commercial kit by lyophilization method, in which the complexes were
loaded on the polyester pad and dried at 35 ◦C (Figure 5e). The colorimetric sensor kit was
demonstrated to effectively detect up to 1 ng/mL HBV by the naked eye. Moreover, the
PDA colorimetric kit also showed the superior advantages in terms of short inspection time,
rapid reading time, easy handling, and economic feasibility. Therefore, the development of
commercial kits based on PDA and other CPs will be a potential strategy.

4. CP-Based Organic Thin Film Transistors

Among numerous diagnostic methods, organic thin film transistors (OTFTs) have
recently been considered as excellent candidates for the design of sensing devices due to
simplicity in the fabrication process, inherent flexibility, light weight, biocompatibility, high
sensitivity, low cost, and rapid response and instantaneous measurements [107–109]. The
OTFTs are generally composed of three main functional components including a source, a
gate, and a drain, in which the conducting channel between source and drain is controlled
and modulated by an applied electric field at the gate [110]. For sensing applications, the
OTFT translates input voltage signals from the gate electrodes into output signals (i.e., cur-
rents or voltages) at the drain electrode [111]. In the last decades, OTFTs-based biosensors
have been extensively investigated and applied as innovative biosensing platforms because
of their inherent capacity in transferring and amplifying biological signals into electrical
signals. Among them, there are two main types of OTFTs including organic field-effect
transistors (OFETs) and organic electrochemical transistors (OECTs) commonly used for
virus detection [112]. OECTs have a similar structure and function to that of an OFET but
employ an electrolyte between the channel and gate instead of a conventional dielectric
with dipoles [113,114]. Recently, development of advanced materials with extraordinary
properties, including high electronic conductivity, high carrier mobility, and large specific
area, have been one of the key strategies for applications of OFET biosensors in virus detec-
tion [115]. CP semiconductors have been considered as promising materials for fabrication
of high performance OFETs due to good solution processability, film-forming properties,
and high flexibility. Among various CP types, p-type CP semiconductors, such as polythio-
phenes, PEDOT, PANI, and DPP-DTT, are often used for preparation of OFET biosensor
devices due to their high efficiency and interaction with bioreceptors. For instance, Kergoat
et al. reported a DNA sensor based on a water-gated OFET and nanostructured P3HT
as an active channel [116]. In this sensor, DNA probes were immobilized onto the P3HT
by covalent bonds. The OFET device showed a clear difference in the output currents
upon DNA immobilization and hybridization. In this study, deionized water was utilized
to increase the Debye length up to several hundreds of nanometers and decrease the off
current upon DNA hybridization. Moreover, this device could operate at very low voltages
(below 1 V) due to the formed electric double layer. However, CP-based OFET biosensors
have remained a big challenge related to the degradation of CPs following exposure to
moisture. Therefore, OFET biosensors are often designed with an extended-gate to separate
the gate electrode (active channel) from the driving unit of OFET in order to overcome the
above problem. For the “extended-gate”, a part of the gate electrode area was separately
moved far from the active channel of the OFET. For instance, Ji and coworkers designed a
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sensitive OFET biosensor with a gold extended-gate for detection of C-reactive proteins
(CRP) [117]. For the design of this device, the extended-gate was functionalized with
CRP antibody and directly linked with a traditional Al gate (Figure 6a). In addition, for
employing the biosensor configuration, another Ag/AgCl gate was connected with the
extended Au gate via an electrolyte solution (PBS buffer), and thus, the extended-gate
was able to be named as a floating gate. Based on the surface potential during antibody–
protein antigen conjugation, this extended-gate could effectively control the net gate bias
of the OFET device. It has demonstrated that the electrolyte-gated and extended-gate
OFET significantly improved the sensing performance due to the modified capacitance
and shifted the threshold voltage of the surface potential on the extended-gate, and the
Debye’s screening length parameter minimized its influence in this type of OFET sensor.
This OFET biosensor showed high responsivity and sensitivity with a wide range of CRP
concentration (100 ng mL−1–10 µg mL−1) and LOD around 1 µg mL−1 (Figure 6b,c).
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OECTs have recently gained great interest for the design and development of highly
sensitive biosensors in virus detection. More importantly, OECTs can be fabricated and
integrated on flexible substrates, which is essential for the design of flexible sensor devices
that can be attached on the human body [113]. For example, an OECT biosensor based
on a PEDOT:PSS conductive channel was developed for effective detection of the human
influenza A virus in aqueous conditions [118]. In this sensor system, an electrochemical
amplifier of the OECT was utilized to provide the highly sensitive, selective, and label-
free sensing performance to influenza A virus antigens. The changed drain current of
the OECT happened after the virus adsorption onto the active channel, and the signal
transduction mechanism was proposed by doping effect. The results indicated that the
PEDOT:PSS-based OECT biosensor proved its higher efficiency in detection of influenza
virus, compared with commercial immunochromatographic assays in the same detection
time. Moreover, the OECT device was possibly integrated in the wearable system for
monitoring the influenza virus owing to its printing processability as well as low power
consumption. In another study, Lin et al. successfully integrated a PEDOT:PSS OECT into a
flexible microfluidic system to design a highly sensitive and label-free DNA biosensor [119].
Specifically, the OECT was prepared on a PET substrate, and then, a PDMS microfluidic
was attached on the top (Figure 7a). The OECT-microfluidic biosensor showed a high
flexibility and stability in which both sides can be very easily bent without reduced charge
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transport properties (Figure 7b). Furthermore, this OECT device could recognize the DNA
targets at low concentrations of 1 nM, and its LOD was highly enhanced (~10 pM) due to
integration in the microfluidic channel. In the most recent study, Fu’s group successfully
developed an ultrasensitive, portable, and smartphone-controlled RNA biosensor based on
an OECT device for early detection of viruses and diseases [120]. This portable sensor was
designed with three main components: flexible and transparent miRNA OECT sensor, a
meter with readout circuit, and a smartphone (Figure 7c). The PEDOT:PSS OECT sensor
was attached into the meter remotely controlled and communicated by the smartphone via
Bluetooth. The gate electrode of OECT-based RNA biosensor was modified and functional-
ized with capture DNA, miRNA, and DNA probe and catalyzed by H2O2 in the aqueous
electrolyte (Figure 7 c,d). The devices presented a high sensing performance to miRNA
cancer biomarkers in a low volume of sample and low concentration due to its inherent
amplification function. These results demonstrated that both OFET and OECT devices have
high potential for the development of portable, flexible, ultrasensitive, fast, and low-cost
devices in detection viruses.
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5. Conducting Polymer Hydrogel (CPH)-Based Biosensors

CPHs are considered as advanced materials synergizing advantages of both CPs
and 3D hydrogels [121,122], thereby endowing them with great electrical conductivity,
mechanical flexibility, high stretchability, biocompatibility, and ease of processing [123].
Among various CPs, PEDOT, PANI, and PPy with advantages of biocompatibility, high
capacitance, and flexibility have been represented as attractive electrode materials for the
design of electronic implanted devices [124], which have been employed in biomedical
applications. For instance, a PEDOT/agarose CPH electrode was successfully fabricated by
two electrochemical processes: (i) PEDOT electropolymerization into the agarose hydrogel
and (ii) electrochemical actuation-assisted peeling (Figure 8) [124]. The PEDOT/agarose
electrode also showed a high stability in water for more than a month. CPHs emerged
to be candidates for high performance biosensors owing to facilitating interfaces of elec-
trochemical bio-electrodes. Moreover, CPHs possess hierarchical nanostructures, open
porous structure, and large surface area, thereby possibly improving the permeability
of bio-substrates and enhancing the interfacial area of electrodes. Therefore, CPH-based
biosensors are expected to present highly interesting characteristics such as rapid response,
flexibility, stability, high sensitivity and selectivity, and low LOD. Importantly, CPHs can
easily pattern any desired shapes at its gelation on various substrates by printing tech-
nologies or spraying techniques [125]. Hence, CPHs have been regarded as key functional
components for producing scalable bioelectronic sensors and multiplexing biosensor arrays.
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Figure 8. Schematic illustrations of the fabrication of a PEDOT-agarose CPH electrode: (a) pouring
a melted agarose solution onto a Pt microelectrode substrate; (b) electro-polymerization of PEDOT
into the gel; and (c) electro-actuation several times for peeling. (d) Optical image of the PEDOT
microelectrode array on the gel sheet [124].

Many studies have employed CPHs for the design and development of advanced
biosensors in the effective detection of virus antigens. For instance, a sensitive, rapid,
and antifouling biosensor for diagnosing clinical miRNA biomarkers directly in biological
media was recently fabricated by the assembly of PANI and phytic acid (PA) via one-step
electrochemical copolymerization method based on dynamic boronate bonds [126]. PA
plays an important role in providing a good biocompatibility and antifouling property
for the hydrogel, while PANI enables it with inherent electroactivity, excellent conduc-
tivity, and high chemical stability. Thus, the PANI/PA-based CPH exhibited excellent
antifouling property and electrochemical characteristics. Importantly, this CPH not only
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possesses many active sites for attaching DNA but also induces the electrochemical sig-
nals by the inherent reduction and oxide signal from PANI. An electrochemical biosensor
with both antifouling ability and good selectivity to miRNA was also constructed by the
immobilization of DNA bioreceptors onto the PANI/PA hydrogel surface by covalent
bond modification. This CPH biosensor worked based on the sensing signals from redox
currents of PANI, which is induced by DNA/RNA hybridization reaction. Based on the
aforementioned properties of PANI/PA hydrogel, the electrochemical biosensor showed a
high sensing performance to microRNA mismatches in a wide liner range of concentration
(1.0 fM–1.0 pM) and low LOD (0.34 fM). Furthermore, the promising approach in this
study has been proposed to apply for development of clinical diagnostics and biomedical
devices in detection of COVID-19 owing to superior advantages of the PANI/PA CPH
including good antifouling ability, mechanical flexibility, biocompatibility, high stability
and stretchability, facile processability, and high sensitivity and selectivity.

CPHs have been considered as unique smart materials in bioelectronics due to their
complete satisfaction with the severe requirements of advanced sensing devices and being
suitable for next-generation wearable, implantable, and portable bioelectronics [127,128].
CPHs can show excellent patterning capacity in various substrates due to their high stretch-
ability. For instance, Lu and coworkers patterned a PEDOT:PSS CPH with high conductivity,
stability, and stretchability onto a flexible PET substrate by a simple method involving
mixing volatile additive dimethyl sulfoxide (DMSO) into aqueous PEDOT:PSS solutions
and then controlling dry-annealing and rehydration [129]. In addition, the CPHs also
possessed high long-term mechanical and electrochemical stability in wet physiological
conditions due to their soft, wet, and conformable properties, thereby imparting highly
compatible electrical interfaces between biology and electronics and matching soft tissues
and organs [130]. Therefore, CPHs have offered a new opportunity for the development
of next-generation advanced bioelectronic devices based on CPs. For example, Arthur
et al. reported an OTFT bioelectronic device using a pure PEDOT:PSS CPH as gate elec-
trodes [131]. The study demonstrated that PEDOT:PSS hydrogel gate electrodes showed
good transistor characteristics and enabled the transistor device to operate at low voltages,
along with excellent sensitivity and selectivity. In summary, CPHs represent a promising
material in the development of soft and conformable biosensors.

6. Conclusions

Innovative technologies for the development of biosensors with excellent ultra-sensi
tivity, specificity, portability, and wearability have gained great interest from the commu-
nity in the management of the rapidly spreading COVID-19 pandemic and others. Many
reported studies have demonstrated that biosensors presented a high possibility for early
diagnosis, on-site, rapid, and ultrasensitive detection of different virus antigens. CPs have
recently started to be commonly employed for the development of advanced biosensors
because of their superior advantages involved in their unique properties and high sensing
features to virus antigens. There have been numerous CP-based biosensors successfully
designed and developed for virus detection, especially for COVID-19. Among them, optical
biosensors, i.e., colorimetric and fluorescent sensors, organic thin film transistors (OTFTs),
i.e., organic field-effect transistors (OFETs) and organic electrochemical transistors (OECTs),
conducting polymer hydrogels (CPH) have demonstrated as the most potential approaches
for fabrication of advanced biosensors with high sensitivity, selectivity, flexibility, and
processability, which is summarized and presented in Table 3. Furthermore, the recent
research also indicated that bioelectronic devices based on CPs can be regarded as one
of the trending technologies in the development of novel tools for the early and accurate
identification of the virus pandemics. Particularly, flexible, wearable, and stretchable bio-
electronic devices integrated CPs may be fabricated and served as a promising technology
for virus detection at the POCT systems.
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Table 3. Summary of the state-of-the-art applications of CP-based biosensors in detection of viruses.

Biosensors Conjugated Polymers Analytes Sensitivity Response Time LOD Refs

Fluorescent conjugated polymer biosensors

DNA fluorescent sensor Cationic PMNT ssDNA 10 nM - 1 nM [61]

DNA fluorescent sensor Cationic polythiophene ssDNA 18 zM 5 min 3 zM [65]

DNA fluorescent sensor Cationic polythiophene
derivatives Oligonucleotides 2 × 10−7 M 5 min 2 × 10−7 M [70]

Fluorescent sensor Cationic polythiophene
derivative (PT)

E. coli
S. aureus

C. albicans

1.0 × 108 cfu/mL
1.2 × 108 cfu/mL
5 × 107 cfu/mL

25 min
7.5 × 107 cfu/mL
9 × 107 cfu/mL
4 × 107 cfu/mL

[132]

Label-free DNA sensor Poly(3-alkoxy-4-
methylthiophene) Hepatitis B virus 100 pmol/L 45 min 88 pmol/L [133]

Forster energy transfer
(FRET) sensor

Water-soluble
conjugated polymers ssDNA 2.1 × 10−8 M - 5.1 × 10−7 [134]

Colorimetric conjugated polymer- based biosensors

Colorimetric
RNA biosensor

Polythiophene
derivative (PMNT) MicroRNAs 0.05–1.0 mM 25 min 10 nM [94]

Colorimetric
naked-eye biosensor Polydiacetylene H1N1 virus 2.75 × 106–

6.8 × 105 PFU - 105 PFU [80]

Colorimetric
vesicle sensor Polydiacetylene Oligonucleotides 2 nM–20 µM - 2 nM [83]

Colorimetric
vesicle sensor Polydiacetylene H5 influenza

virus 1.35 copies/µL 20 min 0.53 copies/µL [86]

Substrate
colorimetric biosensor

Polyvinylidene
difluoride

(PVDF)-supported
polydiacetylene

Foot-and-mouth
disease virus 7.6–122 µg/mL 10 min 7.6 µg/mL [89]

Liposome
colorimetric biosensor

Polydiacetylene
liposome

Antibody of
bovine viral

diarrhea virus

0.001 to
100 µg/mL 24 h 0.001 µg/mL [90]

Visible
colorimetric biosensor Polydiacetylene vesicles Hepatitis B

surface antibody 0.1–1 ng/mL 15 min 0.1 ng/ml [91]

Flow-through
colorimetric biosensor

Cationic
poly (3-alkoxy-4-

methylthiophene)

Lung cancer
(microRNA)

Hepatitis B virus
DNA

1 nM to 10 mM
1 nM to 10 mM - ~0.6 nM

~2 nM [96]

Label-free colorimetric
biosensor Polydiacetylene Influenza

antigens 3.3–33 µg/mL 10 min 3.3 µg/mL [97]

Multiple biosensor chip Polydiacetylene
liposome

Six species of
pathogen 102–106 units/mL 30 min 102 units/mL [99]

Paper
colorimetric sensor Polyaniline Escherichia coli 8.56 log CFU/mL 80 min 0.52 log CFU/mL [101]

Paper colorimetric chip Polydiacetylene Influenza A
(pH1N1) virus 5 × 104 TCID50 3 h 5 × 103 TCID50 [103]

CP-based organic thin film transistors

Water-gated OFET Poly(3-hexylthiophene) DNA (HIV virus) 1–100 nM 2 h 1 nM [116]

Ultraflexible OFET DPh-BBTNDT C-reactive protein
(CRP) antigen 500 ng/mL 100 s 1 µg/mL [117]

OECT sensor PEDOT:PSS Human influenza
virus 0.025–1 HAU 30 min 0.025 HAU [118]

Flexible Microfluidic
OECT PEDOT:PSS ssDNA 1 nM 6 h 10 pM [119]

Portable OECT sensor PEDOT:PSS microRNA 10−6–10−14 M, 1 h 10−14 M [120]

Conducting polymer hydrogel (CPH)-based biosensors

CPH sensor PANI microRNA 1.0 fM–1.0 pM 45 min 0.34 fM [126]
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